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a b s t r a c t 

This paper presents a procedure to detect unreliable computer simulations of recursive 

functions. The proposed method calculates a lower bound error which is derived from two 

different pseudo-orbits based on interval extensions. The interval extensions are gener- 

ated by taking into account the associative property of multiplication, which keeps the 

same error bound. We have tested our approach on the logistic map using many different 

programming languages and simulation packages, including Matlab, Scilab, Octave, Fortran 

and C. In all cases, the number of iterates is significantly lower than that considered reli- 

able in the existing literature. We have also used the lower bound error on the logistic map 

and on the polynomial NARMAX for the Rössler equations to estimate the largest Lyapunov 

exponent, which determines the critical simulation time that guarantees the reliability of 

the simulation. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Numerical computing and dynamical systems go hand in hand and this has been a long-term relation. In the 60s, it

had already been observed the use of computers dedicated to efforts in understanding climate phenomena [22] . In fact,

many numerical problems in dynamical systems, such as finding sinks in the Hénon Map or iterating the Lorenz attractor,

have motivated research on arithmetic algorithms for extended precision [20] . As stated in [25] , computational techniques

are applied to different topics in nonlinear dynamics, such as synchronisation, bifurcation and chaos, complex networks,

conservative systems and nonlinear partial differential equations. 

In fact, many works have been published delivering an idea of reliability in their numerical solutions of nonlinear dy-

namical systems. This is not the precise idea that Lozi states in [24] . In fact, he asks if “In the simple case of a dynamic

discrete system (of Hénon map) there are doubts as to the nature of the computational results: long unstable pseudo-orbits

or strange attractors?” [24] . Other earlier works, such as [6,10,37] , have already raised some suspicions on the conclusions

of nonlinear dynamics upon numerical simulations. Recently, Galias [11] expresses the importance of developing methods
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E-mail addresses: nepomuceno@ufsj.edu.br (E.G. Nepomuceno), martins@ufsj.edu.br (S.A.M. Martins), amaral@ufsj.edu.br (G.F.V. Amaral), 

matjaz.perc@uni-mb.si (M. Perc). 

https://doi.org/10.1016/j.amc.2018.02.020 

0 096-30 03/© 2018 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.amc.2018.02.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/amc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.amc.2018.02.020&domain=pdf
mailto:nepomuceno@ufsj.edu.br
mailto:martins@ufsj.edu.br
mailto:amaral@ufsj.edu.br
mailto:matjaz.perc@uni-mb.si
https://doi.org/10.1016/j.amc.2018.02.020


E.G. Nepomuceno et al. / Applied Mathematics and Computation 329 (2018) 408–419 409 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to prove the existence of chaotic attractors and warns its audience to the dangers of rounding errors for simulations and

analysis of nonlinear circuits. Similar results can be found in [33] , but using a method based on interval extension. 

Different from the Lorenz system, the proof for the chaotic attractor of the Chua’s circuit needs to be further investigated

[11] . The case of Chua’s circuit is an outstanding example of nonlinear dynamical system built upon on inequalities, which

has been seen as important source of inconsistent results according to [3] . A “good agreement” between simulation and

experimental data cannot be seen as the final answer, which has been considered as paradoxical in [6] . In such direction, it

has been reported that a simulation of the Chua’s circuit using the same set of parameters and initial conditions presents

chaotic and periodical oscillation depending of the numerical method applied [41] . This kind of chaos suppression according

numerical methods is not a new issue and it has been already studied in works such as [7] . Another fact that points out for

the importance of the reliability [14,34] and reproducibility [40,43] of numerical simulation is the fact that there are theo-

retical models with no possible real experiment. Take an example of logistic map [26] , where x is considered the population

density and a continuous variable in the interval of 0 to 1. It means that a population has a infinite number of individuals,

which is impossible to make an equivalent experiment. 

The term “Computational Chaos” has been defined during investigations on chaotic behaviour of difference equations

used to approximate a continuous system represented by a set of differential equations as the step-size is increased [30] .

Further results on the same issue can be found in [11,21,23,45,46] . For instance, in [21] , the author has introduced the con-

cept of critical predictable time to provide a more precise description of computed chaotic solutions of nonlinear differential

equations. 

According to [17] , one of the first attempts to examine the relation between numerical experiments and the true dynam-

ics of a system is found in [15] . By means of the Cray X-MP, a computer costing multi-million dollars at that time, they have

reported the shadowing property as valid for a considerable number of iterates when simulating the logistic map for the

parameter r = 3 . 8 and the initial condition x 0 = 0 . 4 . When this case is considered, according to [15] , a pseudo-orbit of the

logistic map is shadowed by a true orbit within a distance of 10 −8 for 10 7 iterates. Since the theorem is proved for specific

conditions, “it can be raised an issue if the computer test constitutes a sufficient condition, and therefore the theorem is

proved for all cases, or whether it is a necessary condition, the result may not be valid for all cases”, as states [32] . 

Many researchers have applied the result in [15] on studies concerning the dynamical systems theory since then. More

than 150 citations of [15] have been analysed through the Scopus online platform and it was observed that, in some cases,

the shadowing theorem is seen as a property possible to be generalised for non-hyperbolic systems. The paper of [15] is

mentioned as the one that proves the shadowing property for systems with non-hyperbolic behaviour by [39] . In the same

line, [15] is considered as “first proof of the existence of a shadow for a two-dimensional non-hyperbolic system over a

non-trivial length of time” by [17] . In addition, remarks that the shadowing property had been shown valid for some initial

condition and parameter values of the logistic map, without mentioning the cases for which the property fails are presented

in [4] . 

Thus, beyond using the computer to study nonlinear systems, it also becomes important verifying the reliability of its nu-

merical results. Some recent works have explored the issue of checking computer results [11,31,32] . An interesting approach

to analyse the forward error of iterative numerical algorithm is proposed in [16] . The authors state that “many iterative

numerical algorithms can be considered as dynamical systems, and therefore can be studied using control systems theory”,

and although the proposed forward error analysis schemes may also be applied to algorithms that can be represented by

a nonlinear dynamical system, it will be necessary to show that the dynamical system used to represent the algorithm is

Lyapunov stable [16] . One of the key steps towards a control-theory approach to analyse error may require a way to proper

measure this error. In this sense, based on the preliminary work about convergence of recursive functions on a computer

[31] , a method has been proposed to calculate a lower bound error for free-run simulation of polynomial NARMAX [2] by

Nepomuceno and Martins [32] . In that work, a simulation is performed by means of two interval extensions, derived from

mathematical properties, such as commutative, distributive or associative [29] . These two interval extensions produce two

different pseudo-orbits. Applying interval analysis, the authors show a way to calculate an inferior limit, that is, a lower

bound, for the error. This method can be extended to other types of recursive functions, as done in [33] . More recently, the

lower bound error has been used to develop a fast and robust method to calculate the positive largest Lyapunov exponent

by Mendes and Nepomuceno [27,33] . It has been also used to estimate a critical simulation time, similar to that presented

in [21] , but calculated by means of interval extensions. 

In [32] , three identified models from literature have been investigated and it has been showed that it is not possible

to undertake an arbitrary number of iterations for some cases of simulation of polynomial NARMAX without losing all

significant digits of the simulation. In fact, there are cases that less than one hundred of iterations, all digits lose their

significance. This is a serious matter, as for many types of validation techniques, such as the bifurcation diagrams, hundreds

of iterations have been considered as transient. For instance, in [35, p. 40] , the author described a procedure to build a

bifurcation diagram of the logistic map considering the first 500 iterations as transient. This suggested procedure does not

make any requirement of computer precision, on the contrary, what we have seen in the literature, most of works have been

using only double precision. For instance, in [1] the authors use 10 0 0 points in their algorithm to detect nonlinear dynamics

without any description of software or precision. Regarding the studies on Hénon Map, it is noticed a need of an extremely

large number of points to observe a sink starting from random initial conditions by [12] . The author in [12] concludes that

the most numerical studies do not display anything but transient behaviour. This emphasises the need to a very careful

analysis of reliability of a numerical simulation. 



410 E.G. Nepomuceno et al. / Applied Mathematics and Computation 329 (2018) 408–419 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper we propose a method to detect unreliable computer simulation of recursive functions based on interval

extensions. In particular, we are interested in verifying whether the results regarding the confidence of numerical simulation

of logistic map, as enunciated by [15] , is also valid for today’s programming languages. In some sense, our main motivation

comes from [9] , in which a discussion on the using of computer experimentation in mathematics proof is presented. Our

method is based in the lower bound error proposed in [32] . First, we check in detail the theorem proposed by [15] using

the lower bound error and also symbolic computation. Here we applied associative property of multiplication to produce

two interval extensions in order to keep the numerical simulations with the same error interval. After that, we verify the

results for all combination of parameters and initial conditions indicated as valid in [15] for three interpreted languages:

Matlab, Scilab, Octave and in two compiled languages: Fortran and C. All tests indicate that the theorem is not valid for

these programming languages in modern computers. We also present a simple technique to estimate a critical simulation

time for systems based on the largest Lyapunov exponent and interval extensions. This is a supplementary way to verify

the reliability of the simulation. In a similar way showed by Palmore and Hering [37] , our results show that floating-point

errors can propagate in a simulation of chaotic systems, and within less than 100 steps, destroy all accuracy of a result. 

The outline of the paper is the following: in Section 2 we recall some preliminary concepts on the polynomial NARMAX,

IEEE standards on floating point and interval arithmetic [18,19] . Still in Section 2 , we present the definitions of orbits and

pseudo-orbits and the lower bound error. Then, in Section 3 , we present our method to to detect unreliable computer

simulation of recursive functions. Section 4 is devoted to present the results,then the final remarks are given in Section 5 . 

A preliminary version of our work was presented in [44] . 

2. Preliminary concepts 

Essential concepts for understanding following sections appear here. Some of the definitions and the lower bound theo-

rem presented in this section are given by [32] . 

2.1. Floating point and interval arithmetic 

Given the combination of applying rounding methods and the how the computer stores numbers, mathematical prop-

erties such as commutative, associative and distributive, cannot be guaranteed for floating-point operations [18,36] . It can

be said that the floating-point simulations represent an abstraction of the reality and results from reality may not be easily

transferred to the computer [6] . 

A key feature of the IEEE 754–2008 standard [18] is that it requires correctly rounded arithmetic operations. Let x and

y be floating point numbers, let + , −, ×, ÷ denote the standard arithmetic operations, and let �, �, �, �, the equivalent

operations as they are actually implemented on computers. The rule is as follows: if x and y are floating point numbers,

then [36] 

x � y = round (x + y ) = (x + y )(1 + ε) (1) 

x � y = round (x − y ) = (x − y )(1 + ε) (2) 

x � y = round (x × y ) = (x × y )(1 + ε) (3) 

x � y = round (x ÷ y ) = (x ÷ y )(1 + ε) (4) 

where 

| ε| ≤ 2 

−p (5) 

for double precision and rounding mode in effect being round to nearest we have the machine epsilon (p = 53) . As ε is

taken as absolute value in Eq. (5) , we may write that the result of an arithmetic operation relies in the interval given by the

multiplication of (1 − ε) and (1 + ε) . Taking the addition as example, we have 

(x + y )(1 − ε) ≤ x � y ≤ (x + y )(1 + ε) (6)

which is equivalent to say 

x � y ∈ [(x + y )(1 − ε) , (x + y )(1 + ε)] (7)

and we may proceed in the same for subtraction, multiplication and division. Hence we may rewrite Eqs. (1) to (4) using a

description of interval such as Eqs. (8) to (11) . 

x � y ∈ Z = [ Z , Z ] = [(x + y )(1 − ε) , (x + y )(1 + ε)] (8) 

x � y ∈ Z = [ Z , Z ] = [(x − y )(1 − ε) , (x − y )(1 + ε)] (9) 
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x � y ∈ Z = [ Z , Z ] = [(x × y )(1 − ε) , (x × y )(1 + ε)] (10)

x � y ∈ Z = [ Z , Z ] = [(x ÷ y )(1 − ε) , (x ÷ y )(1 + ε)] (11)

2.2. Interval extension 

It is known that we do not have certain properties of real arithmetic, such as associative property of addition in floating-

point arithmetic [18,36,38] . It means that two mathematical equivalent sequence of arithmetic operations can lead to two

different results. However, we may define a set of operations with the same resulting interval. 

An interval is set of real numbers such that any number that lies between two numbers in the set is also included in the

set. As for notation, an interval X is denoted [ X , X ] , i.e. X = { x : X ≤ x ≤ X } . In a degenerated interval, we have X = X and

such an interval amounts to a real number x = X = X . Let the following definition [28] : 

Definition 2.1. ( Interval extension ) - Let f be a function of real variable x . A function F is an interval extension of f if F agrees

with f for degenerate interval arguments: 

F ([ x, x ]) = f (x ) . 

An interval extension of f is thus an interval valued function which has real values when the arguments all are real

(degenerate intervals) and coincides with f in this case. There are interval extensions that are equivalent from the point of

view of intervals. This leads us to the following definition: 

Definition 2.2. ( Equivalent interval extension ) - The interval extensions G and H are equivalent if 

G (X ) = H(X ) for all interval arguments . 

Example 2.3. Let us consider the following extension intervals: 

G (X ) = rX (1 − X ) (12)

H(X ) = r(X (1 − X )) (13)

L (X ) = r X − r X 

2 . (14)

If r = 3 . 9 and X = [0 . 2 , 0 . 25] , then we have 

G ([0 . 2 , 0 . 25]) = 3[0 . 2 , 0 . 25](1 − [0 . 2 , 0 . 25]) 

[0 . 5850 0 , 0 . 780 0 0] , 

H([0 . 2 , 0 . 25]) = 3([0 . 2 , 0 . 25](1 − [0 . 2 , 0 . 25])) 

[0 . 5850 0 , 0 . 780 0 0] , 

L ([0 . 2 , 0 . 25]) = 3[0 . 2 , 0 . 25] − 3([0 . 2 , 0 . 25] 2 ) 

[0 . 53625 , 0 . 81900] . 

In Example 2.3 only G ( X ) and H ( X ) are equivalent interval extensions. It is important to stress that from the point of

view of mathematics based on real numbers, the different syntactic counterparts of G ( X ) and H ( X ) yield the same final

result. However, in the interval arithmetic the final result is different, and similar process is undertaken when any arithmetic

operations is being doing on computers. 

Consider the following lemma: 

Lemma 2.4. Two interval extensions generated by Associative property of multiplication presents the same error interval due to

round off using IEEE 754–2008 standard. 

Proof. Let these two generic interval extensions a × b × c and a × ( b × c ) derived from associative property of multiplication.

Let the machine epsilon ε. We have 

a � b � c = a � (b � c) 

((a × b)(1 + ε)) � c = a � ((b × c)(1 + ε)) 

(((a × b)(1 + ε)) × c)(1 + ε) = (a × ((b × c)(1 + ε)))(1 + ε) 

(a × b × c)(1 + ε) 2 = (a × b × c)(1 + ε) 2 

2 
It shows that both interval extensions present the same level of error, that is (1 + ε) and that completes the proof. �
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2.3. Orbits and pseudo-orbits 

Let n ∈ N , a metric space M ⊂ R , the relation 

x n +1 = f (x n ) , (15) 

where f : M → M , is a recursive function or a map of a state space into itself and x n denotes the state at the discrete time n .

The sequence { x n } obtained by iterating Eq. (15) starting from an initial condition x 0 is called the orbit of x 0 [13] . 

Consider the following definitions for orbits and pseudo-orbits: 

Definition 2.5. An orbit is a sequence of values of a map, represented by { x n } = [ x 0 , x 1 , . . . , x n ] . 

Definition 2.6. Let i ∈ N represents a pseudo-orbit, which is defined by an initial condition, an interval extension of f , some

specific hardware, software and numerical precision standard. A pseudo-orbit is an approximation of an orbit and we rep-

resent as 

{ ̂  x i,n } = [ ̂  x i, 0 , ̂  x i, 1 , . . . , ̂  x i,n , ] 

such that, 

| x n − ˆ x i,n | ≤ δi,n , (16) 

where δi,n ∈ R is the error and δi , n ≥ 0. 

Considering the definitions of orbit and pseudo-orbit, [15] enunciate a theorem for the logistic map [26] , 

x n +1 = f (x n ) = rx n (1 − x n ) , (17) 

n ∈ N and r ∈ R . 

2.4. The lower bound error 

A pseudo-orbit defines an interval where the true orbit sits. Hence an interval associated with each value of a pseudo-

orbit may be defined as 

I i,n = [ ̂  x i,n − δi.n , ̂  x i,n + δi.n ] . (18) 

From (17) and (18) it is clear that 

x n ∈ I i,n , for all i ∈ N . (19) 

Theorem 2.7 (Lower bound error [32] ) . Let two pseudo-orbits { ̂ x a,n } and { ̂ x b,n } derived from two interval extensions. Let 

δα,n = 

| ̂  x a,n − ˆ x b,n | 
2 

be the lower-bound error of a map f ( x ), then δa , n ≥ δα, n or δb , n ≥ δα, n . 

Theorem 2.7 establishes that at least one of the two pseudo-orbits must have an error greater or equal to the lower-

bound error. This has a practical meaning. If this lower-bound error is greater than the required precision, the simulation

should not be carried on without further analysis. It should kept in mind that simulation of a continuous nonlinear system

using a discretization scheme presents multiple pseudo-orbits, to which Theorem 2.7 can be directly applied. 

2.5. Theorem proposed by Hammel and colleagues 

The following theorem using the same notation as the original work is presented by Hammel and colleagues [15] : 

Theorem 2.8 (Hammel et al.) . There is a true orbit { x n } of the logistic map for which p n is within a distance of 10 −8 of x n for

10 7 iterates (i.e., for each n = 0 , 1 , 2 , . . . , 10 7 ). 

To make an equivalence to [15] , the pseudo-orbit in this work is called { ̂  x i,n } , instead of p n . So in other words, they state

that a pseudo-orbit { ̂ x i,n } is shadowed by a true orbit { x n } within shadowing distance δx = 10 −8 , with x 0 = 0 . 4 and r = 3 . 8 ,

for n = 0 , 1 , . . . , 10 7 iterates. The proof has been undertaken by means of computer simulation as described in [15] . 

2.6. Critical simulation time 

For chaotic systems, two interval extensions diverge and the critical simulation time when the orbits reach the maximum

distance can be established as shown in the following lemma. A preliminary version of this lemma has been published in

[33] . 
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Lemma 2.9. Let a chaotic system be described by function f ( x n ) . Let F ( X n ) and G ( X n ) be interval extensions of f ( x n ) . Then

δα, n → D /2 as n → T s , where 

T s = 

log 10 (D/ 2) − P 

λ
, 

D is the diameter of the phase space, P is the precision of the machine and λ is the largest Lyapunov exponent. 

Proof. Lemma 2.9 establishes that F ( X n ) and G ( X n ) will eventually produce different results, even from the same initial

condition. For chaotic system, this means that the results diverge from each other. The maximum distance between these

two pseudo-orbits is the diameter of the phase space and therefore the lower bound error is limited to the half of this value.

The critical simulation time T s may be calculated using the value of the largest Lyapunov exponent, λ and the precision P

of the simulation. Thus, 

log 10 (D/ 2) = λT s + P, 

which is the maximum error that the lower bound error may reach and this completes the proof. �
This almost naive method has been shown quite interesting to proceed a set of tests. Its main feature is the possibility

to present the evolution of error. 

2.7. The polynomial NARMAX 

A NARMAX (Nonlinear AutoRegressive Moving Average model with eXogenous input) model can be written as [5] : 

y n +1 = F 

� [ y n , . . . , y n −1 −k y , u n , . . . , u n −1 −k u , e n , . . . , e n −1 −k e ] , (20)

where y n , u n and e n are respectively the output, input and noise terms at the discrete time n ∈ N . The parameters k y , k u
and k e are the maximum lag considered for output, input and noise. Terms of e n are frequently included in the parameter

estimation process, to avoid bias of an estimator. In this work F 

� [ ·] is assumed to be a polynomial with non-linearity

degree � ∈ Z 

+ . Nonlinear systems can be modelled using particular cases of the polynomial NARMAX, such as NAR, NARX

and NARMA. In this paper, we name them all as polynomial NARMAX. 

3. Methodology 

In this section, we present the method proposed in this article to detect unreliable computer simulation. 

First we further develop the Theorem 2.7 in order to use two interval extensions that present the same error interval

according to IEEE 754–2008. Applying the Lemma 2.4 , we can write the following Corollary: 

Corollary 3.1. (Lower bound error with equivalent interval extensions) - If two pseudo-orbits { ̂  x a,n } and { ̂ x b,n } are derived from

two interval equivalent extensions by means of associative property of multiplication, then δa , n ≥ δα, n and δb , n ≥ δα, n . 

Proof. This corollary is a simple inference of Theorem 2.7 and Lemma 2.4 . We know by Theorem 2.7 that two pseudo-orbits

present δa , n ≥ δα, n or δb , n ≥ δα, n . But, by the Lemma 2.4 , we show that associative property of multiplication keeps the same

bounds of error, that is, δa,n = δb,n . Thus, δa,n = δb,n ≥ δα,n , what is equivalent to say that δa , n ≥ δα, n and δb , n ≥ δα, n . And that

completes the proof. �

Example 3.2. Let us consider the logistic map f (x ) = rx (1 − x ) . The equivalent interval extensions G (x ) = rx (1 − x ) and

H(x ) = r(x (1 − x )) are arithmetic interval equivalent, since we just apply the associative property abc = a (bc) . Indeed the

resulting interval for G ( x ) is as follows: 

Z G = r � x � (1 � x ) 

= r � x � [(1 − x )(1 − ε) , (1 − x )(1 + ε)] 

∈ [ rx (1 − ε) , rx (1 + ε)] � [(1 − x )(1 − ε) , (1 − x )(1 + ε)] 

= [ rx (1 − x )(1 − ε) 2 (1 − ε) , rx (1 − x )(1 + ε) 2 (1 + ε)] 

= [ rx (1 − x )(1 − ε) 3 , rx (1 − x )(1 + ε) 3 ] (21)

whereas for H ( x ) we have 

Z H = r � (x � (1 � x )) 

= r � (x � [(1 − x )(1 − ε) , (1 − x )(1 + ε)] 

= r � ([ x (1 − x )(1 − ε)(1 − ε) , x (1 − x )(1 + ε)(1 + ε)] 

= [ rx (1 − x )(1 − ε) 3 , rx (1 − x )(1 + ε) 3 ] . (22)

Thus 

f (x ) ∈ [ rx (1 − x )(1 − ε) 3 , rx (1 − x )(1 + ε) 3 ] = Z G = Z H (23)
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Fig. 1. Simulation of G ( X ) and H ( X ). Results of n iterates for G ( X n ) (–o–) and H ( X n ) (–
∗–), considering X 0 = 0 . 4 and r = 3 . 8 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we can see, the intervals in (21) and (22) are the same. �

The importance of Lemma 2.4 is that, although the computational result for G ( x ) and H ( x ) would be probably different

due to different sequence of arithmetic operations, they have the same error interval due to round off. 

Consider the following interval extensions of the logistic map ( Eq. 17 ) (See [47] to further discussions): 

G (X ) = rX (1 − X ) (24) 

H(X ) = r(X (1 − X )) . (25) 

The computationally generated pseudo-orbits for 100 iterations of (24) and (25) , { ̂ x G,n } and { ̂ x H,n } , respectively, are consid-

ered for analysis, and, as already mentioned, for 0.4 as initial condition and r = 3 . 8 . A third pseudo-orbit { ̂  x P,n } , from an

interval extension P ( X ) of (17) , was obtained through the use of the variable-precision arithmetic (VPA) Matlab function. 

At first, the computational tests were performed using the Matlab R2016a, on Windows 8 (64 bits) operating system.

Then, in order to assure the consistence of the results, the simulations were performed using Octave 4.0.0, Scilab 5.5.0 and

Matlab R2016a, considering the logistic map ( Eq. (17) ), for values of r highlighted in [15] . We also tested in Fortran 90 and

C, with the compiler GCC 4.9.2. All the simulation were performed using Windows 8 (64 bits) and Ubuntu 14.04 (64 bits)

operating systems. For the specific case of Fortran, the compiler has been setup in such way that 64 bits has been replaced

by 32 bits in Windows. 

Our main test consist in calculating the number of iterates in which the lower bound error reaches the precision of 10 −8 .

Thus we are interested in finding the n such that δα,n > 10 −8 . 

One important aspect of this method, it should be used to falsify nor to validate, that is, the fact that the lower bound

error presents a desirable value does not mean that the simulation is reliable. On other hand, when the lower bound error

presents a value above an expected value, we can say that simulation is not reliable. 

Finally, we calculate the critical simulation time based on the largest Lyapunov Exponent and equivalent interval exten-

sions. 

4. Results 

This section illustrates the two main results of this paper. First, the shadowing property is verified according to the

same results presented in [15] . Second, the critical simulation time is calculated for the logistic map and for the polynomial

NARMAX of the Rössler equations. 

4.1. Unreliable computer simulation test 

Fig. 1 shows the results for the simulation of interval extensions from Eqs. (24) and (25) after 40 iterates. In the 51 th

iterate it may be already observed a lower bound error δα, 51 = 10 −7 . 638 , greater than 10 −8 ( Fig. 2 ). Thus, by Corollary 3.1 ,

δG, 51 ≥ 10 −7 . 638 and δH, 51 ≥ 10 −7 . 638 . 

In Fig. 3 , results for the simulation of G ( X ) e H ( X ) are represented, and also, results produced by the iteration process of

the logistic map using 10 0 0-digit precision through VPA, P ( X n ). 

Let δGP , n represents | ̂ x G,n − ˆ x P,n | and δHP , n represents | ̂ x H,n − ˆ x P,n | . The evolution of δGP , n and δHP , n is shown in Fig. 4 . 

As { ̂ x P,n } is produced through symbolic computing of high precision, { ̂  x P,n } is expected to be very close to a true orbit, at

least for a number of iterates much lower than the number of iterates, which is the case. Then it is expected that δP , n ≈ 0,

δG , n ≈ δGP , n , and δH , n ≈ δHP , n . Considering that δP ,43 ≈ 0, δG, 43 ≈ 10 −7 . 921 and δH, 43 ≈ 10 −7 . 954 , for example. 
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Fig. 2. Evolution of the lower bound error δα, n . Values plotted using the log 10 for δα, n . The line at −8 indicates the value used in the Theorem 2.8 . 

Fig. 3. Simulation of G ( X ), H ( X ) and P ( X ). Results of n iterates for G ( X n ) (–o–), H ( X n ) (–
∗–) and P ( X n ) (–�–), considering X 0 = 0 . 4 and r = 3 . 8 . 

Fig. 4. Evolution of δGP , n and δHP , n over an interval of n . Depicted are values using the log 10 for δGP , n (–o–) and δHP , n (–
∗–). 

 

 

 

 

 

Table 1 shows the value of parameter r used for simulation of Eq. (17) and the iteration from which the error is greater

than 10 −8 . The same results were obtained when the simulation was performed either on languages Matlab, Scilab or Oc-

tave. Operating systems Windows 8 and Ubuntu 14.04 were considered in this simulation and the results were the same

presented in Table 1 . 

To check if there is a lack of precision, we proceed the same test presented in Table 1 first column, but now using 72

digits of precision, which is approximately equivalent to 256 bits. This presents a higher precision than that was used in
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Table 1 

Simulation of the model (17) for different values of the 

parameter r , considering X 0 = 0 . 4 . The second column 

shows the iteration from which the error is greater than 

10 −8 using double precision for the following languages: 

Matlab, Scilab, Octave, C and Fortran. The third column, 

performed only in Matlab, presents the result for 72 dig- 

its, or approximately 256 bits. 

r Iteration (64 bits) Iteration ( ≈ 256 bits) 

3.600 84 888 

3.625 78 840 

3.650 72 628 

3.700 55 473 

3.750 61 451 

3.800 50 389 

3.860 45 400 

3.910 40 342 

Fig. 5. Illustration of Lemma 2.9 for the Logistic map. The largest Lyapunov exponent is given by the inclination of the fitted line, that is, λ = 0 . 198 (here 

measured in base 10). The critical simulation time T s = 79 is also indicated in the figure. The parameter r = 3 . 9 and initial condition is x 0 = 0 . 1 . 

 

 

 

 

 

 

[15] . The results are shown in the second column of Table 1 . As it was expected, the number of iterates increases, but it is

still far away from the mentioned 10 7 iterates in [15] . 

4.2. Critical simulation time test 

4.2.1. Logistic map 

To illustrate Lemma 2.9 consider the following example. Let the logistic map with the following two interval extensions

F (X n ) = rX n (1 − X n ) and G (X n ) = r X n − r X n X n , where r = 3 . 9 and X 0 = 0 . 1 . The lower bound error and Lyapunov exponent

( λ = 0 . 198 ) are shown in Fig. 5 (for the sake of simplicity logarithm base 10 is used). Let D = 1 and P ≈ 16, since the logistic

equation was simulated on a 64-bit Matlab R2016a environment, then 

T s = 

log 10 (1 / 2) + 16 

0 . 198 

≈ 79 . (26) 

Note that i ) T s ≈ 79 is in very good agreement with the value shown in Fig. 5 , which the lower bound error reaches the

same magnitude of the variable x of the logistic map, ii ) the line fitted to the curve gives the Lyapunov exponent and iii )

the independent term, 16.6, gives a good estimation of the precision P . 

4.2.2. Polynomial NARMAX 

The Rössler equations [42] are given by: { 

˙ x = −y − z, 
˙ y = x + ay, 
˙ z = b + z(x − c) . 

This system has been identified by [8] which polynomial NARMAX are given by Eq. (27) . 
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Fig. 6. LLE calculation for the polynomial NARMAX (27) identified Rössler equations [42] . The largest Lyapunov exponent is 1.530, and it is the inclination 

of the logarithm of the lower bound error. The critical simulation time T s = 24 is indicated and it constitutes an estimation of the maximum time of 

simulation for this case. 

Table 2 

Largest positive Lyapunov exponent for the Rössler equations 

studied in [8] . 

Literature (Data) Literature (Model) Our method 

LLE 1.242 1.566 1.530 

 

 

 

 

 

 

 

 

 

 

x (k ) = +0 . 1972 × 10 x (k − 1) − 0 . 104 × 10 x (k − 2) 

+0 . 7456 × 10 

−4 x (k − 4) x (k − 2) 3 x (k − 1) 

−0 . 2053 × 10 

−4 x (k − 5) x (k − 4) 4 − 0 . 285 × 10 

−4 x (k − 5) x (k − 1) 4 

+0 . 2484 × 10 

−4 x (k − 3) 2 x (k − 2) 3 

+0 . 1238 × 10 

−2 x (k − 2) x (k − 1) 2 + 0 . 4353 × 10 

−4 x (k − 5) 4 

+0 . 2258 × 10 

−2 x (k − 5) x (k − 2) x (k − 1) 2 (27)

+0 . 3123 × 10 

−4 x (k − 4) 5 + 0 . 7531 × 10 

−2 x (k − 1) 4 

−0 . 2703 × 10 

−2 x (k − 3) 2 x (k − 1) 2 − 0 . 7807 × 10 

−2 x (k − 1) 3 

−0 . 7077 × 10 

−4 x (k − 3) 2 x (k − 2) 2 x (k − 1) 

−0 . 3304 × 10 

−2 x (k − 3) x (k − 2) 3 − 0 . 8847 × 10 

−2 x (k − 5) x (k − 1) 

+0 . 7631 × 10 

−2 x (k − 4) x (k − 1) − 0 . 387 × 10 

−4 x (k − 5) 3 x (k − 1) 2 

+0 . 4676 × 10 

−2 x (k − 3) 3 x (k − 1) . 

For this case, the two interval extensions are yielded by the change of the term 

+0 . 7456 × 10 

−4 x (k − 4) x (k − 2) 3 x (k − 1) 

into 

+0 . 7456 × 10 

−4 x (k − 4) x (k − 2) x (k − 2) 2 x (k − 1) . 

As one can see, the interval extensions used to simulate the systems are mathematically equivalent, but they differ in

the sequence of arithmetical operations, using associative property of multiplication. Fig. 6 shows the logarithm of the lower

bound error of the simulation using the two specified interval extensions. Table 2 summarises the result of LLE for Rössler

equations. The model used has been identified in [8] . The literature suggests a value of 1.242 and model identified gives

1.566. The result seems slight different, but if we take into account the confidence interval to calculation of LLE using data,

it is more appropriated given by 1.242 ± 0.399. Thus, the value of LLE calculated in [8] is in good agreement with the original

system. Similar reasoning can be applied to method presented in this paper, in which the LLE is calculated as 1.530. 

5. Conclusions 

In summary, we have demonstrated a technique to detect unreliable computer simulation of recursive functions. We

show that, on the contrary to what is shown in many papers in literature, the logistic map simulations using the tested

languages Matlab, Scilab, Octave, C and Fortran and double precision is not reliable for millions of iterates for the initial
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condition and parameters suggested in [15] . In fact, after less than one hundred of iterates, the simulation is no longer

reliable in double precision. Even for a higher precision of approximately 256 bits on Matlab, the results are very distant

from those presented in [15] . 

Our proposed method can be seen as test to falsify reliability of simulation based on the shadowing property for re-

cursive functions, such as discrete maps. It is clear that a true orbit cannot agree with certain accuracy simultaneously to

two pseudo-orbits that diverge from each other. This is the very basic idea that underlines our approach. Our method is

compared with the principal result obtained by Hammel and colleagues [15] for the case of logistic map. After almost 30

years, and with more than 150 citations according to Scopus, that paper has been still receiving citations, considered by

many as a corner stone to prove that the logistic map, for some combinations of parameters and initial conditions, present

the shadowing property. On the contrary, we show that this is not a general true. One important aspect is that, following

the principles of IEEE 754–2008 standard on floating point, we are able to find the same results for the five languages used

in two different operating systems, as can be seen in Table 1 . The number of iterates that the lower bound error is greater

than 10 −8 are the same for all tests. This seems to be an evidence of robustness of our method, and a clear evidence that

the proved theorem by Hammel and colleagues is not valid for such cases. We believe that a diffusion of this result should

be an important contribution to nonlinear science community. 

This paper also used the largest Lyapunov exponent to indicate a critical simulation time ( T s ) in order to stop the simula-

tion of chaotic systems for a given precision P . Different from other methods present in the literature, as in [21] , our method

uses the lower bound error to calculate the largest Lyapunov exponent. Using this method, we make a clear connection be-

tween error propagation and the meaning of the Lyapunov exponent, offering in such way, a simple way to determine the

maximum number of iterates. In our case, the logistic map with r = 3 . 9 and x 0 = 0 . 1 presents a largest Lyapunov exponent

λ = 0 . 198 , which means that using double precision it would reliable to simulate around 79 iterates. This has direct implica-

tions, for instance, to build diagram bifurcation of the logistic map, for which, double precision allows to iterate a maximum

of 79 iterates, considering the transient and stationary regime. This value is significant lower that number presented in the

literature (See [35] to see a step-by-step method to build a bifurcation diagram, in which 500 iterates are considered as

transient). For the polynomial NARMAX identified to Rössler equation, we found a λ = 1 . 530 which gives a maximum simu-

lation time of T s = 24 . This is another important aspect that must be accompanied with the identified model to the user be

aware of the limits on the simulation of such model. 

The present paper emphasises the requirement of rigorous care to simulate the chaotic systems for long time without a

serious care about the precision. This is important in order to build bifurcation diagram and free-run simulation of polyno-

mial NARMAX, for instance. We believe that the result presented in this paper is important for the rigorous development

of the nonlinear dynamics field, which is highly dependent on computer arithmetic [38] . The method presented is also an

alternative tool to check non-reliable computer simulations based on recursive functions, such as maps or discretization

schemes of continuous systems. 
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