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a b s t r a c t 

Finance and economics are complex nonlinear systems that are affected by various external factors, in- 

cluding of course human action, bilateral relations, conflicts, and policy. Time delays in a financial system 

take into account the amount of time that passes from a particular policy or decision being made to it 

actually taking effect. It is thus important to consider time delays as an integral part of modeling in this 

field. Moreover, many features of financial systems cannot be expressed sufficiently precisely by means 

of integer-order calculus. Fractional-order calculus alleviates these shortcomings. The aim of this paper is 

therefore to study the dynamics and complexity in a fractional-order financial system with time delays. 

We observe fascinating transitions to deterministic chaos, including cascading period doubling, as well as 

high levels of complexity. This is particularly true in response to variations of derivative orders, which 

are thus identified as key system parameters. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the past decades, chaos and its applications have at-

racted remarkable consideration in a variety of fields, including

hemistry, ecology, and economy [1] . The high sensitivity to the

ariations of the environmental situation, system parameters,

nd initial conditions are some features of chaotic systems. Due

o the importance of chaos and its influence in economic and

nancial systems, the behavior of these systems has been explored

requently and in great detail [2–4] . 

Nowadays, fractional calculus is likewise attracting a lot of

esearch efforts from various fields in the social and natural

ciences. In comparison with integer calculus, the significant

dvantage of fractional calculus is its memory, and the ability

or the description of hereditary properties [5,6] . As it is evident,

nancial variables, including foreign exchange rates, interest rates,

ross domestic product, and stock market prices have long mem-

ry. Therefore, it is advantageous, and indeed necessary, to use
∗ Corresponding author at: Faculty of Natural Sciences and Mathematics, Univer- 
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ractional modeling to describe economic systems [7,8] . Chen has

ntroduced a fractional-order financial system. Dynamic behaviors

f the system such as periodic motions, fixed points, chaotic

otions, and period-doubling have been studied by Chen [9] . 

Time delay in a financial system indicates a period of time from

ne policy or decision being made to taking effect. Although it is

hallenging to precisely calculate the delay in a financial system,

onsidering time delay in the real system is necessary [10] . Hence,

everal research studies on economic systems have incorporated

ime delay into dynamic models. Firstly, Kalecki has proposed eco-

omic processes with time delay [11] . Then, due to the application

f this system, the study on economic systems with time delay

as become a subject of interest in recent years [7,12,13] . 

Complexity measure is an important technique to analyze

he dynamics of a chaotic and hyperchaotic system. There are

arious methods to measure the complexity of chaotic systems

ncluding statistical complexity measure (SCM) [14] , fuzzy entropy

15,16] , sample entropy [17] , spectral entropy (SE) [18] , and C 0 

lgorithm [19] . Among these methods, SE and C 0 algorithms

re proper methods to estimate the complexity of a time series

ccurately without any over-coarse graining preprocessing [18,19] .

https://doi.org/10.1016/j.chaos.2019.109521
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2019.109521&domain=pdf
https://doi.org/10.1016/j.chaos.2019.109521
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A complexity measure C 0 has been proposed by En-hua et al. [19] .

This method has two significant properties: (1) obtaining robust

estimation even with a short data set; (2) It can be used even for

continuous signals without any over-coarse graining preprocessing.

The C 0 complexity algorithm removes the regular part of the

signal in the frequency domain and leaves the irregular part. The

higher the proportion of the energy of the irregular part, that is,

the greater the complexity measure result the time series holds.

Several research studies have used C 0 algorithms to measure the

complexity of chaotic systems [20,21] . However, few papers have

used complexity analysis for fractional-order chaotic systems. Also,

based on the best of our knowledge, there is no study on the C 0 

algorithms for fractional-order financial systems. 

Though some dynamical properties of economic and financial

systems with time delay have been studied in the literature, there

are still other meaningful behaviors of these systems that required

to be further understood. In this study, a fractional-order financial

system with time delay is investigated. Dynamics and complexity

of this system with the variation of derivative orders and system

parameters have been studied by means of bifurcation diagram

and a complexity measure algorithm. 

The rest of this article is planned as follows: Section 3 describes

some preliminaries and details the preliminaries and mathematical

modeling of the fractional-order time-delayed chaotic financial

system. In Section 3 , the dynamical behaviors of the system

through phase portraits and bifurcation diagrams have been

studied. In Section 4 , the complexity of the system is analyzed

via the multiscale C 0 complexity measure algorithm, followed by

conclusions, presented in Section 5 . 

2. Mathematical model 

Among various definitions of fractional integral and derivative,

Caputo method has been used in this study. According to Ref. [22] ,

the definition of the Caputo integral and derivative is expressed in

the following. 

Definition 1. The fractional integral of function f ( t ) is 

I q f ( t ) = 

1 

�( q ) 

t 

∫ 
t 0 

( t − τ ) 
q −1 f ( s ) ds (1)

where t ≥ t 0 and q > 0 denotes an integral order. Also, �( q ) indicates

the Gamma function and could be obtained as 

�( s ) = 

∞ ∫ 
0 

t s −1 e −t dt (2)

Definition 2. According to Caputo’s definition, fractional-order

derivative of function f (t) ∈ C n ( [ t 0 , + ∞ ) , R ) is as follow 

D 

q f ( t ) = 

1 

�( n − q ) 

t 

∫ 
t 0 

f ( n ) ( s ) 

( t − s ) 
q −n +1 

ds, (3)

where t ≥ t 0 and q > 1 Also, n is a positive integer parameter which

n − 1 ≤ q < n . Furthermore, when 0 < q < 1 the fractional-order

derivative of function f ( t ) is defined as 

D 

q f ( t ) = 

1 

�( 1 − q ) 

t 

∫ 
t 0 

f ′ ( s ) 
( t − s ) 

q ds (4)

Fractional-order financial system with time delay has been

proposed in [23] as: ⎧ ⎨ 

⎩ 

D 

q 1 x 1 ( t ) = x 3 ( t ) + ( x 2 ( t − τ ) − a ) x 1 ( t ) 

D 

q 2 x 2 ( t ) = 1 − bx 2 ( t ) − x 2 1 ( t − τ ) 

D 

q 3 x 3 ( t ) = −x 1 ( t − τ ) − cx 3 ( t ) , 

(5)

where state variables x 1 , x 2 , and x 3 respectively indicate the interest

rate, investment demand and price index. q ∈ (0, 1] denotes the
i 
rder of derivatives, τ is a time delay. The parameters a , b , and c

epresent the saving amount, cost per investment and elasticity of

emand of the markets respectively. 

. Dynamics 

.1. Phase portraits 

Here, in this section, p–s plots of the 0–1 test [24] are used

o verify the existence of chaos where a segment of the time

eries of targeting system is needed. The bounded p–s trajec-

ories imply the underlying dynamics is regular (i.e. periodic

r convergent), while Brownian like (unbounded) trajectories

mply the underlying dynamics is chaotic. For the given time

eries { x (n ) , n = 0 , 1 , 2 , · · · , N − 1 } , the following two real-valued

equences are defined as [24] : 
 

 

 

 

 

 

 

 

 

p ( n ) = 

n ∑ 

j=1 

x ( j ) cos ( θ ( j ) ) 

s ( n ) = 

n ∑ 

j=1 

x ( j ) sin ( θ ( j ) ) 

, (6)

( j ) = jη + 

j ∑ 

i =1 

x ( i ) , and η ∈ 

[ 
π

5 

, 
4 π

5 

] 
. (7)

et q i = 0 . 95 (i = 1 , 2 , 3) , a = 3 , b = 0 . 1 , c = 1 and τ = 0 . 03 the

haotic phase diagram is given in Fig. 1 (a) and its corresponding

–s plot is presented in Fig. 1 (d). When q i = 0 . 95 (i = 1 , 2 , 3) ,

 = 3 , b = 0 . 25 , c = 1 , and τ = 0 . 03 , the periodic circuit is shown

n Fig. 1 (b), and the p–s plot is given in Fig. 1 (e). Choosing

 i = 0 . 95 ( i = 1 , 2 , 3 ) , a = 3 , b = 0 . 1 , c = 2 , and τ = 0 . 03 , the

onvergent state in the system is observed. Thus, the system has

ifferent states with different parameters and chaos is verified. 

.2. Bifurcation diagrams 

The bifurcation diagrams of the system with varying derivative

rders are plotted, and the results are shown in Fig. 2 , where

 = 3 , b = 0 . 1 , c = 1 , and τ = 0 . 03 . In Fig. 2 (a), q 1 = q 2 = q 3 = q

nd derivative order q varies from 0.8 to 1 with step size of

.0 0 04. For the rest of the bifurcation diagrams, we let two of the

erivative orders equal to one and the third one varies. As a result,

 1 varies from 0.55 to 1 with step size of 0.0 0 09, q 2 varies from

.8 to 1 with step size of 0.0 0 04, and q 3 varies from 0.825 to 1

ith step of 0.0 0 035. It shows in Fig. 1 that the system enters to

haotic state via different route. Fig. 2 (a) (b) and (c), illustrate that

he system becomes to chaotic state after a periodic or convergent

tate although Fig. 2 (d) shows that the system enters to chaotic

tate after a period-doubling bifurcation. Thus, rich dynamics have

een found in the system with variation of derivative orders 

Bifurcation diagrams of the financial system with the variation

f parameter a , b and c are shown in Figs. 3–5 , respectively. The

arameter a varies from −5 to 10 while step size is 0.027, and

 = 0 . 1 , c = 1 , τ = 0 . 03 . When q = 0 . 9 , it is shown in Fig. 3 that

he system has a wider range of chaos with the variation of the pa-

ameter a comparing with that of q = 0.95. The parameter b varies

rom −0.1 to 0.25 with a step size of 7.0140 ×10 −4 , and a = 3 , c = 1 ,

= 0 . 03 . It is illustrated in Fig. 4 that the system has the period-

oubling bifurcation and goes to chaos, but the inner crisis bifurca-

ion is observed when q = 0 . 9 . The parameter c varies from 0.5 to

 with a step size of 0.003, and a = 3 , b = 0 . 1 , τ = 0 . 03 . Comparing

ifurcation diagrams of q = 0 . 95 and q = 0 . 9 depicts that when q =
 . 9 , the responses of the system have different ranges for chaos.

he derivative orders can change the bifurcation types and dynam-

cs of the system. It again indicates that the derivative order is a

ifurcation of the fractional-order financial chaotic system. 
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Fig. 1. Phase diagrams and p–s plots of the fractional-order delayed financial system. 

Fig. 2. Bifurcation diagrams of the fractional-order delayed financial system with derivative order varying (a) q = q 1 = q 2 = q 3 ; (b) q 1 varying , q 2 = q 3 = 1 ; (c) q 2 varying , q 1 = 

q 3 = 1 ; (d) q 3 varying, q 1 = q 2 = 1 . 
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Fig. 3. Bifurcation diagrams of the fractional-order delayed financial system with parameter a varying, b = 0.1, c = 1 and τ = 0 . 03 (a) q = 0.95; (b) q = 0.9. 

Fig. 4. Bifurcation diagrams of the fractional-order delayed financial system with parameter b varying, a = 3 , c = 1 and τ = 0 . 03 (a) q = 0 . 95 ; (b) q = 0 . 9 . 

Fig. 5. Bifurcation diagrams of the fractional-order delayed financial system with parameter c varying, a = 3 , b = 0 . 1 and τ= 0.03 (a) q = 0 . 95 ; (b) q = 0 . 9 . 
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4. Complexity 

In this section, the complexity of the chaotic system is analyzed

using the multiscale C 0 complexity measure algorithm [19,25] .

Firstly, the calculation processes of the C 0 algorithm are presented.

Step 1 : Remove the average value. For a given time series,

{ x (n ) , n = 0 , 1 , 2 , . . . , N − 1 } , the average value is removed by 

x ( n ) = x ( n ) − x̄ (8)

where x̄ = 

1 
N 

N−1 ∑ 

n =0 

x (n ) . 
Step 2 : Fourier transform. The Fourier transform of the time

eries is given by 

 ( k ) = 

N−1 ∑ 

n =0 

x ( n ) e − j 2 πN nk , (9)

here k = 0 , 1 , 2 , . . . , N − 1 . 

Step 3 : Remove the irregular part. Set the 

 N = 

1 

N 

N−1 ∑ 

k =0 

| X ( k ) | 2 
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Fig. 6. Complexity plots of the fractional-order delayed financial system with derivative order varying (a) q = q 1 = q 2 = q 3 ; (b) q 1 varying, q 2 = q 3 = 1 ; (c) q 2 varying, q 1 = 

q 3 = 1 ; (d) q 3 varying, q 1 = q 2 = 1 . 

 

l

X

T

x

w  

t

 

t  

s

C

 

i

y

w  

a

a

M

 

d  

a  

s  

g  

w  

i  

i  

s  

w  

c  

o  

i  

o  

c  

c  

o  

k

 

s  

F  

i  

t  

−  

h  

G  

d  

f  

t  

r  

t  

h  

M  

t  

0  

S  
Introduce a control parameter r . Keep the frequency which is

arger than r times of GN, and set the rest as zero, which is 

˜ 
 ( k ) = 

{ 

X ( k ) if | X ( k ) | 2 > rG N 

0 if | X ( k ) | 2 ≤ rG N 

(10) 

he inverse DFT of ˜ X ( k ) is 

˜ 
 ( n ) = 

1 

N 

N−1 ∑ 

k =0 

˜ X ( k ) e 
j2 πnk 

N (11) 

here n = 0 , 1 , . . . , N − 1 and ̃  x (n ) reflects the regular part of the

ime series with detail information removed. 

Step 4 : Calculate the C 0 complexity. By comparing the summa-

ion of the irregular part and the summation of the original time

eries, the C 0 complexity is defined by 

 0 ( x, r, N ) = 

∑ N−1 
n =0 | x ( n ) − ˜ x ( n ) | 2 ∑ N−1 

n =0 | x ( n ) | 2 (12) 

The multiscale coarse graining of the { x (n ) , n = 1 , 2 , . . . , N − 1 }
s given by [26] : 

 

s ( j ) = 

1 

s 

js ∑ 

i = ( j−1 ) s +1 

x ( i ) , (13) 

here 1 ≤ j ≤	 N / s 
 , s is the scale factor, 	 · 
 is the floor function

nd y s is the multiscale time series. Finally, the multiscale C 0 

lgorithm is denoted as 

 C 0 ( x, r, s, N ) = 

1 

s 

s ∑ 

i =1 

C 0 ( y 
s , r, N ) (14) 

The MC 0 analysis results of the fractional-order financial time-

elayed system with derivative orders and parameters varying

re shown in Figs. 6–9 . Here, the same parameter setting and
tep size are used as with the corresponding bifurcation dia-

rams. As it is demonstrated in these MC 0 plots, they match

ell the corresponding bifurcation diagrams. When the system

s chaotic, higher complexity measure results are obtained, while

f the system is non-chaotic, the measured results are relatively

maller. According to Fig. 6 , complexity of the system changes

ith derivative orders, and it is shown in Fig. 6 (a) and (b) that

omplexity of the system could be higher when the derivative

rder q and q 1 take relative smaller values. Meanwhile, as shown

n Figs. 7 and 8 that complexity of the decrease with the increase

f the parameters a and b . However, according to Fig. 9 , MC0

omplexity of the system increases with the increase of parameter

. Obviously, MC0 provides different information on the dynamics

f the system comparing with the bifurcation diagrams. We can

now complexity variation trend of the system clearly. 

To better analyze the complexity of the fractional-order chaotic

ystem, MC 0 complexity in the parameter plane is investigated.

ig. 10 shows the MC 0 complexity analysis results of the system

n the parameter q - a plane. The derivative order q varies from 0.8

o 1 with a step size of 0.002, and the parameter a varies from

4.5 to 9 with step size of 0.135. As shown in Fig. 10 , the system

as wide region of high complexity in the q - a parameter plane.

enerally, complexity of the system decreases with increase of

erivative order q and the parameter a . Let the parameter b vary

rom −0.1 to 0.25 with step size of 0.0035. The contour plot in

he parameter q - b is presented in Fig. 11 . It illustrates that the

ange of high complexity region over parameter b changes with

he derivative order q . Meanwhile, it also shows that the system

as relative lower complexity when the parameter b increases.

oreover, MC 0 complexity in the parameter q –c plane is inves-

igated by Fig. 12 , where c varies from 0.5 to 2 with step size of

.015. It shows the high complexity region in the parameter plane.

ince the complexity measure result of the system can be obtained



6 S. Wang, S. He and A. Yousefpour et al. / Chaos, Solitons and Fractals 131 (2020) 109521 

Fig. 7. Complexity plots of the fractional-order delayed financial system with parameter a varying, b = 0 . 1 , c = 1 and τ = 0 . 03 (a) q = 0 . 95 ; (b) q = 0 . 9 . 

Fig. 8. Complexity plots of the fractional-order delayed financial system with parameter b varying, a = 3 , c = 1 and τ = 0 . 03 (a) q = 0 . 95 ; (b) q = 0 . 9 . 

Fig. 9. Complexity plots of the fractional-order delayed financial system with parameter c varying, a = 3 , b = 0 . 1 and τ = 0 . 03 (a) q = 0 . 95 ; (b) q = 0 . 9 . 
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with a segment of time series. Meanwhile, because a time series

with higher complexity has better randomness and security for

real applications, MC 0 algorithm analysis results provide a useful

reference for the real applications of the fractional-order delayed

financial system with incommensurate orders. 

5. Discussion 

As it is well known and quite obvious, we do not need chaos

in the financial system, at least in most cases. It means that the

system is unstable and the economic situation has become unpre-

dictable. In this paper, we diagnosed the statue of the financial

system by means of complexity method using the time series. And

MC 0 complexity measure algorithm provides an effective method.

If high complexity measure result is observed, it means that the
ystem has complex dynamical behavior and some necessary

ontrol or policies should be considered. 

As presented in the above analysis, the system has different

tates with different system parameters, time delay and derivative

rders. However, for the decision-makers, the derivative order

elates to the model itself. It provides some better explanations

hen the integer model cannot. On the other hand, the decision-

akers can control the system by adjusting the system parameters,

ecause the system with some parameters has low complexity

ven with different derivative orders. Meanwhile, the time delay

s an important factor for the system. It is one of the important

eason for generating chaos in the system. Thus, we hold the

pinion that, the delay in the interest rate and investment demand

an make the system become chaotic. In conclusion, the financial
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Fig. 10. Contour plot of the fractional-order delayed financial system in the q - a pa- 

rameter plane. 

Fig. 11. Contour plot of the fractional-order delayed financial system in the q - b pa- 

rameter plane. 

Fig. 12. Contour plot of the fractional-order delayed financial system in the q - c pa- 

rameter plane. 
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ystem has complex behaviors due to many reasons, and MC 0 

lgorithm provides an effective index for the complexity analysis

f the system. The decision-makers should pay close attention to

uch complex systems, and the regulatory lapses which relate to

he delay should be avoided. 
. Conclusions 

In the present study, the dynamic behavior of a fractional-order

ime-delayed chaotic financial system was investigated. The differ-

nt aspects of dynamic behaviors of the system including phase

iagrams and their corresponding p–s plots, bifurcation diagrams

ith derivative orders and parameters, C 0 complexity with deriva-

ive orders and parameters were studied. It was found that chaos

nd different states can be observed with different parameters.

specially, we analyzed the complexity of the system in different

arameter planes by showing the contour plots. The derivative

rders are the bifurcation parameters essentially since the system

as rich dynamics with those derivative orders. Meanwhile, C 0 

omplexity shows the changes of the complexity in the system. It

lso shows that the system has wide region of high complexity in

he corresponding parameter planes. 
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