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Abstract

Calcium has been established as a key messenger in both intra- and intercellular signaling. Experimentally observed intracellular calcium
responses to different agonists show a variety of behaviors from simple spiking to complex oscillatory regimes. Here we study typical
experimental traces of calcium oscillations in hepatocytes obtained in response to phenylephrine and ATP. The traces were analyzed with methods
of nonlinear time series analysis in order to determine the stochastic/deterministic nature of the intracellular calcium oscillations. Despite the fact
that the oscillations appear, visually, to be deterministic yet perturbed by noise, our analyses provide strong evidence that the measured calcium
traces in hepatocytes are prevalently of stochastic nature. In particular, bursting calcium oscillations are temporally correlated Gaussian series
distorted by a monotonic, instantaneous, time-independent function, whilst the spiking behavior appears to have a dynamical nonlinear component
whereby the overall determinism level is still low. The biological importance of this finding is discussed in relation to the mechanisms
incorporated in mathematical models as well as the role of stochasticity and determinism at cellular and tissue levels which resemble typical
statistical and thermodynamic effects in physics.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many non-excitable eukaryotic cell types, including hepa-
tocytes, respond to extracellular agonists acting through the phos-
phoinositide signaling pathway, such as certain hormones and
neurotransmitters, by generating oscillatory changes in concen-
tration of free cytosolic calcium (calcium oscillations). Calcium
oscillations play a vital role in intra- and intercellular signaling.
Many cellular processes, such as secretion or egg fertilization are
regulated by oscillatory changes in cytosolic calcium concentration.

Since the 1980s, when self-sustained calcium oscillations were
first discovered [1,2], numerous further experimental observations
have been published (for review, see [3–5]). Calcium oscillations
are generated following binding of the agonist to its plasma
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membrane receptor which stimulates, through G protein activa-
tion, generation of the second messenger inositol-1,4,5-trispho-
sphate (InsP3), which activates the InsP3-dependent channel on
the endoplasmic reticulum leading to the rapid release of calcium
ions into the cytosol. Calcium oscillations are maintained,
controlled and shaped by a complex interplay of calcium fluxes
between the cytosol, intracellular calcium stores, calcium-binding
proteins and the external environment. Many theoretical studies
have been conducted to explain the mechanism of calcium
oscillations as well as the phenomenon of calcium waves. Such
studies have considered influences at the level of all of the
biological processes outlined above (for review see [6,7]).

The mechanisms for calcium oscillations have been mainly
modeled as deterministic processes (for review see [6]). However,
since the number of membrane receptors, ion channels, and
calcium ions in some organelles is very low (cf. [7]), stochastic
effects cannot be neglected. Indeed, it has been recognized
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Fig. 1. Experimentally-obtained calcium responses to phenylephrine (upper
trace) and ATP (lower trace) in single aequorin-injected rat hepatocytes.
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recently that several different aspects of calcium signaling in cells
definitely require stochastic treatment. A range of stochastic
models has been developed for the modeling of single Ca2+

channels [7–9], intracellular calcium oscillations [10–13], and
intercellular calcium wave propagation [11,14]. Some authors
have also investigated stochastic effects in coupled cellular
systems [11,15–18] and the role of internal noise in stochastic
resonance effects [16,19–23]. To emphasize the importance of the
stochastic treatment versus deterministic modeling, several com-
parisons of stochastic and deterministic models have been per-
formed [12,24–28].

Although the theoretical studies predict an important role of
stochasticity at the cellular level, there is a lack of direct ex-
perimental evidence confirming either the stochastic or deter-
ministic nature of intracellular calcium signals. Therefore, in this
paper the stochastic/deterministic nature of intracellular calcium
oscillations is investigated directly on the basis of experimental
data.We analyze experimentallymeasured calcium oscillations in
hepatocytes by using methods of nonlinear time series analysis
[29]. Previous studies have provided ample evidence that these
methods can be applied successfully to experimentally obtained
biomedical signals at the level of organs [30,31]. Prominent
examples include the characterization of the dynamics of cardiac
tissue [32], networks of neural cells [33], or the human loco-
motion apparatus [34,35]. Importantly, the output of these studies
has vast biomedical applicability. In cardiac tissue, methods of
nonlinear time series analysis can be applied to non-invasively
detect “silent” heart arrhythmias or imminent heart failure, or to
extract the foetal electrocardiogram from maternal recordings
[36]. Moreover, electrocardiographic recordings, in conjunction
with signals obtained from other cardiovascular sources (breath-
ing, vascular rhythmicity, etc.), can be exploited to avoid mental
awareness in patients during anesthesia [37,38]. In neural tissue,
dynamical markers of electroencephalographic recordings can be
used to diagnose epilepsy [39–41], whereas recordings obtained
from the human locomotion apparatus can be used to determine
neuro-degenerative diseases like Parkinson's disease, Hunting-
ton's disease, or amyotrophic lateral sclerosis [42–44]. In sum
past studies analyzing experimental traces obtained at the level of
organs have proved that nonlinear time series analysis methods
have vast potential and applicability in various fields of medicine
and biology. In this context, the present study represents a further
advance in the analysis of experimental biological signals,
making a step from the level of the organ towards the cellular
level through the analysis of experimental recordings of intra-
cellular calcium oscillations.

In this paper, we first present the experimental methods and
measurements of cytosolic calcium concentration from single
isolated hepatocytes stimulated with phenylephrine and ATP.
These experimental traces are then analyzed by applying meth-
ods of nonlinear time series analysis in order to determine their
stochastic/deterministic nature. We show that the analyzed
intracellular calcium signals are prevalently of stochastic
nature. Finally this finding is discussed in view of previously
presented mathematical models and their particularities as well
as analyses of oscillatory experimental traces obtained at the
level of organs.
2. Experimental methods and results

Single hepatocytes were isolated from fed, male Wistar-
strain rats (150-250 g) by collagenase perfusion as described
previously [45]. Briefly, the hepatic portal vein was cannulated
and an initial calcium-free perfusion was followed by perfusion
with collagenase (0.04% w/v) and Ca2+ (3.8 mM) for
15 minutes. The perfusion rate was 30 ml/min throughout.
The cells were harvested and incubated at 37 °C at low density
(103 cells/ml) in 2% type IX agarose in William's medium E
(WME). Single hepatocytes were prepared for microinjection
with the bioluminescent calcium indicator aequorin, as
described previously [46]. The injected cell was transferred to
a perfusable cup held at 37 °C, positioned under a cooled, low-
noise photomultiplier, and continuously superfused with WME,
to which agonists were added. Photon counts were sampled
every 50 ms. At the end of an experiment, the total aequorin
content of each cell was determined by discharging the aequorin
by lysing the cell. The data were retrospectively normalized by
calculating the photon counts per second divided by the total
counts remaining. The computed fractional rate of aequorin
consumption could then be plotted as calcium concentration
using in vitro calibration data run through a standard high
frequency filter. The application of the α1-adrenergic agonist,
phenylephrine (upper panel), or ATP (lower panel) to single
aequorin-injected rat hepatocytes stimulated the generation of
calcium oscillations, as shown in Fig. 1.

Aequorin was provided by Prof. O. Shimomura (Marine
Biological Laboratory, Woods Hole, MA, U.S.A). Collagenase
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was obtained from Roche Diagnostics (Lewes, U.K.) and WME
from Invitrogen (Paisley, U.K.). Agarose and agonists were
purchased from Sigma-Aldrich (Poole, U.K.).

3. Time series analysis methods and results

We analyze the experimental traces presented in Fig. 1 by
applying methods of nonlinear time series analysis. The goal is to
determine the nature of these oscillations in terms of the under-
lying dynamics of the system that produced it. In particular, we
wish to examine whether the studied recordings of intracellular
calcium oscillations are of deterministic or stochastic origin. To
introduce the formalism of nonlinear time series analysis we first
introduce xi as the series under study, where x is the concentration
of Ca2+ ions at each particular discrete time index i (note that the
actual time t depicted in Fig. 1 is obtained simply by multiplying i
by the sampling time interval during the experiment). First we
employ surrogate data methods [47], enabling us to test different
null hypotheses regarding the nature of the recordings. The three
null hypotheses for which details will be presented below are: xi
are independent (temporally uncorrelated) randomnumbers drawn
from some fixed but unknown distribution, xi originate from a
stationary linear stochastic process with Gaussian inputs, and
finally, xi originate from a stationary Gaussian linear process that
has been distorted by a monotonic, instantaneous, time-indepen-
dent nonlinear function. Details on surrogate data methods can be
found in [29] from page 91 onwards. The main idea is that points
of the original time series xi can be altered so that some char-
acteristic quantities of the series (like themean, standard deviation,
or the autocorrelation) are preserved while some other specific
marker of nonlinearity, presently denoted by γ, changes or not.
Depending on that a particular null hypothesis can be rejected or
confirmed. In order to assure that the null hypothesis is not rejected
solely by chance, several surrogates from the original series xi
have to be generated to achieve the desired significance level α
by each test. Presently, our aim is to achieve a significance level
of α=0.95 (95%) when confirming or rejecting a null hypothesis,
which means that for a single-sided test we have to generate [1 /
(1−α)]−1 surrogates from xi.

Since we wish to test whether the studied recordings of
calcium oscillations are of deterministic or stochastic origin, we
use as the specific marker of nonlinearity γ the zeroth-order
prediction error, arguably being able to infer even very weak
nonlinearities in a data set. Thus, the zeroth-order prediction
error γ will be the main statistical quantity characterizing the
original recordings (specifically denoted by γ0) and the sur-
rogates. If γ0bγ for all [1 / (1−α)]−1 generated surrogates and
for all forward prediction steps n then a null hypothesis can be
rejected with a significance level α. If however γ0Nγ at any
instance of the test the null hypothesis is said to be confirmed.
The algorithm for the calculation of the zeroth-order prediction
error γ in dependence on n can be found in [28] from page 44
onwards, and the actual implementation of the algorithm in C
and Fortran on page 264.

As already mentioned above (and for the sake of com-
pleteness), we start with a very simple null hypothesis that the
data are independent random numbers drawn from some fixed
but unknown distribution. To test this null hypothesis we gen-
erate surrogates by randomly shuffling the data (without
repetition), thus yielding surrogates with exactly the same
distribution, yet independent construction. Finally, we calculate
γ for the original recording and for every generated surrogate.
Results for both studied recordings of intracellular calcium
oscillations are presented in the top two panels of Fig. 2 in
dependence on the number of forward prediction steps n. It is
evident that γ0 is in both cases smaller than γ pertaining to the
surrogates. Moreover, this result holds for all n. We can thus
clearly reject the null hypothesis that the two studied data sets
are composed of independent random numbers. Note that γ
pertaining to the surrogates are independent of n, which is
expected, as we are dealing with independent random numbers,
for which predicting one time step ahead is just as impossible as
predicting thirty, a hundred or even a thousand time steps ahead.
On the other hand, the increasing values of γ0 in dependence on
n suggest that there are at least some temporal correlations
between data points in the two studied recordings.

We then proceed with a more interesting null hypothesis that
the recordings originate from a stationary linear stochastic pro-
cess with Gaussian inputs. The characteristic parameters of a
time series originating from such a process are the mean, the
variance, and the autocorrelation function. Thus, appropriate
surrogates must consist of correlated data points with the same
autocorrelation function as the original recording. In order to
generate such surrogates, we have to randomize the phases of
the Fourier transform of the original recording, and then per-
form the inverse Fourier transform to obtain the desired tem-
poral traces. Themiddle two panels of Fig. 2 showγ in dependence
on n. Although the trend of γ in dependence on n for the surrogates
is now more closely related to the trend of γ0, it is still obvious
that γ0 are always smaller than γ pertaining to the surrogates.
Accordingly, we can also reject the null hypothesis that the two
studied data sets originate from a stationary linear stochastic pro-
cess with Gaussian inputs. The significance level of the rejection is
the same as for the previous null hypothesis, equaling 95%.

Since the process of phase randomization preserves the Gaus-
sian distribution, it is a common deviation from the previous
null hypothesis that the data does not follow a Gaussian distri-
bution. The most general null hypothesis, for which there is still
an appropriate surrogate test developed, is that the recording
originated from a stationary Gaussian linear process that has been
distorted by a monotonic, instantaneous, time-independent non-
linear function. In order to generate appropriate surrogates, we
employ an iterative procedure proposed by Schreiber and Schmitz
[48], which uses an implementation similar to a Wiener filter to
enforce the correct spectrum to the resulting surrogates. Due to
this, however, a rescaling of data points was necessary to enforce
the right (non-Gaussian) distribution. The two steps can be ite-
rated several times (presently 10), whereby the resulting surro-
gates approach the original recording both in the spectrum as well
as the distribution. As above, we have generated [1/ (1−α)]−1
such surrogates and calculated the zeroth-order prediction error γ
in dependence on n. It is fascinating to discover that only spiking
calcium oscillations (upper trace of Fig. 1) are able to pass the test,
thus allowing the rejection of the null hypothesis. Note that in the



Fig. 2. Surrogate data test for different null hypotheses (see text for details). Grey stripes indicate the distribution of zeroth-order prediction errors (γ) for the surrogates,
while black lines denote prediction errors for the original recordings (γ0), in dependence on the number of prediction steps n. Results in the left panels pertain to the
spiking (upper trace of Fig. 1) and in the right panels to the bursting (lower trace of Fig. 1) intracellular calcium oscillations. γwere calculated by embedding each time
series into a five dimensional phase space with delay s=60 as determined by the mutual information method [50] of original recordings. Neighbors for prediction were
sought amongst those points that were inside 5% of maximal distance to the reference.
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bottom left panel of Fig. 2 γ0bγ irrespective of n and for all
generated surrogates. On the other hand, for bursting calcium
oscillations (lower trace of Fig. 1) it is in fact impossible to reject
the null hypothesis (at 95% significance) that the recording
originated from a stationary Gaussian linear process that has been
distorted by a monotonic, instantaneous, time independent non-
linear function. As can be inferred from the bottom right panel of
Fig. 2, γ0 is well within the distribution of γ.

The above results thus imply that the spiking calcium
oscillations are eligible for further analyses with methods of
nonlinear time series analysis. It is thus reasonable to proceed
with a standard determinism test to determine the level of
stochasticity in the upper trace of Fig. 1. We used the method
originally proposed by Kaplan and Glass [49], which is based
on measuring average directional vectors in a coarse-grained
phase space. The idea is that, in case of a deterministic solution,
neighboring trajectories in a small portion of the phase space
should all point in the same direction, i.e. not cross, thus
assuring uniqueness of solutions, which is the hallmark of
determinism. The determinism factor 0≤κ≤1 is obtained by
calculating the average length of all resultant vectors pertaining
to a particular phase space box, whereby the resultant vectors
are obtained by assigning a unit vector to each pass of the
trajectory through a particular phase space box and calculating
their vector sum. Hence, if the dynamics of oscillations is
deterministic, the average length of all directional vectors κ will
be 1, while for a completely stochastic system κ=0. In order to
employ the method we reconstruct the phase space from xi via
the standard embedding procedure [29]

pi ¼ xi; xiþs; xiþ2s; :::; xiþ m�1ð Þs
� �

; ð1Þ

using the embedding delay t=60 [50] and embedding
dimension m=7 [51] (we have used m=5 for results in Fig. 2
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to relax the suitable neighbors criterion for the surrogates, but
results remain qualitatively the same if higher embedding di-
mensions are used). The phase space pi was coarse-grained into
167 boxes and the pertaining determinism factor was found
equaling κ≈0.7, thus indicating that although the temporal trace
might have been produced by dynamic nonlinearities, the level of
stochasticity is still high as experimental recordings of determin-
istic signals at the organ level usually have κN0.9 [52,53].

4. Discussion

In summary, the results of our analyses suggest that sto-
chasticity is an important factor in the dynamics of intracellular
calciumoscillations. Particularly, the presented results of nonlinear
time series analysis methods applied to experimental calcium
traces in hepatocytes show an extremely high degree of
stochasticity at the cellular level. Although surprising at the first
glance, these results represent an experimentally based confir-
mation of some previous theoretical hypotheses. There exist
numerous theoretical predictions drawing attention to stochastic
modeling and emphasizing the importance of stochastic effects
at the cellular level [7–23]. It has been shown that dynamics of
single Ca2+ channels can be better described by stochastic mo-
deling [7–9]. Stochastic effectswere also included inmathematical
models for intercellular calcium oscillations [10–13], intracellular
calcium wave propagation [11,14], and coupled cellular systems
[11,15–18]. Moreover, it has also been shown that inherent fluc-
tuations or noisy environment might lead to stochastic resonance
effects [16,19–23]. It should be emphasized that some of these
model predictions are pure theoretical considerations; however, as
our results show, there exist, at least for stochastic modeling of
calcium oscillations, a solid experimental base. This again
confirms the strong predictive power of mathematical modeling.
Several examples exist in which mathematical models had
indicated solutions, which were confirmed experimentally later
[54]. Therefore, interactive experimental and theoretical investiga-
tions are of crucial importance. Indeed, the fairly small number of
Ca2+ ions within the cell (cf. [7]) creates associated non-negligible
stochastic fluctuations. Together with the extensive measurement
error inevitably present in such complex experimental set-ups, this
will contribute substantially to temporal traces that show very
sparse markers of dynamic nonlinearity.

Previously, nonlinear time series analysis of biological signals
has been limited to those measured at the level of the organ.
Examples range from the analyses of electrocardiographic re-
cordings [32,55] as well as other cardiovascular sources such as
breathing and vascular rhythmicity [38], electroencephalographic
recordings [33], or recordings characterizing the human locomo-
tion apparatus [34,35]. These studies show that signals measured
at the level of the organ are characterized by a high degree of
determinism, much higher than that characterizing the cellular
signals presented here. This apparent discrepancy between the
stochastic nature of cellular signals and deterministic nature of
signals in tissue compares well with the scenario recently pre-
dicted by mathematical modeling of coupled calcium oscillators
[17]. In that theoretical study a mechanism is presented for the
transition from stochasticity to determinism in calcium oscilla-
tions, via diffusive coupling of individual cells that are modeled
by stochastic simulations of the governing reaction-diffusion
equations. It has been shown that, under physiologically-relevant
conditions, the collective dynamics of coupled cells is, unlike that
of isolated cells, deterministic for large-enough ensemble sizes.
These model predictions are in best agreement with the nonlinear
time series analysis of experimental results at the cellular level and
at the level of the organ, i.e., stochastic versus deterministic nature
between real-life recordings of physiological functions at cellular
and organ level.

The stochastic nature of signals at the cellular level and the
deterministic nature of signals at the level of the organ also
compares well with the relation of statistical physics and ther-
modynamics. It is well known that predictions obtained by
statistical methods approach the deterministic limit for large
particle numbers. By using this analogy, it can be hypothesized
that the stochastic nature of signals at cellular level becomes
increasingly deterministic when the ensemble of cells forming
the tissue increases. To test the hypothesis, further experimental
measurements accompanied by nonlinear time series analysis
are needed; in particular recordings from different numbers of
cells. It would then be interesting to analyze the transition from
single-cell traces to recordings at the level of the organ, and thus
to elucidate directly from the experimental data, the discrepancy
between stochasticity at the cellular level, and the prevalence of
determinism at the level of the organ.
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