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a b s t r a c t 

Tourism is a growing sector worldwide, but many popular destinations are facing sustain- 

ability problems due to excessive tourist flows and inappropriate behavior. In these areas, 

there is an urgent need to apply mechanisms to stimulate sustainable practices. This paper 

studies the most efficient strategy to incentivize sustainable tourism by using an asymmet- 

ric evolutionary game. We analyze the application of rewarding policies to the asymmetric 

game where tourists and stakeholders interact in a spatial lattice, and where tourists can 

also migrate. The incentives of the rewarding policies have an economic budget which can 

be allocated to tourists, to stakeholders, or to both sub-populations. The results show that 

an adaptive rewarding strategy, where the incentive budget changes over time to one or 

the other sub-population, is more effective than simple rewarding strategies that are exclu- 

sively focused on one sub-population. However, when the population density in the game 

decreases, rewarding just tourists becomes the most effective strategy. 

© 2023 The Author(s). Published by Elsevier Inc. 
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1. Introduction 

Among other objectives, the UN Agenda 2030 claims for sustainable modes of production and consumption, together 

with measures to protect and safeguard cultural and natural heritage [40] . One of the human activities requiring urgent

actions in this direction is tourism. Nowadays, many cities, coastal resorts and natural areas are facing sustainable problems 

due to the massive affluence of visitors, which cause environmental degradation and affect the traditional cultural values 

in the destination [6,19,26,30] . As tourism is an activity involving human interaction, actors’ behavior is a key factor for

the industry to be sustainable [4,25] . Then, cooperation among those actors involved is necessary to achieve sustainable 

practices in the tourism sector. 
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Cooperation conditions in games where defectors can free-ride the benefits obtained by the collaboration of others have 

been long analyzed in the scientific literature [3,27,32] . One of the mechanism to enforce the collaborative behavior is the

application of incentives to the actors by means of punishment to defection or rewards to cooperation [28] . They have been

mostly applied in the context of public good games [18,31,33,35] , but also in other collective-risk dilemmas for climate 

change alleviation [14,34] . 

The objective of this this paper is to analyze the mechanisms to incentive sustainable practices in tourism. Specifically, we 

present here rewarding policies for the asymmetric tourism evolutionary model presented in [7] . In a nutshell, this model

has two populations (or species) representing interactions between tourists and stakeholders or locals. Cooperation means 

to be sustainable while defection is understood as a tourist option that does not consider sustainability in the tourism 

transaction. There is a cost for the tourist when choosing sustainable tourism (the revenue for the stakeholder) and an 

additional cost to stakeholder for attending a tourist defector. Also, the game defines a tourist discomfort when the provided 

offer is not fulfilling their expectations. 

We introduce in the model incentives to promote cooperation for both sub-populations of actors. Only few previous 

papers have included incentives in asymmetric games. For example, Gao et al. [13] propose a snowdrift game where two 

kind of species interacts, one adopting cooperation or defection strategy, and the other adopting cooperation or carrot-stick 

strategies, combining rewarding, or punishment according to the partner’s strategy. Their results show that including these 

incentives enrich possible stationary outcomes whereas promoting cooperative behavior. Other authors have also analyzed 

the optimal incentives for promoting fairness in an ultimatum game, which is also an asymmetric game where players adopt 

two roles (i.e., proposer and receiver) [9,10] . Their results show that a selective rewarding according to the node centrality

in a structured population reduces the promotion costs of fairness. 

In this study we assume an external institution which provides incentives to participants, as it has been adopted by other

studies for public good games [5] and collective risk dilemmas [8,14] . In our proposal, rewarding and punishment policies

are equivalent. Thus, we focus on rewarding policies, which are mainly based on two parameters. The first one controls the

per-capita incentive or budget and the second ones controls the budget share distributed to one or another sub-population. 

Three strategies are analyzed: (a) Rewarding tourists exclusively; (b) Rewarding stakeholders exclusively; (c) An adaptive 

rewarding, shifting from a full rewarding on one sub-population to the other depending on the level of cooperation at each

time-step of the simulation of the evolutionary game. 

The role of adaptive strategies has been analyzed before in the context of public good games and collective risk dilem-

mas [5,14,22,34,37,38] . Mostly, they find that mixture strategies combining of reward and punishing practices are the most 

convenient to enforce cooperation [5,14,22,37] . However, when cooperation must be achieved in smaller groups, the ex- 

istence of institutional prevalence make that pure reward be the preferred strategy [34] . Moreover, when a blind hybrid

strategy is adopted (i.e., it does not take into account the level of cooperation), pure punishment can be the optimal type

of incentive [38] . Up to our knowledge, an adaptive strategy enforcing cooperation in one or another sub-population in 

asymmetric games as the one proposed here has not been analyzed yet in the literature. 

Therefore, we apply here the rewarding policies on the evolutionary game on both unstructured (well-mixed) populations 

and on spatial lattice. In the second scenario, we define a density of the population that allows a migration process of

the tourists through the lattice. In that way, the model emulates individuals’ movements in a real tourism scenario. By 

running agent-based simulations [24] of the asymmetric evolutionary game we analyze the best static rewarding policies by 

modifying the parameter controlling the sub-population of individuals to target by the reward. This analysis is done under 

different conditions: well-mixed population, full density lattice without migration, and different densities with migration. 

Also, we compare the static and adaptive rewarding for different conditions of the spatial and unstructured population and 

parameters of the sustainable tourism game. Note that these diverse conditions emulate different tourism scenarios such as 

areas with low population density or stressed touristic areas with high population density (e.g., main touristic destinations 

and touristic coastal areas). 

The rest of the paper is structured as follows. Next Section 2 includes all the methods used in the paper.

Section 3 presents the results from the model and rewarding policies effects. Final insights and future lines are described in

Section 4 . 

2. Methods 

This section first includes the definition of the model from Sections 2.1 to 2.3 . Later, in Section 2.4 , the methodology for

the analytical and agent-based simulations is described. 

2.1. The asymmetric game and its payoffs 

The evolutionary game is asymmetric since consists of a finite set of Z agents having two different and time invariant

roles: being a tourist ( T ) or a stakeholder ( S). The model satisfies that Z = Z T + Z S with Z T being the number of tourists and

Z S the number of stakeholders. All the players are distributed on the nodes of a social network. Specifically, we consider a

regular lattice, given its simplicity with respect to other interaction networks such as scale-free networks but still ensuring 

the fundamental property of a limited players interaction range. Thanks to this limitation in the interaction range provided 

by the square lattice, we provide sufficient conditions to observe all possible results that are due to pattern formation in
2 
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Table 1 

Payoffs matrix using a rewarding scheme where δ is the in- 

centive and ω controls the asymmetric player to reward. 

Tourism Stakeholder ( S) 

C D 

Tourist ( T ) 

C 1 − ε + ωδ, ε + (1 − ω) δ −1 − τ + ωδ, 1 

D 1 − ε , ε − γ + (1 − ω) δ −1 , 1 

Table 2 

Payoffs matrix using a punishment scheme. 

Tourism Stakeholder ( S) 

C D 

Tourist ( T ) 

C 1 − ε , ε −1 − τ , 1 − (1 − ω) δ

D 1 − ε − ωδ, ε − γ −1 − ωδ, 1 − (1 − ω) δ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the studied system. The regular lattice has size L × L , being Z ≤ L × L so the lattice can have vacant cells. We call ρ = 

Z 

L × L 

to the time invariant population density of the lattice and ρT = 1 − Z S 
Z 

to the tourism pressure. 

Independently from its role, an agent i from both populations can adopt two strategies: cooperation C or defection D .

Tourist cooperators are noted by T C while tourist defectors are noted by T D . We use the same notations for stakeholders,

being SC and SD the stakeholder cooperators and stakeholder defectors, respectively. The pair-wise interaction occurs be- 

tween two players having opposing roles. A cooperating stakeholder SC offers a sustainable product or service to a tourist. A 

tourist can pay an additional cost ε ∈ [1 , 2] for this sustainable transaction and obtains an added value, set to 1 for simplic-

ity. On the other hand, the revenue obtained by the stakeholder from the sustainable transaction is equal to the additional

cost ε paid by the tourist. 

If a tourist player defects ( T D ) and is not sustainable when the stakeholder offers a sustainable asset, the cooperator

stakeholder SC reduces her/his profit by an additional cost γ ∈ [0 , 1] . Tourists, both cooperators T C and defectors T D , obtain

the added value from the sustainable service ν minus its additional cost ε from the transaction with cooperating stakehold- 

ers. When a stakeholder adopts a defecting strategy SD , its payoff is a normalized value of 1 independently from the strategy

followed by tourists. Cooperating tourists T C also pay a cost when stakeholders do not provide a sustainable asset, modeled

by a discomfort parameter τ ∈ [0 , 1] . In this way, tourists obtain a lower payoff of −1 − τ if they adopt a sustainable or

cooperation strategy C and they do not obtain the expected venue. 

Finally, the model also considers a migration process for players having a tourist role. Tourist players move through 

the lattice at each time step t to a vacant neighboring cell independently from their strategy. In case there are more than

one neighboring vacant positions, the agent picks one vacant position at random for the migration movement. Stakeholder 

players cannot move and keep the same position of the spatial cell during the simulation. If population density ρ = 1 , the

spatial lattice has no vacant positions and therefore, no migration is allowed. 

2.2. Asymmetric rewarding for tourists and stakeholders 

We introduce a rewarding approach for cooperating strategies for both players. ω controls the quantity of incentives δ
goes for either tourists or stakeholders. When ω equals to 0, tourists are not rewarded and the whole incentive δ goes

for stakeholders. The opposite is applied when ω equals to 1. Table 2.2 shows the payoff matrix for the asymmetric game

having the rewarding mechanism 

It is important to notice that, in the proposed model, rewarding and punishing schemes are equivalent. In fact, the 

alternative payoff matrix including punishment mechanism is obtained by subtracting (1 − ω ) δ and ω δ to all the columns 

of the tourist and stakeholder’s payoff in Table 1 . The alternative payoff matrix which follows a punishment scheme is 

shown in Table 2 . 

2.3. Payoffs accumulation and players’ strategy update 

Players of both roles interact with their direct neighbors in a pairwise interaction in the lattice. A focal player i only plays

with those having opposing roles and accumulates its payoff in 	i from all its interactions if at least there is one possible

interaction; being four the maximum number of possible interactions if all the neighboring cells are occupied by agents of 

opposing roles. 

The dynamics of the game includes an imitation process of the neighboring agents in the spatial lattice and a mutation

to randomly change the strategies of the players at every time step t . A player i changes its strategy at random with a
3
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mutation probability μ and imitates the strategy of a local neighbor with probability 1 − μ. As players will keep their role

for the whole simulation, they can only imitate other players in the lattice having the same role in the game. After playing

the pairwise interactions in the lattice and accumulating its payoffs in 	i , a player i has the opportunity of updating its

strategy according to this payoff value in previous time step t − 1 and the ones from their neighbors. 

In this imitation process, a player i imitates a player j having the same role as i with a probability p i → j that increases

with their payoff difference ( 	 j − 	i , being 	i and 	 j the payoffs of i and j in t − 1 , respectively), as done in [39] : 

p i → j = 

1 

1 + e −(	 j −	i ) /κ
, (1) 

where the amplitude of noise κ equals to 0.1 as done in [43,44] . It is important to notice that a player j cannot be imitated

if it did not interact with any other player and did not accumulate any payoff in previous time step t − 1 . This can happen

if, for instance, a player is isolated in the lattice or all the neighboring players have the same role. 

2.4. Methods’ details for simulating the model 

The update rule in this game defines a Markov process representing the evolution of the number of cooperators at every

time step. In the case of a finite and unstructured population, the asymptotic steady state of the number of cooperators can

be studied by applying convergence results of ergodic Markov chains. As the process includes probabilistic mutation ( μ), the

population does not fixate in any stationary state. Thus, instead of computing the probability of fixation in each absorbing 

state, we can make use of the stationary distribution of this Markov chain to analyze the asymptotic state of the population,

and assess the pervasiveness in time of a each fraction of cooperators. 

We use Monte-Carlo (MC) agent-based simulations [2,24] for simulating the asymmetric model on spatial regular lattice. 

Source code of the agent-based simulation engine, programmed in Java, is available to be downloaded at www.manuchise. 

com/sustainable-tourism . The evolution of the population proceeds in discrete steps involving the payoffs accumulation, 

update rules, and migration processes in line with the dynamics described above. The mutation (or exploration) probability 

( μ) equals 1 
Z in all experiments. For the agent-based simulations, the size of the population is Z = 4 . 9 × 10 3 in a squared

regular lattice of 70 × 70 with periodic boundary conditions and Von Neuman neighborhood. Each node of the lattice is 

either vacant or occupied by one player. The vacant positions are given by density ρ . We run the model for 30 independent

MC realizations and a maximum number of 10 3 synchronous time steps, where all the realizations reach a stationary stable

state and deviation from the MC realizations is low. Finally, all the simulation results were obtained by averaging the last

25% of the simulation time steps in the independent MC realizations. 

3. Simulation results 

In this section, we analyze the most effective and efficient rewarding for participants (tourism and stakeholders) to adopt 

sustainable behavior when interacting. In other words, we analyze the specific allocation of rewarding that maximizes the 

final cooperation in the population. First, we analytically study these conditions in the simple case of a finite and unstruc- 

tured population in Section 3.1 . Later, we evaluate how population density and migration in the spatial game affect the

outcome of the model through computational simulations ( Section 3.2 ). 

3.1. Rewarding in a finite and unstructured population 

In this subsection, we will find the general conditions on the reward parameters ( ω and δ) that maximizes the probability

of cooperation in the asymptotic stable equilibrium of the game. Instead of the regular lattice, here we assume that the two

sub-populations (tourist and stakeholders) are located in well-mixed graph, where only individuals belonging to different 

sub-populations can interact. 

Appendix A includes the details of the calculation of optimum reward distribution, based on the theoretical results on 

fixation probabilities for bimatrix games in finite populations [29] . These results assume null mutation ( μ = 0 ) and weak

imitation process ( κ >> 0 ). Given these conditions, the optimum ω 

∗ follows this rule: 

ω 

∗(k T , k S ) = 

{
0 i f k S / Z S < r T,S k T / Z T + 1 − r T,S 

1 i f k S / Z S > r T,S k T / Z T + 1 − r T,S 

Therefore, an adaptive incentive policy optimizes the probability to achieve full cooperation. This policy depends on the 

relative status of cooperation between the two populations at every time step. To make the interpretation of the switching 

point easier, let us analyze the case of identical population Z T = Z S . Under this assumption, it would be optimal to reward

exclusively tourist w 

∗ = 1 when the number of tourist cooperators is lower than the number of stakeholder cooperators 

k T < k S . The opposite (reward exclusively stakeholders, w 

∗ = 0 ) occurs when the number of tourist cooperators is larger

than the number of stakeholder cooperators k T > k S . 

In order to test this incentive policy in a more general setting ( μ > 0 and κ > 0 ), we will find the stationary distribution

of the Markov chain defined by the evolutionary game model. First, we calculate the transition probabilities of this Markov 
4 
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Fig. 1. Final frequency of players ( f TC stands for tourist cooperators and f SC for stakeholder cooperators) under three different policies of tourists reward 

( ω) and assuming well-mixed, finite population, and strong selection ( κ = 0 . 2 ). Incentives for tourists are more efficient. Adaptive rewarding is the best 

option for low and high percapita values δ. The rest of parameters are ε = 1 . 0 , γ = 0 . 5 , τ = 0 . 5 , Z T = Z S = 50 , μ = 0 . 01 . 

 

 

 

 

 

 

 

 

 

 

process. In a well-mixed population, all tourist and stakeholders are equally likely to interact. Then, given a certain coopera- 

tion state in the two populations x = (x T , x S ) , with x T = k T /Z T and x S = k S /Z S , the probability to increase by one the number

of cooperators in population h ∈ { T , S} is 

T + 
h 

(x ) = (1 − x h ) 

(
(1 − μ) x h 

1 

1 + e −( f C 
h 
(x ) − f D 

h 
(x )) /κ

+ μ

)

and the probability to decrease by one the number of cooperators in population h is 

T −
h 

(x ) = x h 

(
(1 − μ)(1 − x h ) 

1 

1 + e −( f D 
h 
(x ) − f C 

h 
(x )) /κ

+ μ

)
, 

where f C 
h 
(x ) and f D 

h 
(x ) are the expected payoff or fitness of the cooperator and defector, respectively. Given the payoff

matrix in Table 2.2 , the expressions for these expected payoffs are: 

f C T (x ) = ( −τ + ωδ) (1 − x S ) , 
f D T (x ) = −ωδx S , 

f C S (x ) = ( ε − γ − 1 + (1 − ω) δ) (1 − x T ) , 
f D S (x ) = ( 1 − ε − (1 − ω) δ) x T ) . 

The transition probabilities define a Markov process in two dimensions. The stationary distribution p̄ (x ) of this Markov 

chain provides the expected asymptotic steady state of the evolutionary game. This is calculated by following the same 

procedure in [41] . We firstly calculate the univariate transition matrix W y,y ′ defined from a bi-ojective function y = V (x T , x S ) ,

y ∈ N , and secondly the stationary distribution of p̄ (x ) is obtained by computing the normalized eigenvector corresponding

to eigenvalue 1 of the transpose of matrix W y,y ′ . The marginal distributions of p̄ (x ) provide the stationary distributions of

tourist and stakeholder population, respectively. 

Figure 1 further analyzes the question of the optimal assignment of the incentive to cooperate by representing the re- 

lationship between budget δ and stationary cooperation for different allocations w . In all cases, full defection is expected 

when budget is null ( δ = 0 ). Cooperation levels start to increase when increasing the budget. However, it is clearly more

efficient to allocate the incentive to the tourist population ( ω = 1 ) than to the stakeholder population ( ω = 0 ), since we

obtain higher global population levels starting from lower budget assignment. Moreover, excepting from a budget located in 

a medium range, the adaptive assignment obtains higher cooperation levels than any extreme allocation. 

To complete the analysis for the case of well-mixed population, Figure 2 presents the stationary distribution for all 

possibilities of the allocation 0 ≤ ω ≤ 1 and a wide range of values of the revenue of the stakeholder ε and tourist discomfort

when receiving an unsustainable product or service τ , respectively. The budget is fixed at δ = 0 . 75 . The panels show that

the effect of the revenue of stakeholders in cooperation is practically non-existent, excepting for the stakeholder cooperation 

in extreme low values of this revenue and almost null allocation of the incentive in this population. However, the steady

state of cooperation in the two populations is more influenced by high values of the tourist discomfort τ , although slightly

dampened by increasing the reward allocation in the tourist population. 
5 
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Fig. 2. Heatmaps showing two sensitivity analysis. Two heatmaps of the first row of the panel for ε (tourist cost in the game) and ω (rewarding policy). 

Two heatmaps of the last row of the panel for τ (tourist discomfort in the game) and ω (rewarding policy). Plots show final frequency of tourist cooperators 

f TC (figures on the left) and stakeholders cooperators f SC (figures on the right) for well-mixed and finite population. Incentives on stakeholders are not 

relevant to increase sustainable tourism. The rest of parameters are γ = 0 . 5 , τ = 0 . 5 , δ= 0.75, Z T = Z S = 50 , μ = 0 . 01 . 

 

3.2. Rewarding results in a spatial game with migration 

We extend here the analysis of the effect of rewarding strategies when the asymmetric game is played in a structured

network (lattice) including migration. Fig. 3 shows the cooperation levels achieved in the regular lattice assuming three 

different scenarios of the population density ( ρ ∈ { 0 . 5 , 0 . 8 , 1 } ). In the latter case ( ρ = 1 ), migration is not allowed. 
6 
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Fig. 3. Final frequency of players ( f TC stands for tourist cooperators and f SC for stakeholder cooperators) when running sensitivity analysis on δ for different 

densities in the lattice ( ρ = { 0 . 5 , 0 . 8 } with migration and ρ = 1 with no migration). We evaluate three rewarding strategies: a) rewarding tourists ( ω = 1 ), 

b) rewarding stakeholders ( ω = 0 ), and c) adaptive rewarding. Plots show that adaptive rewarding is the best strategy in dense populations while, under 

sparse conditions and migration, rewarding tourists is the best option. 

 

 

 

 

 

 

 

 

 

 

When assuming high enough population density and migration, the adaptive rewarding strategy obtains the highest 

global cooperation levels of the three strategies selected excepting a certain range of medium values of incentive budget 

δ. In addition, the cooperation levels of the two populations (stakeholders and tourists) are identical and both add more 

global cooperation than in the other cases of two extreme allocation of the incentive. These results match with the case of

well-mixed population, although cooperation is not full in the spatial game. 

Noteworthy, when the population density is low enough ( ρ = 0 . 5 ), the adaptive rewarding is not the optimal one, but

allocating the incentive to the tourist population ( ω = 1 ) is the best to promote cooperation in the sustainable tourism

game. In this scenario of sparse population, although migration allows new interactions between tourists and stakeholders, 

these interactions are rather low and make more efficient allocate the budget to incentive tourists. 

Fig. 5 and 4 show two panels with heat-maps for a sensitivity analysis on ε and τ for adaptive rewarding and non-

adaptive rewarding, respectively. The rewarding policies are applied under three density values (0 . 5 , 0 . 8 and 1) . Again, when

density is decreasing, even if migration occurs, cooperation in tourists decreases as well when considering adaptive reward- 

ing. In that case, rewarding tourists is more beneficial. When we set a full density lattice ( ρ = 1 ) or even high density

ρ = 0 . 8 with migration, the adaptive rewarding is the best option in general. Rewarding stakeholders ( ω = 0 ) is not a good

choice. 

Finally, Figure 6 shows the final cooperation levels in the two sub-populations for three density values (0 . 5 , 0 . 8 , 1) . In

this experiments, we set variations in reward allocation ω and revenue for stakeholders ε so the rewarding strategy is not 

adaptive. By comparing these results with the ones obtained in the analytical study of Fig. 2 , it is clear that the spatial

effect makes that cooperation further decreases in one population when the allocation of the reward focuses on the other 

population. When tourist population density is high enough and migration is allowed, the agents in the two populations 

have more chances to interact. Then, the results of cooperation in the long term resemble those obtained with well-mixed 

cooperation. 

4. Final discussion 

The proposed asymmetric model represents how tourists and stakeholders interact in a sustainable or unsustainable 

manner. Then, the objective of this paper is to study the best way to reward sustainable activities to increase the coopera-

tion. Previous contributions on strategies to enhance cooperation are based on combining rewarding and punishing policies 
7 
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Fig. 4. Sensitivity analysis on ε (tourists cost of the game) and τ (tourists discomfort) for non-adaptive rewarding, either focus on tourists ( ω = 1 ) or 

cooperators ( ω = 0 ), showing final frequency of tourist cooperators f TC and stakeholder cooperators f SC . 

 

 

 

for a single population of individuals in traditional symmetric games [5,14–16,18,34,38] . Previous contributions obtained dif- 

ferent results regarding the preference for rewarding and punishing strategies. In the pairwise asymmetric game presented 

in this paper, punishment and rewarding strategies are equivalent, so the study focuses on the optimal allocation of the 

budget to incentive cooperation in one or another sub-population of individuals (i.e., tourists and stakeholders in our game). 

Then, the analysis provides new aspects to the problem of incentives in evolutionary games model. 

In the proposed asymmetric game with unstructured population, the adaptive strategy of allocating incentives depending 

on the current cooperation presents higher cooperation levels than extreme strategies of allocating incentives exclusively to 

one or another population. The preference for hybrid strategies for enforcing cooperation agrees with other studies focusing 

on carrot and stick strategies for public good games [5,36] and also in collective risk dilemmas for controlling climate 

change [14] . An adaptive rewarding policy that depends on the centrality measure of the nodes was recently shown as one

of the most efficient strategies for the asymmetric ultimatum game [9] . 

When playing in a spatial lattice with migration, the preference for adaptive strategies remains excepting for the case of 

low population densities, where the extreme strategy of rewarding the sub-population of sustainable tourists is more effec- 

tive. Rewarding stakeholders is not an optimal choice in all the tested scenarios. Previous findings in the context of spatial

public good games show that low population densities can revert the benefits of social mobility to enhance cooperation [20] .

Our study reveals the disruptive effect of low densities also when determining the optimal strategy to enforce cooperation. 

Besides achieving higher level of cooperation, the adaptive strategy includes other benefits for sustainability beyond the 

higher volume of cooperation. For example, when implementing this strategy, the cooperation levels in the two popula- 
8 
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Fig. 5. Sensitivity analysis on ε (tourists cost of the game) and τ (tourists discomfort) for adaptive rewarding, showing final frequency of tourist cooperators 

f TC and stakeholder cooperators f SC . 

 

 

 

 

tions are similar. This equilibrium between the two populations (stakeholders and tourists) favors a more stable sustainable 

situation than other outcomes where one population cooperates significantly more than the other. Moreover, the adaptive 

strategy also favors cooperation levels in situations of low added value of sustainable practices by stakeholders. 

This study presents limitations. For instance, the studied networks are homogeneous in terms of connections. Also, the 

migration mechanism is basic (i.e., random movement of a tourist to an empty neighboring cell of the lattice). This migration

does not fully model the realistic case of tourists’ interactions with stakeholders or locals. Then, we can further study more

realistic ways of migration in games by including mechanisms such as aging effects [1] , multidimensional mobility [23] , or

conditioned to factors dependent on the individual’s environment [12] . Researchers can also analyze the case of a volun-

teer contribution for rewarding cooperators coming from the population itself. This mechanism has been implemented in 

previous studies [15,18,21,34,35,38] , instead of considering an external institution that enforces cooperation. 
9 
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Fig. 6. Final cooperation ( f TC stands for tourist cooperators and f SC for stakeholder cooperators) when running a sensitivity analysis on ε (tourists cost 

in the game) and ω (weight for rewarding) under different values of population density ρ . As ω is changing, we show the implications of using a pure 

rewarding for the two sub-populations. When ρ is lower than 1, tourists can migrate through the empty positions of the lattice. The rest of parameters are 

γ = 0 . 5 , τ = 0 . 5 , δ= 0.75, lattice with Z = 4 , 900 , μ = 0 . 01 . 

 

 

Finally, we select in our study the best strategy in terms of the maximum level of final cooperation, disregarding the

total costs of interference, as it has been done in previous papers for prisoner’s dilemma and public goods games [11,17,42] .

These studies propose selective rewarding strategies according to the percentage or cooperators and node centrality which 

obtains higher cooperation levels and lower costs than fixed strategies. Future works can follow this line by extending the 

incentive mechanisms for asymmetric tourist-stakeholder and other asymmetric games by including this kind of adaptive 

strategies. 
10 
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Appendix A. Calculation of the optimum reward allocation 

We calculate in this appendix the strategy of reward allocation that maximizes the long-term number of cooperators. It 

is based on the results on fixation probabilities for bimatrix games in finite populations [29] . 

In this context, we define ρ(k T ,k S ) → (Z T ,Z S ) 
as the fixation probability that given an initial number of cooperators in the 

tourist population of k T and k S , respectively, the long-term steady state gives full cooperation in both populations. A closed

expression for this fixation probability in terms of model parameters can be found in [29] . That paper assumes a frequency-

dependent Moran process for strategy update, the player’s fitness dependent on the average pay-off and weak selection. The 

extension of the results in [29] to the case of pairwise interaction is straightforward. Thus, given null mutation ( μ = 0 ) and

weak imitation process ( κ >> 0 ), the fixation probability follows the expression: 

ρ(k T ,k S ) → (Z T ,Z S ) = 

k T 
Z T 

k S 
Z S 

⎛ 

⎜ ⎜ ⎝ 

1 + 

1 

κ
(Z T − k T )(Z T + k S )(a 11 − a 12 − a 21 + a 22 ) 

+(Z T − k T )(Z T + Z S )(a 12 − a 22 ) 
+(Z S − k S )(Z S + k T )(b 11 − b 12 − b 21 + b 22 ) 
+(Z S − k S )(Z S + Z T )(b 21 − b 22 ) 

⎞ 

⎟ ⎟ ⎠ 

. 

Substituting the expression of the elements in the payoff matrix and after some simplification, we finally obtain, 

ρ(k T ,k S ) → (Z T ,Z S ) = 

k T 
Z T 

k S 
Z S 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 + 

Z T Z S 
κ

δ

(
1 − k S 

Z S 

)(
1 

r T,S 

+ 1 

)

+(ε − 1) 

(
1 − k S 

Z S 

)(
1 

r T,S 

+ 1 

)

−(τ + γ ) 

(
1 − k T 

Z T 

)(
1 − k S 

Z S 

)

−δω 

((
k S 
Z S 

− k T 
Z T 

)
−

(
1 − k T 

Z T 

)
r T,S + 

(
1 − k S 

Z S 

)
1 

r T,S 

)

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where r T,S = 

Z T 
Z S 

is the ratio between tourist and stakeholder population. As it can be observed, the fixation probability is

linear with respect to which population benefits more from the incentive, ω. The fixation probability is maximized in one of

the two extreme values of the interval 0 ≤ ω ≤ 1 . The specific maximum depends on the sign of the term in brackets at the

right hand side of ω. If this term is positive, the maximum fixation probability is obtained in ω 

∗ = 0 , and if it is negative,

the maximum fixation probability is achieved in ω 

∗ = 1 . The term is zero when k̄ S / Z S = r T,S k̄ T / Z T + 1 − r T,S . In this case, any

incentive policy is optimal. Then, the optimum ω 

∗ follows this rule: 

ω 

∗(k T , k S ) = 

{
0 i f k S / Z S < r T,S k T / Z T + 1 − r T,S 

1 i f k S / Z S > r T,S k T / Z T + 1 − r T,S 
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