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In this study, we propose an automatic system to diagnose congestive heart failure using short-term heart
rate variability analysis. The system involves a multi-stage classifier. The features of heart rate variability
are computed from time-domain and frequency-domain measures through power spectral density es-
timations of different transform methods. Nonlinear heart rate variability measures are also calculated
by using Poincare plot, symbolic dynamics, detrended fluctuation analysis, and sample entropy. Different
combinations of heart rate variability features are selected according to their statistical significance levels
and then applied to the classifier. The first two stages of the classifier consist of simple perceptron classi-
fiers that are trained by a genetic algorithm. Five different classifiers, namely k-nearest neighbors, linear
discriminant analyses, multilayer perceptron, support vector machines, and radial basis function artificial
neuronal network, are tested for the third stage. The proposed system results in a classification perfor-
mance of an accuracy of 98.8%, specificity of 98.1%, and sensitivity of 100%. We show that our approach
provides an effective and computationally efficient tool to automatically diagnose congestive heart failure

patients.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The degradation in the pumping function of a heart is named
as heart failure [1,2]. Many organs gradually lose their proper func-
tion since they cannot receive enough oxygen and nutrients due to
this disorder. Congestive heart failure (CHF) is amongst the main
culprits in this series of events [3]. Symptoms of CHF occur de-
pending on its severity. In early stages, patients may not notice this
condition. In mild CHF, the symptoms arise when the patient be-
comes more active than daily routine, but in severe heart failure,
the symptoms persist even at rest. In addition, patients face severe
symptoms that gradually become worse with age. McMurray and
Pfeffer [4] reported that the incidence of CHF is exploded in the
adults by approximately 1-2% while the rate is 6-10% in people
over 65 years old. Moreover, the incidence of CHF is also closely
related to the gender.

Some of typical signs for the diagnosis of CHF are relative
among doctors and these signs may be invisible. Although an ex-
pert cardiologist can diagnose the CHF easily in practise, daily
physicians may be confused in the diagnosis. In addition, some of
CHF symptoms are very similar to other medical conditions among
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elderly patients, which results in a delay in the treatment [5]. After
CHF is suspected, further tests are applied to the subjects. These
tests involve the echo-cardiogram, heart catheterization, chest X-
ray, chest CT scan, cardiac MRI, nuclear heart scans, and ECG [6].
ECG is the prior technique to diagnose a cardiac-related disease.
However, its use is limited to detect abnormal beats as a sign of
CHF in general [7].

The heart rate variability (HRV) analysis, conventionally based
on the inter-beat intervals of two contiguous ECG peaks, has been
widely used for both the diagnosis [8-19] and the prognosis [20-
23] to discriminate the CHF for a long time. Many classifiers have
been investigated in these studies. Among these studies, Asyali
[8] studied the long-term HRV data to distinguish CHF patients
from healthy subjects. He used two classifiers of linear discrimi-
nant analysis and Bayesian classifier with only nine common time-
domain and classical FFT-based frequency-domain HRV measures.
In another study, Isler and Kuntalp [9] studied the short-term
HRV data to discriminate the CHF patients. They applied stan-
dard time- and frequency-domain HRV measures by combining
Wavelet Entropy to the input of the Nearest Neighbor classifier.
They also investigated the effect of a new preprocessing step of
the heart rate normalization in another study [10]. Other classi-
fiers have also been used in the literature. Linear kernel based Sup-
port Vector Machines (SVM) with standard time-doamin HRV fea-
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tures and frequency-domain features based on the bispectral anal-
ysis has been investigated by Yu and Lee [11]. Jovic and Bogunovic
[12] have applied conventional time-domain features with nonlin-
ear measures to classifiers of SVM, MLP, C4.5, and Bayesian in ECG
beat classification. Pecchia et al. [13] used non-standard features
and CART classifier to diagnose CHF. Narin et al. [14] used con-
ventional time-domain features, frequency-domain measures us-
ing FFT, several nonlinear parameters, and extra frequency-domain
measures based on wavelet packet transform. They investigated the
performance of the SVM algorithm with 27 features chosen by the
backward elimination method. Altan et al. [15] studied on the di-
agnosis of CHF patients from normal subjects using the Hilbert-
Huang Transform on HRV signal. They used the MLP structure of
artificial neural networks. In another study, Acharya et al. [16] used
Empirical Mode Decomposition (EMD) on HRV signals to distin-
guish CHF patients from normal subjects via probabilistic neural
networks and SVM. Similarly, Meillo et al. [17] used the CART clas-
sifier on HRV signals to determine the patients with CHF. Li et al.
[18] used convolutional neural network (CNN) based deep learning
classifier with measures calculated by distance distribution matrix
method from 300-sample HRV signals. Kumar et al. [19] used Fuzzy
and Permutation Entropy measures from 500-sample HRV signals.
They applied 20 features to the least sqaures SVM (LS-SVM) classi-
fier.

Most of these studies used one-stage classification procedures.
Nonetheless, some studies related to heartbeat classification from
ECG signals [24] and epileptiform spike detection from EEG signals
[25,26] have used multi-stage structures. A recent study showed
that a multi-stage model provides powerful outcomes to predict
the life expectancy for CHF patients [20].

In this study, we consider a multi-stage classifier system to
maximize the diagnosis accuracy of CHF based on short-term HRV.
For this purpose, we used open databases from Physionet, Nor-
mal Sinus Rhythm Database (NSR2DB) and Congestive Heart Failure
Rhythm Database (CHF2DB). These databases contain 24-h heart
rate data from 54 normal subjects and 29 CHF patients. HRV fea-
tures for only the first 5-min data segments are calculated from
time-domain, frequency-domain and nonlinear features. Different
combinations of the HRV features are selected by statistical evi-
dence levels of 1%, 2%, 5%, 10%, and 20% and then applied to the
proposed classifier structure. The first two stages are simple per-
ceptrons that are trained by genetic algorithm. In these stages, the
obvious decisions of healthy and patient are determined. If the di-
agnosis is not given in these stages, the data is applied to the fi-
nal stage. Five different classifiers of k- nearest neighbors, linear
discriminant analyses, multilayer perceptron, support vector ma-
chines, and radial basis function artificial neaural network are in-
volved in the third stage. Then, the classifier performances are
computed by the leave-one out cross-validation method through
the whole three-stage classifier system.

2. Materials and methods
2.1. Data

In this study, we used two databases of Normal Sinus Rhythm
Database (NSR2DB) and Congestive Heart Failure Rhythm Database
(CHF2DB), which are free and online available to all researchers on
Physionet website [27]. The NSR2DB contains heart beat intervals
datasets from 54 normal subjects and the CHF2DB contains inter-
vals datasets from 29 patients with CHF. The original ECG signals
are digitized by the sampling rate of 128 Hz. It is obvious that the
proper sampling rate is necessary to detect the precise peaks in
ECG. Although the offered optimal sampling range is 250-500 Hz
or higher, lower sampling rate (equal to or greater than 100 Hz)

has been reported for a considerable result [28]. Therefore, we
used these databases confidentially in this study.

2.2. Data segmentation

Standard HRV analysis can be conducted using both HRV data
of short-term (5 min) and long-term (24 h) [28]. The short-term
is preferred if the fast diagnosis is desired. The task force offers
using artifact-free data segments. If it is not possible to find an
ectopic-free data segment, the ectopic removal process is offered
before calculating HRV features [28]. Therefore, throughout all HRV
data, 5-min data segments having the minimum number of ectopic
beats are traced for each subjects.

2.3. Ectopic removal

The use of only regular heartbeats, which are not affected by
the previous or following beats, is offered in HRV analysis. There-
fore, these abnormal beats and their neighbors are excluded from
the data in general [29]. Although Langley and colleagues offer an
algorithm to identify possible ectopic beats [30], it is not necessary
in this study since ectopic beats are already annotated. We simply
removed these beats from the data.

2.4. Resampling

Although the HRV data has unequally-sampled nature, some
well-known feature extraction methods require evenly-sampled
data. Therefore, a resampling (interpolation) method must be uti-
lized to the data to make it evenly-sampled one. The task force
defines the upper frequency of the HRV data is 0.5 Hz [28]. The
interpolation of the HRV data with the rate of 1-10 Hz is offered
in the literature [29]. We preferred the resampling rate of 4 Hz in
this study.

There are many resampling methods already defined in the lit-
erature. Among them, the Cubic Spline method is possibly the
most used one [31]. In addition, Clifford and Tarassenko [32] com-
pared interpolation methods by investigating effects on HRV anal-
ysis. They offered the Cubic Spline method that gives the mini-
mum interference to frequency-domain HRV measures. Therefore,
we applied the Cubic Spline resampling method defined in detail
in [33,34] with the sampling rate of 4 Hz to HRV data.

2.5. Detrending

Although HRV data has also some trends that make the data
non-stationary, some of feature extraction methods require at least
weakly stationary data. A number of methods have been developed
to overcome this issue in the literature including choosing shorter
analytical epochs, eliminating or filtering slowly-changing trends
and using techniques that are robust to non-stationarities such as
the Wavelet transform. In this study, we preferred a widely-used
robust detrending method, which is called as Smoothness Priors. It
has been widely used in applications of the HRV data among other
methods [35]. The stationary part of the HRV data can be found as
follows:

Xstationary = X — HO, = (I - (1 + AD£D2)71>X (1)

where x is HRV data, D, is the second order difference operator,
A is the regulatory parameter (A = 1000), and Xionary 1S the de-
trended stationary signal. Tarvainen and collegeaous explained the
method in detail and presented its Matlab code in [35].
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Fig. 1. The block diagram of the feature extraction stages from the 5-min HRV data through time and frequency domain measures and nonlinear measures. Ectopic removal,
resampling or detrending processes are applied before the feature selection depending on the feature extraction method.

2.6. Feature extraction

McMurray and Pfeffer [4] have reported the importance of age
and gender to differentiate the CHF patients out of normal sub-
jects. Because the gender information for all records is not avail-
able in these databases, the gender is excluded from the study
but the age information is included as a feature in this study. HRV
features can be obtained through time-domain, frequency-domain,
and nonlinear measurements [36]. All of the features, which are
obtained from the 5-min ectopic-free data segments, are defined
briefly in this section. All methods mentioned in this section sim-
ilar given in [14] are visualized together with the relations to pre-
processing methods in the Fig. 1.

2.6.1. The HRV time-domain features

The time-domain features are computed from the heart beat in-
tervals data. These features are Mean (mean of all RR intervals),
SDNN (standard deviation of all RR intervals), RMSSD (root means
square of differences between adjacent NN intervals), and SDSD
(standard deviation of differences between adjacent NN intervals)
[9,10,14,36].

2.6.2. The HRV frequency-domain features

These features are obtained from the power spectral density
(PSD) estimation from the HRV data. There are some methods
to estimate PSD that require some preprocessing steps. In both
the Fast Fourier Transform (FFT) and the Wavelet Transform algo-
rithms, the interpolation step is necessary to convert HRV data to
an equally sampled data [36,37]. In addition, the FFT also requires
the stationary, which requires an extra detrending procedure [32].

The spectrum of the short-term HRV analysis consists of com-
ponents from three main frequency bands: very-low-frequency
(VLF), low-frequency (LF), and high-frequency (HF) bands [28].
Frequency features from the power spectrum are absolute values
of power (power very-low-frequency (PVLF), power low-frequency
(PLF), and power high-frequency (PHF) components). Normalized
versions of PLF and PHF (NLF and NHEF, respectively) are also used
in the literature, which interpret the relative value of each power
component in proportion to the total power except the VLF com-
ponent. Although a recent study contradicts with the hypothesis
on the ratio of the LF to HF components [38], it has been one of
conventional HRV measures [39]. That is the reason why the RATIO
is also included in this study. We used the total power and these
six features as frequency-domain HRV features. We calculated the
frequency-domain HRV features by using FFT-based periodogram,
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LS-based periodogram, Wavelet energies, Wavelet variances, and
Wavelet entropies [32,40-47].

2.6.3. Nonlinear features of HRV

Nonlinear characteristics are inherently involved in the HRV. In
order to obtain the HRV nonlinear features, we used Poincare Plot
[48-52], Detrended Fluctuation Analysis [53], Symbolic Dynamics
[54-64] and Sample Entropy [65].

2.7. Feature normalization

The features may have different ranges. In order to prevent bi-
ases on the classification, input feature values should be normal-
ized [9,10]. When the feature normalization is performed, the unit
and magnitude differences between features will be eliminated,
which is very important for many pattern recognition methods
[66]. In this context, we used the Min-Max normalization, where
all features are scaled into the interval of [0,1] defined as follows:

_ fij— minf;
fiy= max f; — minf;

where f;; is the Jth trial of the ith feature.

(2)

2.8. Feature selection

A classifier may not result in the best performance by using
the all features in many cases [66]. Therefore, the feature selec-
tion is of great importance to obtain an optimal performance for
the classifier. We used the independent t-test to judge which fea-
tures show the difference between patients and normal subjects
[68]. For this aim, we obtained p-values indicating statistical sig-
nificances through the IBM SPSS Statistics 22 software package. We
repeated the process for six different input combinations: all fea-
tures, selected features using different statistical significance val-
ues of 1%, 2%, 5%, 10%, and 20% to determine whether the feature
selection has a positive contribution or not in the performance of
classifiers.

2.9. (lassification algorithms

In this study, we implemented a three-stage classifier system.
The perceptron algorithm is constructed in the first two stages be-
cause of its simplicity and lower computational complexity. Ge-
netic Algorithm (GA) is used to find the best weight and thresh-
old values of the perceptron to obtain the highest classification
accuracies. In the last stage, we used five different classification
algorithms including k-Nearest Neighbors (KNN), Linear Discrimi-
nant Analysis (LDA), Multi-Layer Perceptron (MLP), Linear Support
Vector Machines (SVM), and Radial Basis Functions Artificial Neu-
ral Network (RBF). Different combinations of related parameters for
each classifier have also been checked over.

2.10. The classifier performance

Data are splitted into the train and the test segments to obtain
the classifier performance. In this study, one of samples is utilized
for test while other samples are handled for train classifiers. This
was iterated until each sample was handled for testing, which is
called as the leave-one-out method [33]. True positive (TP), true
negative (TN), false positive (FP) and false negative (FN) values are
computed. True means correct classification, false means misclas-
sification, positive means patient, and negative means normal sub-
ject.

After computing these values, the performance of the classifier
is calculated as follows [67]:

TP

SEN =75 FN

(3)

TN
SPE = TN T FP (4)
TP+ TN
ACC= TP+FN+FP+TN (5)

where SEN, SPE and ACC denote sensitivity, specificity, and accu-
racy, respectively.

3. Results and discussion

In this study, we investigated which feature and classifier com-
binations can give the maximum discrimination accuracy related
to the CHF. NSR2DB (which contains inter-beat series data from
54 normal subjects) and CHF2DB (which contains inter-beat se-
ries data from 29 CHF patients) databases obtained from Physionet
website are used to design an automatic CHF diagnosis system.
We calculate time-domain features (4 features), frequency-domain
features (7 features from FFT, 7 features from Lomb-Scargle, 8 en-
ergy features from the Wavelet transform, 7 variance features from
the Wavelet transform, 8 entropy features from the Wavelet trans-
form), nonlinear features (4 from Poincare plot, 10 from symbolic
dynamics, 1 from DFA, 1 from approximate entropy, and 1 from
sample entropy).

We applied the independent sample t-test to obtain statistically
significant HRV features. Among all HRV measures, we found the
numbers of features which show the statistical significance as 22
in the level of 1%, 26 in the level of 2%, 34 in the level of 5%, 39 in
the level of 10%, 48 in the level of 20%.

In designing the multi-stage classifier, we investigated the per-
formance of two approaches. The first approach is the Normal-first
case as shown in Fig. 2(a). At the first stage of this approach, all the
training data is applied to the perceptron to discriminate Normal
Subjects from the patients with the sensitivity of 100%. This quar-
antees all the classifier decisions are true if the classifier’s output is
“Normal”. On the other hand, the classifier decision is suspicious if
the classifier’s output is “CHF” and the data should be investigated
by the next stage. The second stage is designed to discriminate the
patients from normal subjects with the sensitivity of 100%. This
also quarantees all the classifier decisions are true if the classifier’s
output is “CHF”. On the other hand, the classifier decision is suspi-
cious if the classifier’s output is “Normal” and the data should be
investigated through the final stage. The classifier algorithm used
in the first two stages is perceptron and the classifiers are trained
by GA. At the last stage, the data is applied to the inputs of a more
complex classifier algorithm. Five different classifier algorithms are
tested: KNN (k=1, 3, 5, 7, 9, 11, 13), LDA, MLP (the number of neu-
rons in the hidden layer from 1 to 50), linear SVM (margin from
0.05 to 3.0 of 0.05 increments), and RBF ANN (the distribution pa-
rameter from 0.1 to 3.0 of 0.1 increments).

The second approach is simply switched the order of the first
two stages from the first approach as shown in Fig. 2(b). This ap-
proach is the CHF-first case. All the procedure mentioned above
was repeated for this approach.

In sum, the investigation was repeated 2 (Normal-first and CHF-
first cases) x 6 (using selected features of 5 different statistical sig-
nificance levels and using all features) x 148 (7 for KNN, 2 for LDA,
50 for MLP, 60 for SVM, 30 for RBF)x 83 (leave-one-out cross-
validation) = 294,816 times and the classifier performances were
computed. The performances of the three-stage system were eval-
uated together and summarized in Table 1, where the NORMAL-
first approach is indicated by “-N” and the CHF-first approach is
indicated by “-C” in the algorithm column. The values of 1%, 2%,
5%, 10% and 20% are statistical significance levels used to select
features and ALL means all features were used without the fea-
ture selection. We found that there are eight different combina-
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Fig. 2. The block diagram of the proposed system for (a) Normal-first and (b) CHF-first approaches. Normal subjects are perfectly classified in the normal-first approach, or
vice versa. Obvious diagnoses are determined in the first two stages. If the diagnostic decision is not given in the first and the second stages, final decision is given at the

last stage.

tions that give the maximum accuracy of 98.8% as shown in bold
in Table 1 with the number of features of 34, 39, 48 and 59. How-
ever, since the minimum number of features is also desired, we
can reach at two optimal configurations for the maximal accura-
cies: MLP-N and RBF ANN-N with 34 features. In the both con-
figurations, algorithms use 34 statistically significant features of
5%. The first stage of the system involves the “Normal-first” ap-
proach while the final stage is either MLP or RBF. On the other
hand, since MLP requires less computational burden than the RBF,
we suggested that the Normal-first multi-stage classifier approach
with the final classifier is MLP and the selected HRV features by
5% significance level yields the best performance for discriminat-
ing the CHE.

We showed the current literature to discriminate CHF patients
from normal subjects using short-term HRV data in Table 2. These
studies also include feature selection methods for their investiga-
tion. Li et al. [18] used a deep learning algorithm of CNN classi-
fier and obtained a relatively lower classification performance of
an accuracy of 81.9%. Isler and Kuntalp [9] used KNN classifier with

a classification performance of an accuracy of 89.2%, specificity of
94.4%, and sensitivity of 79.3%. Narin et al. [14] used SVM clas-
sifier and achieved a classification performance of an accuracy of
91.5%, specificity of 96.2%, and sensitivity of 82.7%. Isler and Kun-
talp [10] revisited the issue to improve the classification perfor-
mance by investigating the impact of an extra preprocessing step
so-called heart rate normalization in KNN classifier, reaching at a
classification performance of an accuracy of 93.4%, specificity of
100%, and sensitivity of 82.7%. Pecchia et al. [13] used CART al-
gorithm and obtained a classification performance of an accuracy
of 96.4%, specificity of 100%, and sensitivity of 89.7%. Altan et al.
[15] reconsidered MLP classifier and reached at a classification per-
formance of an accuracy of 97.8%, specificity of 93.7%, and sensitiv-
ity of 100%. Kumar et al. [19] used LS-SVM classifier and achieved
a classification performance of an accuracy of 98.2%, specificity of
98.3%, and sensitivity of 98.1%. Consequently, comparative results
indicate that the proposed multi-stage classifier structure in this
study results in better classification performance than the similar
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Table 1

The system performance obtained by testing the remaining individuals from stage-1 stage -2 within whole data for selected features data by using independent t-test for the 1%, 2%, 5%, 10% and 20% significance values. NF

is the number of features, and N.A. means that the value is not available.

ALL

20%

10%

1%

Algorithm

ACC (%)
NA.
903

SPE (%)
NA.
85.1

SEN (%)
NA.
100

ACC (%)
NA.
915

SPE (%)
NA.
87.0

SEN (%)
NA.
100

ACC (%)
93.9

SPE (%)

SEN (%)
82.7

ACC (%)
93.9
95.1

SPE (%)
100

SEN (%)
82.7

ACC (%)
90.3

SPE (%)

SPE (%) ACC (%)  SEN (%)
89.1 724 100

96.2

SEN (%)
758

100
88.8

LDA-N
LDA-C

915

79.6 80.7 93.1 86.1 879 93.1 96.2 96.5
100

98.1
98.1

82.7

N.A.
98.8
N.A.
95.1

N.A. N.A. N.A.
100

98.8
N.A.

100 93.9 100 98.1 98.8 98.1 98.8 N.A. N.A.
95.1 100 97.5 97.5 100

82.7

92.7

82.7

MLP-N

96.5

96.5

100

93.1

93.1

90.3 86.2 100

89.1
771

75.8

MLP-C
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N.A.
94.4
N.A.

91.5 79.3 100 92.7 79.3 100 92.7 N.A. N.A. N.A.
94.4 92.5
100

100

75.8

96.2

75.8
8

KNN-N
KNN-C

96.5
N.A.

96.5 93.7

N.A.
100

93.9

98.1 95.1 93.1

100

89.6
793
93.1

72.2 93.1 74.0 80.7
98.1 90.3

6.2

Linear SVM-N
Linear SVM-C

RBF ANN-N

N.A.

N.A.

N.A.

92.7

793

92.7

724 100

87.9

68.9

90.3 100 85.1 90.3

85.1

90.3 93.1 90.7 915

88.8

70.3 74.6 931 51.8 66.2

82.7

89.1 724 100 90.3 100 98.1 98.8 100 98.1 98.8 N.A. N.A. N.A. N.A. N.A. N.A.
100 100 97.5 100 98.8 100

96.2

75.8

98.8

96.5
59

96.5
48

93.1
39

94.4 86.7 96.5 64.8 75.9 89.6 96.3
26 34

724
22

RBF ANN-C

NF

Table 2
Relevant studies dealing with classification of CHF from 5-min HRV series. HRN
means that the heart rate normalization is applied before the classification.

Authors Method SEN (%)  SPE (%)  ACC (%)
Li et al. [18] CNN - - 819
Isler and Kuntalp [9] KNN 793 94.4 89.2
Narin et al. [14] SVM 82.7 96.2 91.5
Isler and Kuntalp [10] KNN with HRN 82.7 100 93.4
Pecchia et al. [13] CART 89.7 100 96.4
Altan et al. [15] MLP 100 93.7 97.8
Kumar et al. [19] LS-SVM 98.1 98.3 98.2
This study 3-Stage Classifier 100 98.1 98.8

studies in literature. Therefore, we may suggest that our approach
provide better tool to predict CHF events.
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