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Many recent studies have used reinforcement learning methods to investigate the behavior of 
agents in evolutionary games. Q-learning, in particular, has become a mainstream method during 
this development. Here we introduce Q-learning agents into the evolutionary prisoner’s dilemma 
game on a square lattice. Specifically, we associate the state space of Q-learning agents with 
the strategies of their neighbors, and we introduce a neighboring reward information sharing 
mechanism. We thus provide Q-learning agents with the payoff information of their neighbors, 
in addition to their strategies, which has not been done in previous studies. Through simulations, 
we show that considering neighborhood payoff information can significantly promote cooperation 
in the population. Moreover, we show that for an appropriate strength of neighborhood payoff 
information sharing, a chessboard pattern emerges on the lattice. We analyze in detail the reasons 
for the emergence of the chessboard pattern and the increase in cooperation frequency, and we 
also provide a theoretical analysis based on the pair approximation method. We hope that our 
research will inspire effective approaches for resolving social dilemmas by means of sharing more 
information among reinforcement learning agents during evolutionary games.

1. Introduction

Cooperative behavior is widespread in both the natural world and human society, seemingly challenging Darwin’s theory of 
evolution and the process of natural selection. Evolutionary game theory provides a practical framework to investigate the stable 
presence of cooperative behavior among rational agents [1–5]. The prisoner’s dilemma game (PDG) is a typical game model that 
often used to illustrate the conflicts that arise between individuals and populations. [6–8]. In the classic model, two agents decide to 
cooperate (C) or defect (D) simultaneously. The reward (punishment) for both agents is 𝑅 (𝑃 ) if they cooperate (defect) mutually. If 
one agent cooperates and the other defects, the former obtains the sucker’s payoff 𝑆, and the latter receives the temptation to defect 
𝑇 . The size relationship of the four parameters is 𝑇 > 𝑅 > 𝑃 > 𝑆. Obviously, each agent tends to defect in order to maximize its own 
payoff, resulting in a social dilemma of mutual defection.
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Nowak and May explored PDG on square lattice network, which has shown that the spatial structure can promote the evolution of 
cooperation [9]. Following their pioneering work, many researches investigated role of different topology structures in evolutionary 
games, such as regular lattice [10–15], scale-free networks [16–21], etc. On the basis of network structures, numerous different 
mechanisms have been suggested to encourage cooperative behavior [22–41]. For example, Qin et al. empowered players to make 
decisions based on cumulative payoffs stored in memory found that moderate memory promotes cooperative behaviors [24]. Li et 
al. showed that continuously adjusting interaction intensity based on neighbor’s reputation promotes formation and maintenance of 
cooperator clusters [28]. The central idea runs through these works is that players learn to make better decisions by interacting with 
their neighbors during evolution.

As a machine learning method, reinforcement learning focuses on how intelligent agents can make better decisions through 
iterated interactions with environment to maximize cumulative rewards. It has experienced rapid advancements in recent years 
and been successfully applied in many fields, including robot control [42–44], recommender systems [45–47], and so on [48–53]. 
Generally, a reinforcement learning agent can observe the surrounding environment, try to take action, and obtain the corresponding 
rewards. Through this iterative trial-and-error procedure, it can learn strategies leading to the maximum cumulative rewards. The 
evolution of game strategies of reinforcement learning agents has attracted great interest, and many studies have explored along this 
direction [54–63].

Among all the attempts mentioned above, Q-learning has gained significant attention due to its characteristics of simplicity, 
efficiency, and powerful ability to handle state-action spaces. For instance, Ding et al. utilized Q-learning method to play PDG with 
extortion action, and found that Q-learning can significantly promote cooperation compared to other traditional strategy updating 
rules [59]. Geng et al. investigated mixed agents taking different strategy update mechanisms (i.e., the Fermi rule and Q-learning) to 
promote cooperation. [63].

In order to enhance the decision-making capabilities of reinforcement learning agents, such as those based on Q-learning, it is 
customary to integrate supplementary information to assist them in better comprehending the details patterns in the environment 
[64,65]. This practice can accelerate the convergence of agents’ strategies and improve their decision-making performance. In the 
evolutionary prisoner’s dilemma game on the regular lattice, one crucial aspect of observational information that can be provided 
to the agents is knowledge of their own and the neighbor’s strategies in the previous actual round, or the strategy predicted for 
this current round, which has been taken into account in previous research [62,63,66,67]. Furthermore, the payoff information of 
neighboring agents, which has been neglected in previous studies, also plays a significant role in shaping the agents’ decision-making 
strategies. Therefore, in addition to providing the strategy information of the neighbors to the intelligent agent, we also provide the 
information of the neighbors’ payoffs, and investigate how this additional information affects the agents’ behavior.

In the remaining part of this article, we will begin by introducing the game model, Q-learning method, and neighboring reward 
information sharing mechanism used to incorporate neighbor’s payoff information. Following that, we present our simulation results 
and analyses in detail. In the last section, our conclusions are summarized.

2. The model

In this paper, we consider the prisoner’s dilemma game (PDG) on the 𝐿 × 𝐿 regular square lattice with periodic boundary 
conditions and von Neumann neighborhood, where each vertex represents an agent that can interact with the four nearest agents 
simultaneously. Maintaining generality, we use the simplified PDG framework, wherein the reward for mutual cooperation (𝑅) is 
set to 1, the sucker’s payoff (𝑆) is 0, the temptation to defect is denoted as 𝑇 = 𝑏 (where 1 ≤ 𝑏 ≤ 2), and the punishment for mutual 
defection (𝑃 ) is fixed at 0. Then the payoff matrix can be expressed as:

𝐴 =
(
1 0
𝑏 0

)
(1)

Each agent is designated to cooperate or defect with a coin toss initially, then can make decisions using a reinforcement learning 
method called 𝜖-greedy Q-learning. Q-learning finds the optimal policy maximizing the expectation of the total reward for a given 
Markov Decision Process (MDP) denoted by a tuple ( , , 𝐏, 𝑟), whereby  and  are the state space and action space, respectively. 
𝐏 represents the transition probabilities, and 𝑟 ∶  × →ℝ assigns the agent’s reward for adopting action 𝑎 at state 𝑠.

In our model, at each time step 𝑡, the state 𝑠𝑖 (𝑠𝑖 ∈ ) of agent 𝑖 is determined by the number of cooperators in its neighborhood 
𝑁𝑖 last round. That is, the state space  = {0, 1, ...|𝑁𝑖|}. Compared with the stateless Q-learning, the state 𝑠 contains the information 
about the focal agent’s neighbors’ strategies. Each agent can choose which action to play at next time step from the action space 
 = {𝐶, 𝐷}, where 𝐶 is represented by column vector (1, 0)𝑇 and 𝐷 is (0, 1)𝑇 . Then at time step 𝑡 + 1, given the joint action of agent 𝑖
and its neighbors, the straightforward payoff of agent 𝑖 can be calculated as:

𝑃𝑖 =
∑
𝑗∈𝑁𝑖

𝑎𝑇
𝑖
𝐴𝑎𝑗 (2)

The neighborhood reward information sharing mechanism is introduced in the reward shaping process, which enables the agent 
to take into account the payoff information of its neighbors when learning strategies. An information sharing strength parameter is 
defined as 𝛼𝑟 to control the influence of information about neighbors’ payoffs in the focal agent’s learning process. Specifically, the 
reward of agent 𝑖 for choosing action 𝑎𝑖 in state 𝑠 at time 𝑡 can be calculated according to the following formula:
2

𝑟𝑖
𝑡
(𝑠, 𝑎𝑖) = (1 − 𝛼𝑟) × 𝑃𝑖 + 𝛼𝑟 × 𝑃𝑁𝑖

(3)
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Fig. 1. The cooperation frequency obtained from simulation as a function of the temptation to defect 𝑏 (1 ≤ 𝑏 ≤ 2) for different values of information sharing strength 
parameter 𝛼𝑟 . The orange line at the bottom represents the cooperation frequency for different 𝑏 values when the agents are driven by the classic Fermi function.

𝑃𝑁𝑖
= 1|𝑁𝑖|

∑
𝑗∈𝑁𝑖

𝑃𝑗 (4)

where 0 ≤ 𝛼𝑟 ≤ 1. Therefore, the reward 𝑟 of agent 𝑖 comprises the reward information of both itself and its neighbors. Then the 
Q-table will be updated according to the following formula:

𝑄𝑡+1(𝑠, 𝑎) = (1−𝛼) ×𝑄𝑡(𝑠, 𝑎) + 𝛼

[
𝑟𝑡(𝑠, 𝑎) + 𝛾min

𝑎′∈𝐴
𝑄𝑡(𝑠′, 𝑎′)

]
(5)

where 0 ≤ 𝛼 ≤ 1 denotes the learning rate, 0 ≤ 𝛾 ≤ 1 denotes the discount factor which represents how much the agents care about the 
future rewards, and 𝑠′ is the next state.

After updating Q-table at each time step, agents choose the action to play in the next round according to the current state. 
Specifically, the agents choose the action with the highest Q-value in their current states with probability 1 − 𝜖, and randomly select 
one action with probability 𝜖.

We compared the Monte Carlo simulation results under different sets of learning parameters, and finally set 𝛼 = 0.1, 𝛾 = 0.9, and 
𝜖 = 0.02. For more details about how the values of these parameters are chosen, readers are referred to the Appendix.

The Monte Carlo simulations are conducted on a regular square lattice network with a size of 𝐿 = 100. We take the average of 
the last 5000 of the 2 × 105 total simulation steps with 50 independent runs to evaluate the steady states for a fixed set of parameter 
values.

3. Simulation results

First, we show the cooperation frequency as a function of the temptation to defect 𝑏 under different values of information sharing 
strength parameter 𝛼𝑟 in Fig. 1. It can be seen that the frequency of cooperation is effectively enhanced when the agents update 
strategies using the Q-learning method without neighboring reward information sharing (𝛼𝑟 = 0) compared to the traditional Fermi’s 
rule, where 𝑓𝐶 declines to 0 steeply as 𝑏 increases. We believe that the cooperation is promoted because of the random explorations 
and intrinsic fluctuations in the classic Q-learning method when 𝛼𝑟 = 0 (Readers are referred to the Appendix for more details). 
It can be seen that the cooperation frequency increases monotonically until almost 1 as 𝛼𝑟 increases, no matter the value of 𝑏. 
However, the defectors still dominate for the majority of values of 𝑏. When the agents learn strategies with the neighboring reward 
information taken into account, the cooperation frequency is continuously significantly promoted as 𝛼𝑟 increases. It’s worth noting 
that 𝑓𝐶 rises slightly around 0.5 when 𝛼𝑟 increases from 0.2 to 0.6 for 1.5 ≤ 𝑏 ≤ 2. One can find that the 𝑓𝐶 drops rapidly at first, then 
decreases marginally as 𝑏 increases from 1 to 2 when 0 ≤ 𝛼𝑟 ≤ 0.5. When 0.6 ≤ 𝛼𝑟 ≤ 0.7, 𝑓𝐶 drops rapidly when 𝑏 is moderate and stays 
stable when 𝑏 is relatively small or large. The cooperation frequency maintains close to 1 until 𝑏 increases to more than 1.8 when 
𝛼𝑟 = 0.8. The values of 𝑓𝐶 are close to 1 when 0.9 ≤ 𝛼𝑟 ≤ 1, regardless of the value of 𝑏. In brief, Q-learning with neighboring reward 
information sharing can promote cooperation.

To reveal the impact of different 𝛼𝑟 values on the cooperation level, we begin by investigating how the cooperation frequency 
evolves over time for different 𝛼𝑟 values. Fig. 2 provides the proportion of cooperators as a function of time for different values of 𝛼𝑟
with fixed 𝑏 = 1.6. One can observe that 𝑓𝐶 decreases rapidly in the first few generations when 0 ≤ 𝛼𝑟 ≤ 0.3. After that, 𝑓𝐶 gradually 
rises back to a stable value which is lower than the initial cooperation frequency 𝑓0. But the trends of 𝑓𝐶 over time are contrary 
when 0.3 < 𝛼𝑟 ≤ 0.6, it rises at first and falls into a stable value higher than 𝑓0 subsequently. When 𝛼𝑟 ≥ 0.7, it can be clearly seen 
that 𝑓𝐶 steadily increases to a high value. Specifically, the stationary 𝑓𝐶 is close to 0.9 with slight fluctuations when 𝛼𝑟 = 0.7. And 
it’s almost 1 at the stable state when 0.8 ≤ 𝛼𝑟 ≤ 1.0. Hence, we can conclude that the agents efficiently acquire cooperative strategies 
when the sharing of neighborhood reward information has a significant contribution (𝑎𝑙𝑝ℎ𝑎 > 0.6). Nevertheless, in other cases, the 
behavior of the agents is more complex. It gradually converges after experiencing fluctuations, maintaining a considerable proportion 
3

of cooperators.
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Fig. 2. The changes of the cooperation frequency over time for temptation to defect 𝑏 = 1.6 and different values of neighboring reward information sharing strength 
𝛼𝑟 . Each curve in this panel is obtained by averaging the time series of 20 independent runs for the corresponding value of 𝛼𝑟.

Next, for a clearer view of the underlying mechanisms leading to the phenomenon observed above, we inspect the characteristic 
snapshots of strategies for different 𝛼𝑟 values in different stages of evolution. It can be seen from Fig. 3(a)/(e)/(i)/(m)/(q) that for the 
first few steps, there is no obvious difference in the distribution of strategies for different 𝛼𝑟 values. From Fig. 3(a)/(b)/(c)/(d), one can 
observe that the cooperators are invaded by defectors when 𝛼𝑟 = 0. And the surviving cooperators are scattered across the network, 
most of which form small and compact clusters to resist the defectors. When 0.2 ≤ 𝛼𝑟 ≤ 0.6, the chessboard-like structure gradually 
forms in the characteristic snapshots. It is apparent in Fig. 3(h)/(l)/(p) that almost all agents are in the chessboard-like structure. 
Namely, nearly all the focal agents play the contrary action against their four neighbor, which makes the snapshots of strategies look 
like a chessboard. The corresponding partial enlarged patterns of the chessboard inside the yellow box in Fig. 3(h)/(l)/(p) are shown 
in Fig. 3(u)/(v)/(w). Besides, there are some line-like and dot-like gatherings of cooperators or defectors at the stable states. As can 
be seen from Fig. 3(t), cooperators dominate on the network when 𝛼𝑟 = 0.8, while sporadic agents explore defection.

To further investigate how the chessboard pattern forms and influences the evolution of cooperation in turn, we compute the 
difference between the rewards for cooperation and defection using the toy model shown in Fig. 4. The blue node at the center 
represents the focal agent. We represent the set of agents shown in Fig. 4, excluding the focal agent 𝑖 and its four immediate 
neighbors, as 𝑀𝑖. According to Eqs. (3) and (4), the reward of the focal agent is determined by its own payoff and the average payoff 
of its four neighbors in the blue dashed box. Taking the upper neighbor of the center agent as an example, its payoff is affected by 
the strategies of the agents in the light blue dashed box. Therefore, the reward of the focal agent can be obtained considering all the 
strategies of agents in the toy model. We can derive the difference between the rewards for cooperation and defection as follows:

𝑟𝐶 − 𝑟𝐷 = 𝛼𝑟

[3
4
𝑛𝐶 (𝑏− 1) + 𝑏

]
+ 𝑛𝐶 (1 − 𝑏) (6)

where 𝑛𝐶 denotes the number of cooperative neighbors of the focal agent. As shown in Fig. 3, there is global chessboard pattern 
when 0.2 ≤ 𝛼 ≤ 0.6, which illustrates that the focal agent can obtain higher rewards by cooperating (defecting) if all its neighbors are 
defectors (cooperators). That is to say, 𝑟𝐶 − 𝑟𝐷 is always positive when 𝑛𝐶 = 0 for cooperators and negative when 𝑛𝐶 = 4 for defectors 
in the chessboard. According to Eq. (6), the values of 𝑟𝐶 − 𝑟𝐷 are 0.32, 0.64, and 0.96 when 𝑛𝐶 = 0 and 𝑏 = 1.6 for 𝛼 = 0.2, 0.4, and 
0.6, respectively. The values of 𝑟𝐶 − 𝑟𝐷 are −1.72, −1.04, and −0.36 when 𝑛𝐶 = 4 and 𝑏 = 1.6 for 𝛼 = 0.2, 0.4, and 0.6, respectively. This 
can explain why the chessboard structure emerges during the evolution for the appropriate value of 𝛼𝑟.

Combining the changes in the reward difference between different strategies during evolution and the formation of chessboard 
pattern together provides a more profound comprehension of the trends in cooperation frequency over time. The stable cooperation 
frequencies for different values of 𝑏 and 𝛼𝑟 are shown in Fig. 5(a), where the five curves from bottom to top correspond to the values 
of 𝛼𝑟 and 𝑏 satisfy that 𝑟𝐶 − 𝑟𝐷 = 0 when 𝑛𝐶 = 0, 1, ..., 4, respectively. Given 𝑏 = 1.6, the values of 𝛼𝑟 on the curves are 0, 0.29, 0.48, 
0.61, and 0.70, respectively. According to Eq. (6), the reward for defection is always higher for 𝑛𝐶 > 0 when 𝛼𝑟 < 0.29, yet lower 
for 𝑛𝐶 = 0 no matter the values of 𝛼𝑟. Take the case of 𝛼𝑟 = 0.2 as an example, the time series of the cooperation frequency 𝑓𝐶 and 
chessboard ratio 𝑓𝐵 are plotted in Fig. 6(a). For the majority of the agents, 𝑛𝐶 is 1, 2, or 3 for the first few steps after initialization. 
The agents are inclined to defect when 𝑛𝐶 > 0 after learning the knowledge about rewards for different states and actions, which 
leads to the decrease of 𝑓𝐶 . Consequently, the number of cooperative neighbors 𝑛𝐶 for some defectors drops to 0, forcing them 
into cooperating to obtain higher rewards. Hence, the stable chessboard subpattern that the cooperators surrounded by defectors 
arises. As the chessboard pattern gradually forms and expends to global, a further decrease in 𝑓𝐶 is prevented. And the cooperation 
frequency eventually rises back to a value close to 0.5. The chessboard pattern can exist stably because the agents with it have no 
motivation to change their strategies except through random exploration with a probability of 𝜖. Fig. 6(b) shows the time series of 
the 𝑓𝐶 and 𝑓𝐵 when 𝛼𝑟 = 0.6, where 𝑓𝐶 rises first and then drops. When 𝛼𝑟 = 0.6, cooperation takes advantage for 𝑛𝐶 < 4 according 
to Eq. (6), so the agents tend to cooperate at first. As a consequence, the value of 𝑛𝐶 reaches 4 for some agents with the increase 
of 𝑓𝐶 , which tempts the agents to defect for higher rewards. Therefore, the chessboard pattern forms and expands, leading the 𝑓𝐶
to drop into a value slightly higher than 0.5. It can be concluded that when the value of 𝛼𝑟 satisfies that cooperation and defection 
obtains higher rewards when 𝑛𝐶 = 0 and 𝑛𝐶 = 4, respectively, the chessboard structure will emerge and expand in the network, and 
4

the stationary cooperation frequency will approach 0.5 (Half of the agents are cooperators).
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Fig. 3. The evolutionary characteristic snapshots of strategies over time for difference values of 𝛼𝑟 . Cooperators and defectors are colored by blue and red, respectively. 
Panels (a)-(t), The columns are ordered from left to right as follows: 𝛼𝑟 = 0, 𝛼𝑟 = 0.2, 𝛼𝑟 = 0.4, 𝛼𝑟 = 0.6, and 𝛼𝑟 = 0.8, and the rows are ordered from top to bottom as: 
𝑇 = 100, 𝑇 = 104 , 𝑇 = 5 × 104 , and 𝑇 = 2 × 105 . Panels (u), (v), and (w) are the partial enlarged patterns of the area in yellow box shown in subplot (h), (l), and (p), 
respectively. The depicted results in all panels were obtained by employing 𝑏 = 1.6 on a regular lattice with a size of 100 × 100.

Fig. 4. The panel shows the toy model used to calculate the rewards for the central agent (blue). The reward for the focal agent is the weighted sum of its own payoff 
and the average of its neighbors’ payoff. The focal agent acquires its payoff by gaming with its four neighbors in the blue dashed box. The payoff of the central agent’s 
four neighbors can be obtained by means of the same way. Hence, the reward for the focal agent can be determined only considering the strategies of all the agents 
5

shown in this subpattern.
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Fig. 5. Panel (a) depicts the chessboard ratio 𝑓𝐵 in 𝑏 − 𝛼𝑟 panel. The five lines from bottom to top: values of 𝑏 and 𝛼𝑟 that meet the condition 𝑟𝐶 − 𝑟𝐷 = 0 when 𝑛𝐶 = 0, 
1, 2, 3, and 4, respectively. Panel (b) represents the stable cooperation frequency 𝑓𝐶 for different values of 𝑏 and 𝛼𝑟 . Herein, we define the chessboard ratio 𝑓𝐵 as 
the proportion of the agents taking contrary strategy against all its four neighbors. The yellow and red dashed line correspond to the values of 𝑏 and 𝛼𝑟 satisfy that 
𝑟𝐶 − 𝑟𝐷 = 0 when 𝑛𝐶 = 4 and 𝑛𝐶 = 0, respectively.

Fig. 6. Panel (a) and (b) demonstrate the temporal changes in the cooperation frequency 𝑓𝐶 and the chessboard ratio 𝑓𝐵 over time for 𝛼𝑟 = 0.2 and 𝛼𝑟 = 0.6, 
respectively. The value of 𝑏 is set at a constant 1.6.

As shown in Fig. 5(a), the values of stable cooperation frequencies 𝑓𝐶 are almost 1 when the parameter points (𝑏, 𝛼𝑟) are above 
the red dashed line. This is because 𝑟𝐶 − 𝑟𝐷 is always positive for those values of 𝛼𝑟 and 𝑏, which lead the agents throughout the 
network to cooperate. Then we show the stable chessboard ratio for different values of 𝑏 and 𝛼𝑟 in Fig. 5(b). The yellow and red 
dashed lines indicate parameter points (𝑏, 𝛼𝑟) satisfy that 𝑟𝐶 − 𝑟𝐷 = 0 when 𝑛𝐶 = 4 and 𝑛𝐶 = 0. It can be seen that the parameter 
combinations of 𝑏 and 𝛼𝑟 in the area between the two lines lead to higher chessboard ratios. However, there is barely any chessboard 
structure in the area above the red dashed line. The value of 𝛼𝑟 and 𝑏 above (below) each line in Fig. 5(a) and (b) make 𝑟𝐶 − 𝑟𝐷 > 0
(𝑟𝐶 − 𝑟𝐷 < 0) for the corresponding 𝑛𝐶 . Therefore, theoretically, the chessboard pattern can form and exist stably only for the values 
of 𝛼𝑟 and 𝑏 located between the lines in Fig. 5(b), which is consistent with the Monte Carlo simulation results.

We further verify the analysis of the formation reason of the chessboard pattern through statistical analysis and the results 
obtained from the simulation. Due to the randomness and fluctuation of the number of cooperative neighbors, we consider the 
expectation of the focal agent’s reward computed using the subpattern shown in Fig. 4. The configuration of the agents in 𝑀𝑖 is 
designated according to global cooperation frequencies. Table 1 shows the expectation computed under different values of 𝑛𝐶 and 𝑓𝐶 . 
When there are no cooperators around the focal agent (𝑛𝐶 = 0), the cooperative action obtains a higher reward under different values 
of 𝑓𝐶 , making the cooperator that defectors surround tend to insist on cooperating. In contrast, defectors surrounded by cooperators 
(𝑛𝐶 = 4) will persist in defecting. Therefore, the chessboard pattern can form gradually and exist stably during fluctuating variation 
or when 𝑓𝐶 declines. Fig. 7 shows that the size relation of the Q-value for cooperation and defection obtained from practical training 
matches the computed expectation result.

Next, we turn to the validation of the analysis on promoting cooperation, the change in the difference between rewards for 
6

cooperation and defection with neighboring reward information sharing can be derived using the following formula:
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Table 1

The reward expectations for different actions of the focal agent in different 
states. The results were obtained using the subpattern shown in Fig. 4. The 
number of cooperators in 𝑁𝑖 is 𝑛𝐶 . The strategies of the agents in 𝑀𝑖 are 
designated according to the cooperation frequency.

Cooperation 
Frequency

𝑛𝐶 0 1 2 3 4

0
C 0.113 0.902 1.69 2.478 3.267

D 0 1.36 2.72 4.08 5.44

0.2
C 0.181 0.963 1.744 2.525 3.307

D 0.068 1.421 2.774 4.127 5.48

0.4
C 0.249 1.024 1.798 2.572 3.347

D 0.136 1.482 2.828 4.174 5.52

0.6
C 0.317 1.085 1.852 2.619 3.387

D 0.204 1.543 2.882 4.221 5.56

0.8
C 0.385 1.146 1.906 2.666 3.427

D 0.272 1.604 2.936 4.268 5.6

1
C 0.453 1.207 1.96 2.713 3.467

D 0.34 1.665 2.99 4.315 5.64

Fig. 7. The panels show the typical Q-table results. The five bars from left to right in each panel depict the Q-value for both actions at state 0, 1, 2, 3, and 4, 
respectively. The blue (orange) bars represent the Q-value for cooperation (defection). The parameters are set as 𝑏 =1.6 and 𝛼𝑟 = 0.2.

Δ(𝑟𝑡(𝑠,𝐶) − 𝑟𝑡(𝑠,𝐷))

=
[
𝑟𝑡(𝑠,𝐶) − 𝑟𝑡(𝑠,𝐷)

]
−
[
𝑃𝑡(𝑠,𝐶) − 𝑃𝑡(𝑠,𝐷)

]
=
(
1 − 𝛼𝑟

) [(
𝑃𝐶 + 𝛼𝑟𝑃𝑁𝐶

)
−
(
𝑃𝐷 + 𝛼𝑟𝑃𝑁𝐷

)]
−
(
𝑃𝐶 − 𝑃𝐷

)
=− 𝛼𝑟

(
𝑃𝐶 − 𝑃𝐷

)
+ 𝛼𝑟

(
𝑃𝑁𝐶

− 𝑃𝑁𝐷

)
=𝛼𝑟𝑛𝐶 (𝑏− 1) + 𝛼𝑟

(
𝑛𝐶 + (4 − 𝑛𝐶 )𝑏

4
− 0

)
=𝛼𝑟

[
0.75(𝑏− 1)𝑛𝐶 + 𝑏

]
≥ 0

(7)

Eq. (7) indicates that the advantage of cooperation over defection is promoted after taking neighbors’ payoff into account. Table 2

presents the proportion of the agents with a higher Q-value for defection at state 𝑛𝐶 , but with a higher one for cooperation at state 𝑛𝐶
after considering neighbors’ payoff when 𝛼𝑟 = 0.2 and 𝑏 = 1.6. It is evident that a significant number of defectors become cooperators 
after the neighboring reward information sharing mechanism is introduced, resulting in an increase in cooperation frequencies. This 
is consistent with our previous inference.

The influence of 𝛼𝑟 on cooperation frequency can be qualitatively predicted using the minimum subpattern shown in Fig. 4. 
Taking into account the spatial structure and reward function, the central agent updates its strategy using the Q-learning method, 
while the strategies of other agents are designated according to 𝑓𝐶 . Pair configurations 𝑝𝑥,𝑥′ indicate the probability of finding an 
7

individual playing strategy 𝑥 accompanied by a neighbor playing 𝑠′, where 𝑥, 𝑥′ ∈ = {𝐶, 𝐷} in the PDG model used. Furthermore, 
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Table 2

The proportion of agents with a higher Q-value for defection at state 𝑛𝐶
originally, but with a higher Q-value for cooperation after considering 
neighbors’ payoffs. The parameters are fixed as 𝑏 = 1.6 and 𝛼𝑟 = 0.2.

𝑛𝐶 0 1 2 3 4

𝑄𝑟(𝑠,𝐶) >
𝑄𝑟(𝑠,𝐷),
𝑄𝑃 (𝑠,𝐶) <
𝑄𝑃 (𝑠,𝐷)

𝛼𝑟 = 0.2 0.441 0.348 0.295 0.173 0.183

𝛼𝑟 = 0.4 0.572 0.426 0.321 0.207 0.183

𝛼𝑟 = 0.6 0.545 0.523 0.442 0.340 0.223

𝛼𝑟 = 0.8 0.411 0.418 0.608 0.664 0.753

𝛼𝑟 = 1.0 0.403 0.419 0.603 0.723 0.757

Fig. 8. Cooperation frequency obtained from theoretical analysis using the minimum subpattern as a function of 𝑏 (1 ≤ 𝑏 ≤ 2) under different values of 𝛼𝑟 .

if agent 𝑖 switches from cooperation to defection, the probabilities 𝑝𝐶,𝐷 and 𝑝𝐶,𝐶 decrease, whereas the probabilities 𝑝𝐷,𝐷 and 𝑝𝐷,𝐶
increase. These changes can be represented using the following formula:

�̇�𝐶,𝐶 =
∑
𝑖∈𝑁𝑖

∑
𝑖∈𝑀𝑖

𝑛𝐶 (𝑁𝑖)
∏
𝑗∈𝑁𝑖

∏
𝑘∈𝑀𝑖

𝑝𝐷,𝑠𝑗
𝑝𝐷,𝑠𝑘

×𝑓
(
𝑟𝐶 (𝑁𝑖,𝑀𝑖) − 𝑟𝐷(𝑁𝑖,𝑀𝑖)

)
−

∑
𝑖∈𝑁𝑖

∑
𝑖∈𝑀𝑖

𝑛𝐶 (𝑁𝑖)
∏
𝑗∈𝑁𝑖

∏
𝑘∈𝑀𝑖

𝑝𝐶,𝑠𝑗
𝑝𝐶,𝑠𝑘

×𝑓
(
𝑟𝐷(𝑁𝑖,𝑀𝑖) − 𝑟𝐶 (𝑁𝑖,𝑀𝑖)

)
(8)

�̇�𝐶,𝐷 =
∑
𝑖∈𝑁𝑖

∑
𝑖∈𝑀𝑖

(
4 − 2𝑛𝐶 (𝑁𝑖)

) ∏
𝑗∈𝑁𝑖

∏
𝑘∈𝑀𝑖

𝑝𝐷,𝑠𝑗
𝑝𝐷,𝑠𝑘

×𝑓
(
𝑟𝐶 (𝑁𝑖,𝑀𝑖) − 𝑟𝐷(𝑁𝑖,𝑀𝑖)

)
−

∑
𝑖∈𝑁𝑖

∑
𝑖∈𝑀𝑖

(
4 − 2𝑛𝐶 (𝑁𝑖)

) ∏
𝑗∈𝑁𝑖

∏
𝑘∈𝑀𝑖

𝑝𝐶,𝑠𝑗
𝑝𝐶,𝑠𝑘

×𝑓
(
𝑟𝐷(𝑁𝑖,𝑀𝑖) − 𝑟𝐶 (𝑁𝑖,𝑀𝑖)

)
(9)

𝑓 (𝑟𝐶 − 𝑟𝐷) =

{
1 − 𝜖

2 , if 𝑟𝐶 > 𝑟𝐷
𝜖

2 , else (10)

where 𝑟𝐶 (𝑁𝑖, 𝑀𝑖) (𝑟𝐷(𝑁𝑖, 𝑀𝑖)) denotes the reward of the focal agent for cooperation (defection) given the strategy configurations of 
agents in 𝑁𝑖 and 𝑀𝑖. Eqs. (8) and (9) are sufficient because of the symmetry (𝑝𝐶,𝐷 = 𝑝𝐷,𝐶 ) and 𝑝𝐶,𝐶 + 𝑝𝐶,𝐷 + 𝑝𝐷,𝐶 + 𝑝𝐷,𝐷 = 1. It can be 
seen from Fig. 8 that the cooperation frequency in the stationary state obtained from the theoretical analysis matches the simulation 
results. (Note that the discontinuities in Fig. 8 occur because the rewards for cooperation and defection are equal for these specific 
values of 𝑏.)

4. Conclusion

In summary, we investigated the evolution of cooperation on regular lattice networks where the Q-learning agents make de-

cisions on the information about their neighbors’ strategies and payoffs. Specifically, the state is represented by the number of 
cooperative neighbors, and the reward function combines the information on the neighbors’ payoff by summing up the focal 
agent’s payoff and its neighbors’ average payoff with weight 1 − 𝛼𝑟 and 𝛼𝑟 (0 ≤ 𝛼𝑟 ≤ 1), respectively. From the Monte Carlo sim-
8

ulation results, we found that taking the information on payoff into account can significantly promote cooperation. At the same 
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Fig. A.1. The cooperation frequency in 𝑏− 𝛼𝑟 panel for different combinations of learning parameters 𝛼 and 𝛾 .

time, for the moderate value of 𝛼𝑟, there is an obvious chessboard structure in the characteristic snapshot of the strategies at 
steady states. We further analyzed the reasons for the increase in cooperation frequency and the formation of the chessboard-

like pattern. After that, we explored the relationship between the change in cooperation frequency and the variation in the 
proportion of the chessboard pattern during evolution. Finally, we show that theoretical analysis of cooperation frequencies 
based on the pair approximation method, which are consistent with the simulation results. We hope this work will inspire ap-

proaches for revealing how social dilemmas can be addressed by sharing more information in games among reinforcement learning 
agents.
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Appendix A

We conducted experiments on different parameter combinations to choose appropriate values for 𝛼 and 𝛾 . Each 𝛼 and 𝛾 value was 
selected from 0.1, 0.5, and 0.9. The cooperation frequencies in the 𝑏 − 𝛼𝑟 plane for different parameter combinations are shown in 
Fig. A.1. We ultimately selected 𝛼 = 0.1 and 𝛾 = 0.9. With these parameters, the proportion of dominant cooperation under different 
𝑏 and 𝛼𝑟 values and the average cooperation frequency are higher.

There exists randomness and fluctuation to some extent during the training process. Firstly, the agent will randomly choose 
actions with a probability of 𝜖. Besides, the next state after the agent after selecting an action is related to the strategies of other 
agents, the state transition and the cumulative value of the Q-table may cause the Q-values of 𝐶 and 𝐷 to fluctuate continuously 
(as shown in Fig. A.2). This effect is particularly evident for individuals situated on the edge of the checkerboard-shaped structure. 
9

However, for individuals in a stable chessboard structure, the fluctuations in the Q-table are usually smaller, as shown in Fig. A.3.
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Fig. A.2. The fluctuation in the Q-table. This Q-table was obtained during the training process of one typical agent on the edge of the chessboard structure, showing 
the Q-values of two actions in different states.

Fig. A.3. The Q-table obtained during the training process of one typical agent located in the relatively stable regions of the chessboard structure. It shows the 
Q-values of each action in different states.
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