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Iztok Fister Jr. a, Matjaž Perc b,c,d,⇑, Salahuddin M. Kamal c, Iztok Fister a

a Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
b Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
c Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
d CAMTP – Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia

a r t i c l e i n f o a b s t r a c t
Keywords:
Firefly algorithm
Chaos
Chaotic map
Optimization
Swarm intelligence
The firefly algorithm is a member of the swarm intelligence family of algorithms, which
have recently showed impressive performances in solving optimization problems. The fire-
fly algorithm, in particular, is applied for solving continuous and discrete optimization
problems. In order to tackle different optimization problems efficiently and fast, many vari-
ants of the firefly algorithm have recently been developed. Very promising firefly versions
use also chaotic maps in order to improve the randomness when generating new solutions
and thereby increasing the diversity of the population. The aim of this review is to present
a concise but comprehensive overview of firefly algorithms that are enhanced with chaotic
maps, to describe in detail the advantages and pitfalls of the many different chaotic maps,
as well as to outline promising avenues and open problems for future research.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In the past, facing the real-world optimization problems was in the domain of mathematicians and engineers. They devel-
oped many mathematical methods for solving the optimization problems. The first algorithms solved the problems exactly
by enumerating all the possible solutions, but rapidly algorithms for approximate (heuristic) solving of these problem have
been emerged because of a huge time complexities of the exact methods. One of the more promising algorithms today are
swarm intelligence (SI) based algorithms inspired with a collective behavior of some simple unintelligent insects or animals,
who work together in order to be capable of solving the complex problems. For instance, a foraging of insects connects social
living bees, ants and termites. In nature, one individual cannot survive, but when living together in colonies, individuals are
stronger and thus capable of performing very complex tasks (e.g., huge mounds by termites). These colonies of insects act as
decentralized, and self-organized systems that prevents a single insect to act alone.

A firefly algorithm (FA) is one of the younger member of SI-based algorithms that was introduced by Yang in [40] at 2008.
Since its introduction, many researchers began working with FA. At the beginning, some modified variants were proposed
that were applied for solving the continuous optimization [43], multimodal [41], constrained optimization [30], and later
also for real-world problems [47,36,16,25]. Competition of FA with other well-known meta-heuristics led to the develop-
ment of more robust and sophisticated FA variants. For example, Fister et al. in [12] proposed a memetic self-adaptive FA
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(MFA), where values of control parameters are changed during the run. Their version of the FA was developed for combina-
torial optimization, while Galvez and Iglesias [17] created a new memetic self-adaptive FA for the continuous optimization.
Simultaneously, also a bunch of applications using FA were created [18,19,3].

Stochastic optimization algorithms search for optimal solutions by involving randomness in some constructive way [24].
In contrast, if optimization methods provide the same results when doing the same things, these methods are said to be
deterministic [11]. If the deterministic system behaves unpredictably, it arrives at a phenomenon of chaos [11]. Conse-
quently, randomness in SI algorithms plays a huge role because this phenomenon affects the exploration and exploitation
in search process [5]. These companions of stochastic global search represent the two cornerstones of problem solving,
i.e., exploration refers to moves for discovering entirely new regions of a search space, while exploitation refers to moves
that focus searching the vicinity of promising, known solutions to be found during the search process. Both components
are also referred to as intensification and diversification in another terminology [22]. However, these refer to medium- to
long-term strategies based on the usage of memory, while exploration and exploitation refer to short-term strategies tied
with randomness [5].

Essentially, randomness is used in SI algorithms in order to explore new points by moving the particles towards the
search space. In line with this, several random number distributions can be helpful. For example, uniform distribution gen-
erates each point of the search space using the same probability. On the other hand, Gaussian distribution is biased towards
the observed solution, this means that the smaller modifications occur more often than larger ones [9]. On the other hand,
the appropriate distribution depends on the problem to be solved, more precisely, on a fitness landscape that maps each
position in the search space into fitness value.

Interestingly, some authors enhanced the original FA with a chaos in order to improve it. However, a comprehensive
study about chaos-based FA (CFA) are still missing. In this paper, therefore, we would like to assemble papers tackling
the CFA, introduce a taxonomy of these algorithms, review the most frequently used chaotic maps in CFAs and critical
discuss its advantages and disadvantages. Finally, we outline the possible directions for the future research. The purpose
of this review is twofold: Firstly, to show that enhancing the CFA with chaotic maps may improve the original FA sig-
nificantly, and secondly, to encourage the potential developers to start using the CFA for solving the hard problems in
practice.

The structure of the paper is as follows. Section 2 describes the FA basics. In Section 3, the possible ways how to enhance
the original FA with chaotic maps are explained. A brief review of the chaos-based FAs is presented in Section 4. The paper
concludes with Section 5 where also the possible directions for further development are outlined.
2. The firefly algorithm

After watching the environment and sky during the summer nights, professor Yang [41] got an idea for developing a new
algorithm. His source of inspiration were small lighting bugs called fireflies [6]. A phenomenon presents their flashing lights
which can be seen and adored on clear summer nights. The production of these lights is done by a complicated set of chem-
ical reactions. They flashes in order to attract a mating partner or for protection against predators. The intensity of their
lights I decrease when the distance r from the light source increases in terms of I / r2. On the other hand, air absorbs the
light as the distance from the source increases [16]. This firefly behavior is modeled into the Yang’s firefly algorithm (FA)
so that the light intensity is proportional to the fitness function of the problem to be solved.

However, because an adaptation of the natural behavior of the fireflies in an algorithm is too complex, the following ide-
alized rules are considered by developing of the FA:

� all fireflies are unisex,
� their attractiveness is proportional to their brightness, and
� the brightness of a firefly is affected or determined by the landscape of the objective function.

A pseudo-code of the FA is illustrated in Algorithm 1, from which it can be seen that the algorithm consists of the follow-
ing elements:

� a representation of a firefly,
� an initialization (line 1 in Algorithm 1),
� a moving operator (line 8 in Algorithm 1),
� an objective function (lines 2, 11 in Algorithm 1).

Note that this SI-based algorithm does not support an explicit selection. This means, a moving of the whole population of
solution depends on the position of the global best solution as well as positions of the local better (brighter) solutions in the
neighborhood (line 13 in Algorithm 1). Additionally, a termination condition (line 4 in Algorithm 1) is needed in order to
provide the proper termination of the FA.
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Algorithm 1. Pseudo code of the basic firefly algorithm

Input: Population of fireflies x ¼ ðx1; . . . ;xNÞ, objective function f ðxiÞ.
Output: The best solution xbest and its value f min ¼minðf ðxbestÞÞ.
1: generate_initial_population xð0Þ ¼ xð0Þ1 ; . . . ;xð0ÞN

� �
;

2: f xð0Þi

� �
= evaluate_new_solution_and_update_light_intensity;

3: t ¼ 0;
4: while t < MAX GEN do
5: for i ¼ 1 to N do
6: for j ¼ 1 to N do
7: if Ij > Ij then
8: move_firefly_i_towards_j_using_uniform_distribution;
9: end if
10: end for

11: f xðtÞi

� �
= evaluate_new_solution_and_update_light_intensity;

12: end for
13: rank_fireflies_and_find_the_best;
14: t ¼ t þ 1
15: end while

The FA is a population-based algorithm, where each population member (i.e., firefly) represents a candidate solution of
the problem to be solved and thus denotes a point in the search space. The candidate solution xi is represented as
xi ¼ ðxi1; . . . ; xiDÞ; for i ¼ 1; . . . ;N; ð1Þ
where N denotes the population size, and D is the dimensionality of the problem.
An initialization of the candidate solution is performed according to the equation
xð0Þij ¼ Uð0;1Þ � ðubj � lbjÞ þ lbj; for i ¼ 1; . . . ;N; ð2Þ
where Uð0;1Þ denotes a random number drawn from a uniform distribution in the interval [0, 1], lbj and ubj are the lower
and the upper limits of the corresponding jth problem variable.

The variation operator bases on the lights intensity relation I / r2 that can be expressed in mathematical form as follows
IðrÞ ¼ I0e�cr2
; ð3Þ
where I0 denotes the light intensity at the source, and c is a fixed light absorption coefficient. In nature, two fireflies are
attracted between each other in order to find an appropriate mating partner (usually the brightest). Similar to light intensity,
the attractiveness b also depends on the distance r and it is calculated according to the following generalized equation
bðrÞ ¼ b0e�cr2
; for k P 1; ð4Þ
where b0 denotes an attractiveness at r ¼ 0.
The distance rij between two fireflies xi and xj is expressed as an Euclidian distance
rij ¼ kxi � xjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

k¼1

xik � xjk

vuut ; ð5Þ
where xik and xjk are the kth element of the ith and jth firefly positions within the search-space, and D denotes the dimen-
sionality of a problem. Each firefly i moves to another more attractive firefly j, as follows
xi ¼ xi þ b0e�cr2
ij ðxj � xiÞ þ a � �i; ð6Þ
where a represents a step size scaling factor and �i is a randomization parameter. Eq. (6) consists of three terms. The first
term determines the position of the ith firefly. The second term refers to a social component of moving the firefly i towards
the more attractive firefly j, while the third term is connected with the randomized move of the ith firefly within the search-
space.

The step size scaling factor is proportional to the characteristics scale of the problem of interest, while originally
the randomization parameters denotes a random number drawn from a uniform distribution. However, the last term
can also be expressed differently. For instance, Yang in [42] replaced the uniform distribution with a Lévy flights as
follows
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Lðc; kÞ ¼ k � CðkÞ � sinðpk=2Þ
p

� 1
c1þk

; ð7Þ
where CðkÞ represents a Gamma function, c 2 R is a scale and k 2 ½0;2� an exponent of the density function, which reduces to
Cauchy distribution, when a ¼ 1 and to Gaussian distribution, when a ¼ 2.

During the evaluation phase, a value of objective function is calculated for each candidate solution. Here, the light inten-
sity is proportional to the objective function of the problem being optimized and vice verse (i.e., IðxÞ / f ðxÞ). This means, the
light intensity is updated proportionally to the value of the objective function.

Interestingly, the FA distinguishes two limiting behavior that are controlled by a setting of the parameter c. When c! 0,
the attractiveness in Eq. (6) becomes b ¼ b0, i.e., a firefly can be seen by all the other fireflies in the population. In this case,
the FA behaves similar to the particle swarm optimization (PSO). On the other hand, when c!1, the second term is elim-
inated from Eq. (6), i.e., fireflies do not see each other. In this case, the firefly movement becomes similar to random search. In
practice, the FA behavior is modeled using this parameter regarding to the characteristics of the problem to be solved.

3. Chaos-based firefly algorithms

Chaos in natural sciences denotes a deterministic system that behaves unpredictable [11]. In mathematics, chaos does not
indicate the system with a complete absence of order, but perfectly ordered system that includes some flavor of randomness.
This term was firstly used by Li and Yorke in [27] at 1975. Usually, this phenomenon is considered as a part of dynamical
systems that change over the time.

Chaotic behavior is primarily detected in mathematics by iterated functions that returns the random values in each iter-
ation. The generated sequence of values by chaotic functions (also an orbit) variates when started from the different initial
value. Interestingly, each orbit limits to the same limit value, when the number of iterations goes to the infinity. In fact, such
behavior is a characteristics of the ergodic systems. The orbit is usually represented as a so called chaotic maps, where the set
of input values is mapped to a set of output values.

In general, characteristics of chaotic maps are determined by the following propositions [11]:

� the dynamic rule of generating the sequence of numbers is deterministic,
� the orbits are aperiodic (they never repeat),
� the orbits are bounded (time series stay between upper and lower limits, normally, within the interval ½0;1�),
� the sequence has sensitive dependence on the initial condition (also SDIC).

Randomness is SI-based algorithms plays the primary role in the SI-based search process by exploring the new solutions.
Therefore, many efforts were invested in a research of the new randomized methods. Recently, a theory of chaos offers a lot
of deterministic time series of different characteristics. The chaos-based methods can successfully replace the existing ran-
dom generators in many applications because of increasing the exploration power of the stochastic search process. On the
other hand, these methods have a different characteristics and therefore can easier be adapted to the fitness landscapes of
the different problems to be solved.

The original FA can be enhanced with chaos in two way. On the one hand, the chaotic map replaces some random dis-
tributed FA parameter in order to improve the performance [20,14]. On the other hand, the firefly intrinsic structure is
applied for tuning algorithm parameters using chaotic map [46].

Three parameters control a behavior of the original FAs, i.e., step size of randomized move a, attractiveness b and absorp-
tion coefficient c. The first parameter affects the randomized term a�i in Eq. (6), where the randomized parameter �i is
expressed using chaos time series, as follows
�i ¼ CðkÞi ; ð8Þ
while the Eq. (4) becomes the following chaotic-enhanced form
bi ¼ b0CðkÞi ; ð9Þ
where CðkÞi is the particular chaotic map determined by the number k.
Interestingly, the firefly social component of move in Eq. (6) can be expressed by some simplifications according to Yang

[46] as follows
yðtþ1Þ
i ¼ yðtÞi � bexp�cyðtÞ

2

� yðtÞi : ð10Þ
When it is assumed uðtÞi ¼
ffiffifficp � yðtÞi , the above equation can be further simplified to
uðtþ1Þ
i ¼ kuðtÞi 1� uðtÞi

� �
: ð11Þ
As a result, the obtained equation prescribes a logistic chaotic map. This means that the logistic map is yet intrinsic char-
acteristics of the social component in the FA.



Table 1
Recent applications using CFA.

CFA Variant Chaos-enhanced parameters Optimization Authors References

Modified b; c Global Yang [45]
Modified a; c Engineering Coelho et al. [8]
Modified a; c Engineering Coelho et Mariani [4]
Modified a; b Engineering Arul et al. [2]
Modified b; c Global Gandomy et al. [20]
Hybrid a; b; c Engineering Kazema et al. [26]
Modified b; c Engineering Abdel-Raouf et al. [1]
Modified a Global Fister et al. [14]
Modified a; c Engineering Mishra et al. [33]
Hybrid b; c Engineering Long et Meesad [29]
Modified b; c Engineering Yang [46]
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4. A brief review of chaotic-based firefly algorithms

An aim of this article is to review the recently work tackling the CFA. In line with this, the existing articles from this
domain were assembled. Then, a detailed analysis of these articles was performed. As a result, a taxonomy of CFA was pro-
posed. The section is followed by a detailed review of the chaotic time series methods as found in the articles. The section is
finished with a discussion, where advantages and disadvantages of using the chaos in FAs are assessed and directions for the
future work are indicated.

4.1. Analysis of chaos-based firefly algorithms

Papers tackling the CFA addressed in our analysis are presented in Table 1. The table consists of five columns that denote:
the chaos-based FA variant, parameters that are enhanced with chaos, optimization domain to which this belong, authors of
the particular paper and a reference on this. In the remainder of the paper, a detailed analysis of the mentioned papers is
performed.

The first try to develop a CFA was performed by Yang [45] in 2011, which introduced a logistic map for attractiveness and
absorption coefficient in place of Gaussian or Lévy flight distributed random variables. This algorithm was applied to a global
optimization problem (i.e., function optimization).

Coelho et al. in [8] developed the CFA for solving the reliability–redundancy allocation that belongs to a class of reliability
problems. Here, the logistic chaotic map enhanced an absorption coefficient as well as randomized parameter. This modified
FA outperformed other optimization techniques, like dynamic programming, integer programming, mixed-integer program-
ming as well as the original FA by reliability–redundancy designing of an over-speed protection system for a gas turbine. A
paper [4] of Coelho et Mariani presents a continuation of the previous work, where tuning parameters of the multi-loop pro-
portional-integral-derivative (PID) controller was used as a test bed for testing the CFA. In this case, a Tinkerbell chaotic map
was incorporated in the CFA. The promising results of the proposed CFA were compared with GA, PSO, original FA and mod-
ified FA.

Arul et al. in [2] proposed a CFA for solving the economic load dispatch problem (ELD). In this paper, the randomizing and
attractiveness parameters were enhanced with tent chaotic map. The reported results of the proposed algorithm were shown
a good convergence characteristics on all considered ELD test cases when compared with the other soft computing tech-
niques reported in literature.

Gandomi et al. in [20] enhanced an attractiveness and absorption coefficient in their CFA with 12 different chaotic maps
and applied it to the global optimization problem. Thus, it was showed that some chaotic maps clearly outperformed the
results of the original FA.

A paper of Kazema et al. [26] proposed a meta-heuristic CFA for searching the optimal values of support vector regression
(SVR) parameters used to predict stock market price. In this SVR-CFA, all three parameters (i.e., randomized parameter,
attractiveness and absorption coefficient) were enhanced with logistic chaotic map. The results of the proposed algorithm
according the mean square error (MSE) and mean absolute percent error (MAPE) outperformed the results obtained by cha-
otic genetic algorithm-based SVR (SVR-GA), firefly based SVR (SVR-FA), artificial neural networks (ANN) and adaptive neuro-
fuzzy inference systems (ANFIS).

Abdel et al. in [1] proposed the CFA for a parallel calculating numerical integration in engineering. This modified algo-
rithm enhanced parameters of social component of FA move (i.e., attractiveness and absorption coefficient) with a sinusoidal
chaotic map. The results of numerical simulations showed a high convergence rate, high accuracy and robustness of the pro-
posed CFA.

Fister et al. in [14] developed the randomized FA (RFA) algorithm with various probability distributions (e.g., uniform,
Gaussian and Lévy flights) as well as logistic and Kent chaotic maps. Thus, the randomized parameter was enhanced with
mentioned probability distributions and chaotic maps. The results of comparison study confirmed a successfulness of incor-
porating the chaotic maps into the FA.
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In a paper of Long and Messad [29], a hybrid CFA + GA employed as a meta-heuristic for determining the structure of
fuzzy rule as well as the number of rules for fuzzy logic system that was used to predict sea water level. Indeed, the attrac-
tiveness and absorption coefficient were enhanced with Gauss chaotic map. The results obtained by this hybrid algorithm
outperformed the results of both GA and FA.

The RSA public-key crypto-system problem was solved by Mishra et al. in [33] using the multithreaded bound varying
CFA, where the randomized parameter and absorption coefficient were enhanced with logistic chaotic map. The results of
experiments showed that this CFA is an effective tool by solving this problem.

Yang in [46] performed a comparative study covered the original FA, chaotic-enhanced FA (CFA+) and automatic param-
eter tuning FA (AutoFA). In the CFA+, the intrinsic structure of the FA was employed for tuning the attractiveness and absorp-
tion coefficient, while in the AutoFA, all three FA parameters were self-adapted during the SI-based search process run. The
results of mentioned algorithms solving design optimization problems from literature showed that CFA+ can improve its
search efficiency significantly.

4.2. Taxonomy of chaos-based firefly algorithms

In this subsection, a classification of the CFAs is identified. This classification bases on the analysis of papers illustrated in
Table 1. In general, the chaos-based FAs can be divided into two classes (Fig. 1: modified CFA and hybrid CFA. The former
class covers algorithms that enhanced the algorithms parameters with chaotic maps, while the latter incorporates a prob-
lem-specific knowledge into CFA structures by solving the particular problem.

The modified CFAs have been applied to theoretical or real-world problems. The hybridization of CFAs can be divided into
two classes: an automatic parameter tuning and hybridization of components. The automatic parameter tuning means that
the CFA acts as a higher-level heuristic that searches for an optimal parameter setting of a lower-level heuristic solving the
problem of interest. The hybridization of components refers to a basic heuristic algorithm that borrows a specific compo-
nents from the other heuristic algorithms. For instance, Fister et al. in [13] hybridized the Bat algorithm [44] (BA) with
‘‘rand/1/bin’’ mutation strategy borrowed from differential evolution [37] (DE) in order to improve the original algorithm.

The taxonomy of papers tackling the CFA is presented in Table 2, from which it can be seen that the most papers cover a
solving the real-world problems.

Interestingly, the paper [29] in Table 2 was classified in both hybrid classes because the CFGA algorithm illustrated in this
paper bears characteristics of the modification as well as hybridization of components because this algorithm borrowed the
crossover operator from the original GA.
Fig. 1. An overview of the taxonomy of chaos-based firefly algorithms.

Table 2
Publications tackling the chaos-based firefly algorithms.

Topic References

Original firefly algorithm (FA) [41]
Theoretical chaos-based firefly algorithm (CFA) [45,20,14]
Real-world chaos-based firefly algorithm (CFA) [8,4,2,1,33]
Meta-heuristical chaos-based firefly algorithm (CFA) [26,29]
Hybrid chaos-based firefly algorithm (CFA) [29]



Table 3
chaotic maps in firefly algorithm.

Number Chaotic maps References

1 Chebyshev map [20]
2 Circle map [20]
3 Gauss map [29,20]
4 Intermittency map [20]
5 Iterative map [20]
6 Kent map [14]
7 Liebovitch map [20]
8 Logistic map [45,8,14,26,20,33]
9 Piecewise map [20]
10 Sine map [20]
11 Singer map [20]
12 Sinusoidal map [1,20]
13 Tent map [2,20]
14 Tinkerbell map [4]
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4.3. Firefly algorithms and chaotic maps

Recently, a lot of chaotic maps were discovered primarily by mathematicians and physicians applicable to different
domains of human activity. In line with this, the majority of these were applied to different algorithms for solving the various
real-world problems. Therefore, the more applicable chaotic maps tackling the CFA are reviewed in this subsection as found
in the assembled literature from Table 1. These chaotic maps are presented in Table 3 that is divided in three columns, i.e.,
the sequence number of the chaotic map, its name and the reference of the paper, where this was used.

From Table 3, it can be seen that the logistic map was enhanced parameters of the CFA the most frequently. More often
also chaotic maps, like Gauss, sinusoidal and Tent maps were employed. Interestingly, the paper of Gandomi et al. [20] has
dealt with the largest number of different chaotic maps. In the remained of the paper, characteristics of the most frequently
chaotic maps used in the CFA were reviewed.

4.4. Chebyshev map

Chebyshev map is determined by the following iteration function [38]:
xnþ1 ¼ cosðn cos�1ðxnÞÞ; ð12Þ
where n is an iteration number. Using this map, the chaotic time series xn 2 ½0;1� are obtained.

4.5. Circle map

An iteration function representing the Circle map [23] is as follows:
xnþ1 ¼ xn þ b� ða� 2pÞ sinð2pxnÞ mod ð1Þ; ð13Þ
where a chaotic time series xn 2 ½0;1� are generated by a ¼ 0:5 and b ¼ 0:2.

4.6. Gauss map

Gauss map is a nonlinear iterated function given by Gaussian function [21]:
xnþ1 ¼ exp�ax2
n þ b; ð14Þ
where the deterministic chaotic time series are produced in the interval xn 2 ½0;1� for a ¼ 4:9 and b ¼ �0:58.

4.7. Intermittency map

Intermittency map [10] consists of a linear and nonlinear terms, as follows:
xnþ1 ¼
�þ xn þ cxm

n ; 0 < xn 6 d;
xn�d
1�d ; d < xn < 1;

(
ð15Þ
where c ¼ 1���d
dm ; �� d, and m is usually set as m ¼ 2. In line with this, the time series xn 2 ½0;1� are got.
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4.8. Iterative map

Iterative map [31] is introduced by the following iterative function:
xnþ1 ¼ sin
ap
xn

� �
; ð16Þ
where the chaotic time series xn 2 ½0;1� are obtained by setting a 2 ½0;1�.

4.9. Kent map

Kent map [11] is one of the more studied chaotic maps that has been used to generate pseudo-random numbers in many
applications, like secure encryption. It is defined as follows:
xðnþ 1Þ ¼
xðnÞ
m ; 0 < xðnÞ 6 m;
ð1�xðnÞÞ

1�m ; m < xðnÞ < 1;

(
ð17Þ
where 0 < m < 1. Hence, if xð0Þ 2 ½0;1�, for all n P 1; xðnÞ 2 ½0;1�.

4.10. Liebovich map

The iterative function generating the Liebovich map [38] is the following form:
xnþ1 ¼
a1xn; 0 < xn 6 d1;

p�xn
d2�d�1 ; d1 < xn 6 d2;

1� a2ð1� xnÞ; d2 < xn 6 1;

8><
>: ð18Þ
where di for i ¼ f1;2g are endpoints of the subintervals and ai for i ¼ f1;2g denote the slopes of the linear maps. Thus, the
chaotic time series xn 2 ½0;1� are generated.

4.11. Logistic map

The following iterated function define the logistic map [11]:
xnþ1 ¼ rxnð1� xnÞ; ð19Þ
where xn 2 ½0;1� and r is a parameter. A generated time series xn 2 ½0;1� are chaotic when the iterated Logistic map with r ¼ 4
is used.

4.12. Piecewise map

Piecewise map [39] consists of four linear pieces that are determined by the following iterated function:
xnþ1 ¼

xn
d ; 0 6 xn < d;
xn�d
0:5�d ; d 6 xn <

1
2 ;

1�d�xn
0:5�d ;

1
2 6 xn < 1� d;

1�xn
d ; 1� d 6 xn < 1;

8>>>><
>>>>:

ð20Þ
where d denotes endpoints of four subintervals and can be set as d 2 ½0;0;5�. However, the generated chaotic time series cap-
ture the interval xn 2 ½0;1�.

4.13. Sine map

The sine map [7] is based on the sine iteration function and it is defined as follows:
xkþ1 ¼ a sinðpxkÞ; ð21Þ
where 0 6 r 6 1; 0 6 xn 6 1, while the time series of form xn 2 ½0;1� are generated by this map.

4.14. Singer map

A basis of the Singer map [35] represents the Singer iterated function. In other words, this chaotic map is defined as:
xnþ1 ¼ l 7:86xn � 23:31x2
n þ 28:75x3

n � 13:3x4
n

� �
; ð22Þ
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where the parameter l can be captured from the interval ½0:9;1:08�. However, the chaotic time series are obtained in interval
xn 2 ½0;1�.

4.15. Sinusoidal map

The sinusoidal map [28] generates a chaotic time series according to the equation:
xnþ1 ¼ ax2
n sinðpxnÞ: ð23Þ
Note that the above equation becomes simplified form:
xnþ1 ¼ sinðpxnÞ; ð24Þ
for a ¼ 2:3 and x0 ¼ 0:7. The generated chaotic time series are in interval xn 2 ½0;1�.

4.16. Tent map

The tent map [34] is introduced by the following iterated function:
xnþ1 ¼
lxn; for xn <

1
2 ;

lð1� xnÞ; for xn P 1
2 ;

(
ð25Þ
where l is a positive real constant. For l 2 ½0;2�, this function generates a chaotic time series in interval xn 2 ½0;1�. Interest-
ingly, the function transform to a logic map with r ¼ 4 by l ¼ 2.

4.17. Tinkerbell map

The Tinkerbell map [32] is a discrete map given by the following equations:
xnþ1 ¼ x2
ny2

n þ a � xn þ b � yn; ð26Þ

ynþ1 ¼ 2xnyn þ c � xn þ d � yn; ð27Þ
where a; b; c; d are non-zero parameters and n is the iteration. The chaotic time series xn 2 ½0;1� can be obtained for param-
eter values a ¼ 0:9; b ¼ 0:6013; c ¼ 2:0, and d ¼ 0:5.

4.18. Discussion

From the assembled literature tackling the CFA, it can be conducted that enhancing the chaotic maps in the CFA structures
has the following advantages:

� higher convergence rate,
� higher accuracy, and
� higher robustness.

This means that the chaotic maps introduce an additional explorative power in the SI-based search process that prevents
from to stuck in local optima. On the other hand, Fister et al. in [14] showed that the efficiency of used chaotic maps depends
on the problem of interest. Moreover, their later study [15], where the same chaotic maps were applied to the Bat algorithm
[44] showed that the efficiency also depends of the algorithm into which the specific chaotic map has been incorporated.

Applying the chaotic maps in place of the random probability distributions has also some technical advantages, i.e., the
random generator on digital computers generates an integer variable of length 32-bit that can represents the maximal
232 � 1 (6:5 � 104) different random values. Consequently, the chaotic map time series return values from the interval
½0:0;1:0� of type double float. In this case, the generated 64-bit values comprise range between 252 and 253, i.e., 4:5 � 1015 dif-
ferent random values. This fact is important for all stochastic meta-heuristic algorithms because an additional diversity of
population is obtained using these chaotic maps.

Unfortunately, using of chaotic maps has also some disadvantages. The primary issue is the enormous number of chaotic
maps that prevent a selection of the most promising chaotic map for some specific problem. As a possible solution of this
problem, an adapted CFA could be developed in the future that will select the best chaotic map from an ensemble according
to the problem of interest, the current search process state or the type of algorithm enhanced with a chaotic map.

5. Conclusions

This paper presents a brief review of the chaos-based FA. In line with this, papers tackling the CFAs are assembled, a tax-
onomy of these algorithms is introduced, the most frequently used chaotic maps are highlighted, advantages and disadvan-
tages of these maps are exposed, and the possible directions for the future development of CFA are outlined.
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The reported results of the CFAs obtained in the literature show that enhancing the CFAs with chaos improves character-
istics of the original FA in sense of higher convergence rate, accuracy and robustness. On the other hand, the efficiency of the
specific chaotic map enhancing the CFAs depends on the problem of interest as well as the basic algorithm enhanced with
this chaotic map. In order to overcome these problems, the adapted CFA is proposed as a promising direction for the future
work.
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