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1. Introduction

Cryptocurrency trading has been a hot topic in recent years [1]. Among all cryptocurrencies, Bitcoin has attracted lots of
attention and has the highest percentage of transactions [2-4]. Cryptocurrency is a decentralized medium of exchange that
uses cryptographic functions to conduct financial transactions [5]. Many studies have been done on predicting the price of
digital cryptocurrencies to analyze the relationship of the coin’s current, past, and future prices [6-8]. There are business
reasons that cache the speculators’ attention to each of the currencies [9,10]. Studying the time series of the currencies
can also help to understand changes in price trends and their efficiencies [11-13]. Due to the very complex and chaotic
behavior of the cryptocurrency’s price [14], they can be analyzed using complex network methods. In this case, the complete
information about the structure of the dynamical network which generates these signals is not available. So, the only way
to obtain information about the system is to analyze the output time series.

Over time, various methods have been proposed for time series analysis [15,16]. Some methods such as the calculation
of the correlation matrix [17], regression analysis of time series [18], singular spectrum analysis [19,20], stochastic neural
networks [7], calculating the distribution of values in the time series [21], studying autocorrelation properties of the time
series, and the variation of statistical properties [22] were introduced decades ago and are still used today. In recent years,
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much more advanced methods like deep learning techniques [23], multi-scale event synchronization [24], and Wavelet-
based multi-scale analysis [25,26] have been proposed, providing more accurate and advanced time series analysis. The first
step in using these methods is noise reduction to clean the signal. Various methods have been proposed for this purpose.
For example, using iterative decomposition methods for creating an appropriate phase space from data [27], analysis with
wavelet soft threshold technique [28], and least squares support vector machines (LS-SVM) in multidimensional recurrent
vector [29]. On the other hand, studying complex systems using networks has been of great interest in recent years [30,31].

In this study, an ordinal partition network (OPN) [32] is generated using the time series to analyze the cryptocurrencies
prices. It is a signal-based method and does not need the dynamical equations of the system or the graph structure. Re-
cently weighted networks have attracted lots of interest [33,34]. So, many studies have been done on generalizing network
measures to complex weighted networks [35,36]. The clustering coefficient is one of the crucial characteristics in complex
network theory [37]. The clustering coefficient was initially developed for binary, undirected graphs. It has recently been
extended to weighted, undirected networks [38]. Another network measure is permutation entropy [39,40].

In this paper, an OPN is generated from the cryptocurrency signals, and its features are investigated by clustering coef-
ficient and permutation entropy. Various clustering coefficients and permutation entropy of this network are calculated to
extract information about digital currencies’ price and their changes. The remaining part of the paper is organized as fol-
lows. At first, the applied method for generating the OPN network is explained. Then, the measures to analyze this network
are described. Section 3 gives the results of applying this method for Bitcoin and some other cryptocurrencies prices, and
the paper is concluded in Section 4.

2. Material and methods

This section discusses a method for generating an OPN of a signal. Then, some network measures for comparing the
networks are presented.

2.1. Ordinal partition network

In some cases, a hypothetical network is constructed to analyze a signal. Then the analysis is performed based on the
network parameters. A network is a set of nodes and edges that demonstrate the relationship between any two nodes [41].
In real-world applications, the number of nodes in a dynamical system’s graph is equal to the number of its time series, but
the number of nodes can be chosen manually when an OPN is constructed from the signals [42]. Although this network is
not similar to the original network that generated the signals (in terms of structure and the concept of network nodes and
edges), it can provide helpful information to analyze them.

To generate an OPN, a window of length L is considered for sliding over the time series. In each window, m points of
time series with a t-points gap between every two consecutive selected points are considered to generate the network.
Therefore, for each time series, a vector is obtained as 1, which is a sample of the windowed data (i =1, 2,).

20 = (X, Xiy oo Xis (m_1)7) (1)
The window size equals L = (m — 1)t. Using this vector, the related ordinal network can be mapped to a symbol:
oV = (my, 72, ..., o) (2)

where o) is the corresponding ordinal partition for each vector z®, and each element of this vector displayed with the
symbol my, such that m, € {1,2,....m}, my #m < k#1 and 7, <m < X, > X VX, X €z;. By showing the non-
overlapping points of each two windows with w € [1, L], it can be concluded that each time series with N points will be

divided into N’(#m’] + 1 widows. So the time series will have the highest number of windows for w=1 and the

lowest number of windows for w = L.

To construct a network from the time series, each node of the network is associated with the order of z() in the selected
window. A directed connection between nodes for each transition from one state to another is considered. This network
shows the changes between order patterns in the sampled time series. In this work, the structure presented in Fig. 1 is
used to generate a network. In each window, only the relative magnitude of m points is considered. This method was
first introduced by Small in 2013 [43]. By applying this method, the m points in each window are ordered in one of the m!
different possible states. Then sequential ordinal symbols are organized for each scalar time series, and a dynamical network
is generated. The network structure is impressed by the number of sampled points in each window (m), the gap points (7),
and the overlap of windows (L —w).

Various methods have been proposed to analyze a dynamic network, such as calculating the minimum spanning tree
with Kruskal [44], Prim [45], or Boruvka’s [46] algorithm, which are mostly used in fuzzy lattices. Other methods are finding
the shortest paths with Dijkstra [47] or similar algorithms [48]. Understanding the individual dynamics of the network’s
nodes and their collective behaviors is essential in all methods [22]. In this work, the clustering coefficient as one of the
characteristics of the network is used to analyze the time series. Then permutation entropy is calculated to measure the
complexity of the signal, and finally, the relationship between these two criteria is discussed.

Here, the opening price of ten different digital coins: Cardano (ADA), Bitcoin Cash (BCH), Binance Coin (BNB), Bitcoin
(BTC), Dogecoin (DOGE), Polkadot (DOT), Ethereum (ETH), Litecoin (LTC), Uniswap (UNI), and XRP (XRP) from 1 October
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Fig. 1. The process of constructing an OPN network using a sample time series; a) finding the ordinal pattern by the embedding vectors with dimension
m, lag 7, the number of non-overlapping points of neighbor windows w, and the length of each window L; the ordinal patterns are found based on the
amplitude rank of the selected samples; b) organizing ordinal symbols of the sequential windows; c) generating network with adjacency matrix A that
each of its nodes is a unique ordinal pattern, and the edges are assigned between nodes based on the transitions between ordinal patterns in the time
series; d) schematic of the constructed network;.

2020 to 31 March 2021 is investigated. The time resolution of the cryptocurrencies data is 1 second. All price data have been
taken from https://www.binance.com. A weighted directed network is generated with six dynamical nodes from each time
series. Then the networks are compared by calculating the clustering coefficient and permutation entropy of the designed
network. These methods are discussed in the following subsection.

2.2. Measures

2.2.1. Clustering coefficient
A graph is represented by a set of nodes and edges. For an undirected unweighted graph with no self-loop, the local
clustering coefficient for each node v; is defined with the fraction of connected neighbors as follows Newman [49]:
t 2t
= 3
LD T d(d—1) ®)

C =

where t; is the number of links between d; neighbors of node v;, d; denotes the degree of node v;,. c;, as the local clustering
coefficient of node v;, shows the ratio of the number of triangles (to which v; belongs) to the number of connected triplets:

2T
G = E‘L’A (4)

Yt shows the total number of triplets and X7, is a subset of Xt that close with an additional third edge. It can be
said that a triple of nodes (v;, v;, Vi) is connected to v; if v; is connected to v;, v; is connected to vy, and j < k. For a
specific node v;, w is the maximum number of possible interconnections among the neighbors of the node. A triangle
is defined as a connected triple (v}, v;, v}) in which v; and vy are connected. ¢; is always in the interval [0,1]. It measures the
level of cohesiveness around any given node or local interconnectedness of the network. If the neighbors of node i are not
interconnected at all, then c¢; will be equal to 0, while c; = 1 expresses the case that all the neighbors are interconnected.

The network’s global or average clustering coefficient is equal to the average of local clustering coefficients of all the
nodes in the network, which is defined as Bagler [50]:

1

E:EZQ (5)

where V denotes the collection of all the nodes of the network.
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Fig. 2. Three methods to select triangles from triplets to calculate clustering coefficients: a) outbound; b) inbound; and c) loop direction; For the variation
of cryptocurrency prices, the outbound clustering coefficient means that by changing prices from order (I) to orders (II) and (III), what is the possibility of
moving directly between the two orders (II) and (III). In contrast, the input clustering coefficient shows that by varying the coin price from orders (II) and
(III) to order (I), what is the possibility of moving directly between the two orders (II) and (III).

The presence of weights alters the definition of the standard clustering coefficient. The weighted clustering coefficient
can be defined as follows:
total number of closed triplets Y@

total numberof triplets ~— Y. w (6)

w =

The method of considering the weight of the edges in calculating the clustering coefficient depends on the research problem.
Depending on the issue, each of the functions of minimization, maximization, averaging, or geometric mean can be used to
consider the weight in calculating the clustering coefficient of the network. The cost and benefits of these methods should be
compared to choose a solution for the problem. For example, in the averaging method, the difference between the weights of
the different edges in a triangle is not considered. Also, very heavy or very light edges can affect the results. The geometric
averaging method is less sensitive than averaging to outliers and mitigates the effect of very large weights. Maximizing or
minimizing are methods that consider extremes. Therefore, if the weight of one edge is too high or too low, the answer
will be the same regardless of the weight of the other edges. These functions are selected according to the problem [51]. It
should be noted that only if the minimization method is used, the weighted clustering coefficient remains in the interval
[0, 1]. If other functions apply to the weight of the edges, depending on the weight of the third edge that results in the
closed triangle, the clustering coefficient can be smaller or larger than 1.

On the other hand, the definition of the clustering coefficient can also be affected in the directed graph. In this case, the
same as for the weight of a graph, the definition of the clustering coefficient depends on the research problem. One of the
most common methods is calculating the clustering coefficient separately for the inbound or outbound directions. The main
problem is choosing the method to consider the third side, which turns a triplet into a closed triangle (Fig. 2 a and b).

The most common way to calculate the clustering coefficient in directed networks is to consider both directions for
closing the triangle. In this case, the clustering coefficient is defined as follows Clemente and Grassi [52]:

in a]l + Qi
Ci k. m(k in_ 1) Z jiki———— (73)
1

a; +a
Ciout_ Z P e L Ji ki (7b)

OLlf (k OLlf

where G and G are inbound and outbound clustering coefficients, respectively. a;; shows the number of links from the

out

node v; to node v;. I,’" and k;”" represent in-degree and out-degree for edges pointing in and out respectively and are

defined as follows:

n
"= Zaﬁ (83)
j=1
n
k™ = > aj (8b)
j=1

Another way to calculate the clustering coefficient in directed graphs is to consider triplets with opposite directions and
closed triangles in one order (Fig. 2 c). This method is represented for the first time in this study.

Put it in a nutshell, the following methods can be used to define the clustering coefficient in a weighted directional
graph:
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. Minimization, maximization, averaging or geometric mean of weights for the inbound or outbound directions.
2. Counting the number of available paths to cross a triplet or triangle (using the minimum, maximum, average, or geo-
metric mean function)

In this paper, some networks are generated that show the trend of price changes for digital coins. The nodes represent
an ordering for the price changes, and the edges demonstrate a transition from one order to another. Considering Fig. 2a
for the variation of cryptocurrency prices, the outbound clustering coefficient means that by changing prices from order
(I) to orders (II) and (Ill), what is the possibility of moving directly between the two orders (II) and (III). Similarly, the
input clustering coefficient (Fig. 2b) shows that by varying the coin price from orders (II) and (III) to order (I), what is the
possibility of moving directly between the two orders (II) and (III). Each method of minimization, maximization, averaging,
or the geometric mean of weights can be used in a specific problem. For instance, averaging function shows how many
times it is switched between the two modes (II) and (III) on average.

On the other hand, minimization indicates the least number of times the price order switches between two different
orders. Since the clustering coefficient indicates the degree of nodes association to a specific node, the self-loops have no
role in its definition by using any functions and in any direction. Suppose the clustering coefficient is considered in a closed
triangle in a loop direction. In that case, the probability of minimum maximum average geometric mean for returning paths
to a specific order after passing through the other two orders is considered. This method properly predicts how likely a
particular order will rise again after two stages. For example, calculating the minimum probability that the price will rise
again after ascending for a while.

2.2.2. Permutation entropy

Permutation Entropy (PE) is a robust complexity measure for a dynamical system. It captures the permutation patterns
and ordinal relations among the individual values of a given time series. Then, a probability distribution of the ordinal
patterns is extracted. Ordinal patterns are used to reveal the hidden primary patterns of the system. This criterion is non-
parametric. So, it can be calculated directly from the time series and does not require a parametric model. It is also robust
against noise, making it significantly efficient in extracting the dynamic content of nonlinear time series [53]. The PE analysis
started in one-dimensional time series. The PE can be computed by partitioning the time series into a matrix of overlapping
column vectors and creating an OPN. In this way, the m-dimensional vectors are mapped into unique permutations of the
ordinal rankings. Bandt and Pompe have defined the permutation entropy of a time series, that is, the Shannon entropy of
the corresponding set of ordinal symbols s [54,55] :

m!

hPE = - " pilog, p; 9)
i=1
where p; = P(S = s;) shows the probability mass function for s; € s. s is the set of ordinal symbols in the symbolic dynamics

S, and s; is equal to the relative outbreak of each symbol. The P matrix is considered a stationary distribution of the Markov
chain of S. So each element of the probability mass function could be defined as:

a,-,j
20
where g; ; shows the number of transitions from state i to state j between the m! states for each node. As a result, the
probability mass function can be approximated as follows:

pij= (10)

Zj a; j
e S (11)
YT
The PE measure can also be normalized such that:
1 m!
PE  _ . .
hnorm - log2 ml ; Di lng Di (12)

which is restricted between 0 and 1. The maximum value for the permutation entropy (hZE.,. = 1) occurs in a state where
the distribution of the probability mass function is uniform, and the probability of occurrence of all events in the sample
space is equal. On the other hand, the minimum value (hfE, = 0) is when only one of the sample space events always
occurs (p;_j = 1), and the probability of other events occurring is zero (p;.; = 0).

In this paper, the permutation entropy and the global clustering coefficient are calculated in different directions (in-
bound and outbound). Various functions (minimum, maximum, mean, and geometric mean) are applied for all the coins
considering different window size values.

3. Results and discussions

In this research, the price of cryptocurrencies is used from the https://www.binance.com website. The cost of each coin
is based on the price of Tether, which is always around $1. So, Tether is considered a reference for other digital currencies’
prices in this work.
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Fig. 3. Bitcoin price from October 2020 to the end of March 2021 in terms of Tether price; Fluctuations in this coin’s price increase over time, and it
generally has an upward trend during this period.
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Fig. 4. The constructed weighted directed network of the Bitcoin signal from October 2020 to March 2021 a) with the small window w =30, t = 20; b)
with the large window w = 60, T = 180; The results show that the weight difference between the network’s links increases by enlarging the window size,
and the network becomes more heterogeneous.

3.1. Bitcoin signals

Fig. 3 shows the time series of Bitcoin prices over six months from the beginning of October 2020 to the end of March
2021 in terms of Tether. As can be seen in this picture, fluctuations in this coin’s price increase over time, and it generally
has an upward trend during this period.

Here, a network is generated that indicates the bitcoin price trend during this period using its time series. Parameters
of OPN are important in the generated network. For example, if the window size is large, the minor fluctuations are not
visible in the generated network. Conversely, choosing a small window for creating the network explains more details of
price fluctuations. Here, among the three parameters for network formation (m, 7, and w), the number of points inside each
window is constant m = 3. The variation of the other two parameters, the distance between the points inside each window
(t), and the number of non-overlapping points of the side windows (w) are studied.

The network of bitcoin price signals in these six months with two different sets of window size parameters is shown
in Fig. 4. Part (a) of the figure shows the network where the parameters are set as w =30 and 7 = 20. So the window
size is relatively small. In this case, the window length (L = (m —1)71) is equal to 40 seconds, and the overlap of adjacent
windows (L — w) is 10 seconds. In part (b) of the figure, the parameters are set as w = 60 and 7 = 180, making the window
size larger and equal to 6 minutes. The overlap of adjacent windows is also assumed larger and equal to 5 minutes. The
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Fig. 5. The constructed weighted directed network from the Bitcoin time series for a) the price in November 2020 with a small window size; b) the price
in November 2020 with a large window size; c) the price in February 2021 with a small window size; d) the price in February 2021 with a large window
size; The results show that in both months, the network becomes more heterogeneous by enlarging the window size.

comparison between these two networks shows that the fluctuation details are more observable in part (a) of the figure.
Part (b) only shows considerable fluctuations in the time series ranking. It means that as the size of the window increases,
the information about the details of the time series’ fluctuation is lost. Also, the number of network links is reduced by
increasing the parameter w. On the other hand, in Fig. 4 b, the percentage of self-loops of node (1, 2, 3) to the total number
of links is more significant than Fig. 4 a. This difference is because of the large window size selected in Fig. 4 b. The network
links represent the general ranking of the signal, not the details. It causes the weight of the network links to become more
unbalanced by enlarging the window size. Therefore, the limited number of links has more weight. As described earlier, this
causes a decrease in the permutation entropy of the network. The permutation entropy of the network in Fig. 4 a is 0.9791,
and in Fig. 4 b, it is equal to 0.9678, which means that a slight difference in the entropy shows a considerable difference in
network balance. In the rest of the paper, the same two sets of parameters are used to illustrate the large and small window
sizes. So, the small window is w = 30 and t = 20, and the large window is w = 60 and t = 180.

By generating the OPN for the time series of one month, similar variations can be observed in the results of small and
large window sizes networks. Fig. 5 shows the generated networks of the Bitcoin price signals in November 2020 (a, b)
and February 2021 (c, d) with different window sizes. The network presents fewer details in both months by enlarging
the window size (b, d). Increasing the window size increases the ratio of self-loops with ascending (1,2,3) or descending
(3,2,1) trend to the total number of links. There are also differences between the networks of different months with the
same parameters. For instance, the ratio of loops on the uptrend node to the total links in November is higher than in
February. It shows that compared to February, the price of bitcoin has been rising more often in November, which was
also shown in Fig 3. Price changes had an upward trend for almost the entire month of November, but in the second half
of February, the downward trend in prices can be seen. In this part, a decrease in permutation entropy can also be seen
with the inhomogeneity of the network of each month. The value of the permutation entropy In Fig. 5 a is 0.9750, in
Fig. 5 b is 0.9678, in Fig. 5 ¢ is 0.9818, and Fig. 5 d is 0.9729. In both the November and February months, a decrease in
permutation entropy is observable by enlarging the window size. Also, it can be understood that, in general, the network is
more homogenous in February 2021 than in November 2020.

To study the variations of the Bitcoin price signal, the time series are divided for each week. The network is generated
for each week’s signal, and some measures are used to compare the various week’s networks. Fig. 6 shows the permutation
entropy and global clustering coefficients calculated with different methods. The minimum, maximum, mean, and geometric
mean functions for the inbound, outbound, and loop directions have been used to calculate the network’s global clustering
coefficients. The results show that the global clustering coefficients of each function for the inbound and outbound directions
are very similar. According to the definition of these variables, this fact seemed predictable. In the description of inbound
and outbound clustering coefficients, the weight of the third link, which closes a triplet and converts it to a triangle, was
considered in both directions. However, in the definition of loop clustering coefficients, the direction of the third link is con-
sidered only if it forms a directional ring. The window size is crucial in network generation. Due to the definition of global
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Fig. 6. Normalized permutation entropy and global clustering coefficients with the minimum, maximum, mean, and geometric mean functions for the
inbound, outbound, and loop directions for the constructed network of bitcoin time series by changing week for a) small window size; b) large window
size; The results show that, in general, increasing the window size causes an increment in the variance of the used criteria for studying the network.

clustering coefficient with the minimum function, its results are always less than one. Since the normalized permutation en-
tropy (which is always between 0 and 1) is used for the network analysis in this study, this can be an advantage for using
the minimum function in calculating the clustering coefficient that both are in the same range. It can also be seen that by
enlarging the window size, the average of the permutation entropy of the network decreases. In Fig. 6a, the amount of per-
mutation entropy varies in the interval [0.9568, 0.9894], and its average is equal to 0.9753. However, in Fig. 6b, this quantity
changes between 0.9132 and 0.9894, and on average, it is equivalent to 0.9582. It means that by varying the window size,
the network homogeneity is changed and causes changes in the permutation entropy.

Comparing Figs. 3 and 6 shows that when the price of Bitcoin has increased with a sharp slope, the quantity of the
minimum clustering coefficient increases. For example, in Fig. 6, in both parts (a) and (b) with the small and large window
sizes, it can be seen that in the 5%, 9t and 23 week, the minimum clustering coefficient obtained in all directions in-
creased significantly. It is a unique feature of the clustering coefficient obtained with the minimum function. The zoomed
view of the time series of these weeks is shown in Fig. 7. Comparison of parts (a) and (b) of Fig. 6 indicates that as the size
of the window increases, the variance of the clustering coefficients and the variance of the permutation entropy increase
sharply. Expanding the window size can also reduce the magnitude of clustering coefficients. In addition, it can be seen that
increasing the length of the window reduces the difference between different clustering coefficients by various algorithms.
In addition, the trend of changes and their fluctuations become more similar.

In Fig. 8, a network is generated for each month’s signal, and the above measures are calculated for each of them. In
general, the charts showing the measures for months are more uniform with minor fluctuations than the weeks’ charts. It
shows that due to the more occurrence of trend changing with increasing the length of the time series, the difference in
the magnitude of clustering coefficients and permutation entropy of various networks decreases in different months. Again,
it can be seen that in minimum and geometric mean functions, increasing the window size increases the variance of the
criteria changes. The changes in the clustering coefficient obtained using the minimum function can be a good indicator for
the severe changes in the bitcoin price.

3.2. Different coins

In this section, the OPNs are generated for the top 10 of the most-selling cryptocurrencies in the six months from the
beginning of October 2020 to the beginning of April 2021 by small (w = 30, T = 20) and large (w = 60, T = 180) window
sizes. Fig. 9 shows the normalized permutation entropy and clustering coefficients with minimum function in various direc-
tions in parts (a) and (b) and the maximum clustering coefficient in parts (c) and (d) for these networks. The values of the
minimum clustering coefficients and the normalized permutation entropy are always less than or equal to 1. The values of
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the maximum clustering coefficients are always greater than or equal to 1. Furthermore, for all cryptocurrencies, the value of
the minimum and maximum clustering coefficients in the loop is always smaller than the inbound and outbound directions.
Also, the difference between the maximum clustering coefficient for the loop and the maximum inbound and outbound
clustering coefficients is more significant than the difference between the minimum clustering coefficient for the loop and
the minimum inbound and outbound clustering coefficient. The reason is that the weight of the third link that closes the
triangle is considered in only one direction in the loop method. In the minimum and maximum cases, the sum of the two
sides is considered as the weight, which can be seen in calculating the clustering coefficient with the maximum function.

Part (a) of Fig. 9 shows that in the small window size, the value of the outbound minimum clustering coefficient is
greater than the inbound minimum clustering coefficient and the network permutation entropy for all cryptocurrencies.
While in part (b), for large window size, this phenomenon is quite vice versa. The outbound minimum clustering coeffi-
cient value is always less than the inbound minimum clustering coefficient and the network permutation entropy for all
cryptocurrencies. Although the increase in window size causes a reduction in the quantity of all minimum clustering co-
efficients for all currencies, the entropy of the network does not change significantly, and the trend of changes is different
for various cryptocurrencies. In both parts (a) and (b) of Fig. 9, DOGE has the highest permutation entropy compared to
other cryptocurrencies. It means that the time series of this coin has more homogeneous fluctuations and does not have
an ascending or descending trend in a long time. A comparison of parts (c) and (d) shows that increasing the window size
for the network construction reduces the difference in the inbound and outbound maximum clustering coefficients. Unlike
the minimum clustering coefficient, the maximum clustering coefficient values increase for all currencies by expanding the
window size.

Fig. 10 shows the global clustering coefficients with mean and geometric mean functions in all directions for the same
networks used in Fig. 9. The calculated clustering coefficients with mean and geometric mean functions depend much on
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the window length used to generate the network. The calculated clustering coefficients with geometric mean functions rely
more on the window length used to generate the network than cases with the mean function.

Summarizing the results of Figs. 6, 8, and 9, the best benchmark for analyzing these networks and specifying the dif-
ferences between them is the clustering coefficient calculated with the minimum function and in the form of a loop. It
can also be concluded that by considering a large window for network generation and ignoring the small details of signal
fluctuations, these values can be more appropriate criteria for analyzing networks.

Figs. 11 and 12 show the same procedure used in Fig. 9 if only a specific part of the time series is used to generate
the network. Fig. 11 presents the permutation entropy and calculated clustering coefficients with minimum function for
November 2020 and February 2021, and Fig. 12 shows calculated clustering coefficients with maximum function for the
same networks. These figures show that although the variance of the calculated measures for different coins increases with
the decrement of the time series length, the main features of each measure are almost the same. It shows that the measures
which are mentioned above can be used in different situations for different signal lengths.

Fig. 13 shows an example of comparing two parts of the time series for two different coins. BNB and XRP prices in
November 2020 are considered for this comparison. In parts (a) and (b), the time series of BNB and XRP prices are presented.
The price of BNB is constantly fluctuating during this period, while XRP’s price has an upward trend for most of this time
and its fluctuations are less than BNB. Parts (c) and (d) show the OPN networks constructed from the time series. It shows
that the percentage of self-loops on the upward node (1, 2, 3) for XRP (127) is more than BNB (100). Parts (e) and (f)
represent the calculated measures for the OPN networks. They illustrate that in the second week, when the prices of both
cryptocurrencies are almost stable, it seems that all of the ranking states occur almost equal. So, a decrease in the quantity
of all clustering coefficients can be seen compared to the first week. PEs for the first and second weeks are 0.9564,0.9371 for
BNB, and 0.9849,0.9660 for XRP coins, respectively. So, a decrease in the PE can be observed in the second week compared
to the first one.

In this study, the proposed method was investigated on 10 different cryptocurrencies, and in all cases, the results were
very effective for analyzing the time series of cryptocurrencies’ prices. In most parts of the paper, the main focus has been
on bitcoin to present the results. Then, to show how this method works on other cryptocurrencies, an example of XRP and
BNB price analysis has been presented in Fig. 13. A summary of the work on the other cryptocurrencies was shown in
Figs. 9 to 12. In this study, the focus was only on the price analysis of cryptocurrencies. In future works, we plan to apply
this method on other financial instruments such as stocks or bonds to check its efficiency.
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4. Conclusion

In this paper, some measures for analyzing cryptocurrency signals were discussed by generating ordinal partition net-
works. These measures included permutation entropy and clustering coefficient of the network by using the minimum,
maximum, mean, and geometric mean functions for the inbound, outbound, or loop directions. Using these methods, the
fluctuations of the cryptocurrency signals were analyzed in various periods. The permutation entropy was an excellent mea-
sure to represent the homogeneity of the generated network. Also, global clustering coefficients were exciting criteria to
analyze the cryptocurrency signals. The results indicated that for cryptocurrency price analysis, the best measure is the
global clustering coefficient calculated by using the minimum function for triplets that form a loop in one direction.

Moreover, the consideration of appropriate window size was an essential subject for obtaining an optimal outcome.
This study can be applied to analyze many different signals like biological data such as ECG and EEG or atmospheric data
such as temperature, pressure, and wind, in cases with insufficient knowledge about the complex network that generates
these signals. In future works, we will try to predict the variations of the cryptocurrencies using their analyzed trends and
networks.

Data Availability Statement

The codes and the data used in this paper can be found in the following link:
https://drive.google.com/drive/folders/1XmzdfdZvRktuh3HbQpygdzBShhRL6H4r?usp=sharing.
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