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Spatial coherence resonance in excitable biochemical media
induced by internal noise
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Abstract

We show that in a spatially extended excitable medium, presently modelled with diffusively coupled FitzHugh–Nagumo neurons, internal
stochasticity is able to extract a characteristic spatial frequency of waves on the spatial grid. Internal noise is introduced via a stochastic simulation
method and is the only agent acting on the system. Remarkably, the spatial periodicity is best pronounced at an intermediate level of internal
stochasticity. Thus, the reported phenomenon is an observation of internal noise spatial coherence resonance in excitable biochemical media.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is a well-known fact that noise can have constructive effects
in different nonlinear dynamical systems. It has been shown that a
proper amount of noise can resonantly amplify weak signals,
which is known as stochastic resonance [1–3]. Fascinatingly, noise
can play an ordering role even in the absence ofweak deterministic
stimuli, whereby the established term describing the phenomenon
is coherence resonance [4–7]. Especially in biochemical reaction
systems, it is a rather firmly established fact that a certain degree of
stochasticity is unavoidable. Therefore, many studies have been
performed for a variety of biological processes, where the
constructive role of noise has been investigated. It has been
shown, that noise can induce stochastic calcium oscillations in a
subthreshold system, whereby the best temporal order is obtained
by an intermediate intensity of noise [8–11]. Similar studies have
also been performed for circadian rhythms [12,13] as well as
genetic regulation [14] and neuronal systems [15,16].

Remarkably, noise induced resonance phenomena are not
restricted only to the adjustment of temporal dynamics. Several
studies are focused also on the spatial or spatiotemporal
dynamics of biochemical media [17–19], whereby frequently
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the impact of noise on the spatiotemporal order is investigated.
It has been discovered that noise alone often suffices to induce
spatiotemporally ordered behaviour in systems as diverse as
optical devices and biochemical media [20,21]. In particular,
spatiotemporal stochastic resonance has been first reported in
[22] for excitable systems. Moreover, there also exist studies
reporting noise-induced spiral growth and enhancement of
spatiotemporal order [23–25], noise sustained coherence of
space-time clusters and self-organized criticality [26], noise
induced excitability [27], noise induced propagation of
harmonic signals [28], as well as noise sustained and controlled
synchronization [29] in spatially extended systems.

Recently, specifically the spatial dynamics of noise-induced
excitatory events in spatially extended systems has been
investigated in great detail. Carrillo et al. [30] have shown that,
for a nonlinear medium near a pattern-forming instability, there
exists an intermediate value of additive spatiotemporal noise for
which the peak of the circularly averaged spatial structure function
is best resolved, thus marking spatial coherence resonance in the
system. Recently, the concept was extended and spatial coherence
resonance phenomena have been reported in excitable media
[31,32] and in networks with different topologies [33].

Probably the most famous excitable medium, studied in the
framework of physiology, is the neuronal network. It has been
evidenced, that the consistency of spike generation and signal
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transition in networks of neurons depends on intrinsic noise,
which may originate from fluctuations of channel gating,
synaptic release, or of background presynaptic activity [34].
The role of noise in neuronal networks, and excitable media in
general, has been and still is a vibrant avenue of research, thus
yielding many experimental and theoretical studies over the past
decade [35]. While real-life biological neurons exhibit extreme-
ly complex behavior, neuronal dynamics must be considerably
simplified in order to make networks computationally traceable.
Therefore, the neuronal medium is presently modelled by
FitzHugh–Nagumo equations [36,37], which have been derived
from the Hodgkin–Huxley model describing the excitable
dynamics of electrical signal transmission along neuron axons
[38].

Typically, when studying the spatial dynamics of excitable
media, for example that of neuronal networks, the role of
different intensities of external additive noise has been
investigated [32]. Importantly, we presently extend the ideas
of previous authors and investigate the spatial order of excitable
media in dependence on internal noise only, which is introduced
by using a stochastic simulation method. We demonstrate that
Fig. 1. Characteristic snapshots of the spatial profile of ui,j for χ=(80; 180; 220; 240
depicted on square grids of linear size L=128. The colour mapping is linear, white de
0.0 to 0.01 in order to reveal small-amplitude fluctuations around the excitable steady
by periodic excitatory waves, whereas for χ=80 the excitations are randomly scatte
waves; only isolated and uncorrelated waves can be noticed, which disappear comp
internal stochasticity is sufficient to extract a characteristic
spatial frequency of excitable media, which is best expressed for
an intermediate level of internal noise. The phenomenon is thus
an observation of internal noise spatial coherence resonance in
excitable media.

2. Mathematical model

As already mentioned above, local units of the excitable
medium under study are governed by the FitzHugh–Nagumo
equations [36,37]

du
dt

¼ f u; vð Þ ¼ 1
e
u 1� uð Þ u� vþ b

a

� �
; ð1Þ

dv
dt

¼ g u; vð Þ ¼ u� v: ð2Þ

Individual units are arranged on the L×L (i, j ∈ [1, L])
square lattice with no-flux boundary conditions, whereby the
) increasing from the top left towards the bottom right panel. All snapshots are
picting 0.0 and black 1.0 values of ui,j. For χ=240 the colour scale extends from
state of each unit. Evidently, only for χ=180 the spatial domain is characterized
red. For χ=220 the level of internal stochasticity is too low to induce periodic
letely if χ is increased further.



Fig. 3. Internal noise spatial coherence resonance in the studied medium. Signal-
to-noise ratio ρ has a clear maximum in dependence on the level of internal
stochasticity χ.
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spatial extension is modelled by an additional diffusive flux of
the form D∇2ui,j that is added to the differential equation
describing changes of variable u:

dui;j
dt

¼ f ui; j; vi; j
� �þ Dj2ui; j; ð3Þ

dvi;j
dt

¼ g ui; j; vi; j
� �

: ð4Þ

The membrane potential ui, j(t) and time-dependent conduc-
tance of potassium channels vi, j(t) are considered as dimension-
less two-dimensional scalar fields, whereby the local dynamics of
u is much faster than that of v (ε≪1). The Laplacian D∇2ui, j, D
effectively being the diffusion coefficient, is integrated into the
numerical scheme via a first-order numerical approximation D
(ui −1, j+ui +1, j+ui, j− 1+ui, j + 1−4ui, j), so that the connection
between nearest-neighbour units is established. For parameter
values a=1.05, b=0.01 and ε=0.05, each FitzHugh–Nagumo
neuron is described by a single excitable steady state
u= v=0.0. Small perturbations of the excitable steady state
evoke nontrivial spike-like behaviour, which can induce
various waveforms in the spatial domain of the spatially
extended system [39]. Thus, without taking into account
internal stochasticity, which governs the neuronal dynamics,
the medium would remain forever quiescent.

To simulate the neuronal dynamics stochastically, we use
Gillespie's τ-leap method [40], which is an approximation of
the exact stochastic simulation method [41], but is computa-
tionally less expensive. The occurring reaction probabilities
correspond to the reaction mechanism governed by the
deterministic Eqs. (3) and (4). In accordance with reaction
probabilities, a discrete change of membrane potential and
conductance of potassium channels of the form kx/χ is
performed at each iteration, where kx is proportional to the
flux of the corresponding reactant during time τ and χ is
the system size. Such an approach has already been used in
the literature for simulating various biological processes
[9–11,14,42,43]. Importantly, χ directly determines the level of
internal fluctuations to which the medium is exposed. Internal
Fig. 2. Circular average of the structure function s(k) for different system sizes χ.
noise is most noticeable for small system sizes and it vanishes in
the thermodynamic limit given by χ→∞(theoretically), which
induces deterministic steady state solutions in the dynamics of
each individual unit and ultimately results in a quiescent medium.

In Fig. 1, characteristic snapshots of the spatial grid for four
different system sizes χ are presented. It can be noticed nicely
that there exists an intermediate system size for which the noise-
induced spatial dynamics of themedium ismaximally ordered. If
χ is small, the excitations are randomly scattered and in case of a
large system size, fluctuations are too small to provoke large-
amplitude excitations. Only an optimally pronounced level of
internal noise is able to induce coherent spatial waves
throughout the medium. At this point, we emphasize once
more that the studied spatial dynamics is induced solely by
internal noise. In what follows, we will show that there exists an
optimal system size χ for which a particular spatial frequency of
waves is resonantly enhanced, thus providing conclusive
evidences for internal noise spatial coherence resonance in
excitable media.

3. Spatial dynamics

To quantify effects of different levels of internal noise on the
spatial dynamics of the studied medium we calculate the
structure function according to the equation

P kx; ky
� � ¼ hH2 kx; ky

� �i; ð5Þ
where H(kx, ky) is the spatial Fourier transform of the ui,j field at
a particular time t and 〈…〉 is the ensemble average over different
temporal realizations of the spatial grid. To study results
obtained according to Eq. (5) more precisely, we exploit the
circular symmetry of P(kx, ky) as proposed in [30]. In particular,
we calculate the circular average of the structure function
according to the equation

sðkÞ ¼
Z
Xk

P kt
� �

dXk ; ð6Þ
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where tk ¼ ðkx; kyÞ, and Ωk is a circular shell of radius k ¼ jtk j.
Fig. 2 shows results for various χ. It is evident that there indeed
exists a particular spatial frequency k=kmax that is resonantly
enhanced for a particular system size χ, defining an intermediate
level of internal stochasticity to which the medium is exposed.

To quantify the ability of a particular system size to extract
the characteristic spatial periodicity of waves in the medium
more precisely, we calculate the signal-to-noise ratio ρ as the
peak height at kmax normalized with the level of fluctuations
existing in the system. This is the spatial counterpart of the
measure frequently used for quantifying constructive effects of
noise in the temporal domain of dynamical systems, whereas a
similar measure for quantifying effects of noise on the spatial
dynamics of spatially extended systems was also used in [30].
Fig. 3 shows how ρ varies with χ. It is evident that there exists
an optimal intensity of internal noise for which the peak of the
circularly averaged structure function is best resolved, thereby
indicating the existence of internal noise spatial coherence
resonance in the studied medium.

To shed light on the above-reported internal noise spatial
coherence resonance, we first briefly summarize findings
obtained when studying spatial coherence resonance in
excitable media [31]. It has been argued that, since individual
excitable units have a noise robust characteristic firing time tf
[6], additive spatiotemporal noisy perturbations are able to
extract a characteristic spatial frequency of waves in a resonant
manner so that kmax~1=

ffiffiffiffiffiffiffi
tf D

p
. Presently, each excitable unit

may be activated by an appropriate level of internal stochas-
ticity, which is an innate property of constitutive units of the
medium and can have a conceptually identical impact on the
spatial dynamics thus warranting the observation of internal
noise spatial coherence resonance.

4. Discussion

We show that internal stochasticity is able to extract a
characteristic spatial frequency of excitable media in a resonant
manner. The phenomenon is an observation of internal noise
spatial coherence resonance, since the induced characteristic
spatial frequency is a consequence of internal stochasticity only,
i.e. no additional deterministic inputs or external noise have
been applied.

The presented results can be generalized also to other
excitable media and might have important biological implica-
tions, since it is known, that excitability is ubiquitous in various
biological systems [35]. Furthermore, especially in biochemical
systems the presence of internal noise is widespread due to finite
and relatively small numbers of reacting molecules, which are
involved in different biological processes (see e.g. [44,45]). In
the future, it would also be interesting to study effects of different
topologies of the ensemble on the internal noise induced waves,
as for example scale-free [46] or small-world [47] networks,
which have already proved vital by the spatial dynamics of
excitable media driven by external noise [33]. Due to conceptual
similarities of effects of internal and external noise, however, it is
reasonable to expect that the destructive effect reported in [33]
will prevail also in the presently employed system set-up.
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