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a b s t r a c t 

Synchronization is a subject of interdisciplinary relevance, interpolating between efficiency in transporta- 

tion and digital data transfers to disease in cardiac and neural tissue. While continuous transitions to 

synchronization are gradual and easy to control, explosive transitions may occur suddenly and can have 

catastrophic effects. Here we report that in populations of cooperative and competitive oscillators the 

transition can be tuned between continuous and explosive simply by adjusting the balance between the 

two oscillator types. We show that this phenomenon is independent of the network topology, and can 

be described analytically already in the mean-field approximation. Moreover, we provide evidence that 

the difference between the two transitions is due to a merging process of clusters which is forbidden by 

adaptation, and that the hysteresis associated to the explosive transition is enhanced when the adaptive 

mechanisms span larger scales. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

One of the fundamental contributions of the 20th century to

tatistical physics has been the theory of phase transitions and

ritical phenomena [1,2] . Although applications were for decades

estricted to conventional physical systems, it was around the turn

f the century that the full scale and importance of this theory

tarted to come to light. Indeed, the phase transitions observed

riginally in condensed matter physics were later found of rele-

ance in phenomena as diverse as catastrophic shifts in ecosystems

3] , the emergence of public cooperation in social dilemmas [4] ,

ercolation and synchronization in complex systems and networks

5,6] . 
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Synchronization, in particular, has numerous applications across

ocial, technological and natural sciences, wherein the nature of

he phase transition from disorder to synchrony frequently plays a

ey role [7] . For instance, continuous or second-order phase tran-

itions occur in the standard Kuramoto model [8,9] . Under certain

onditions, however, the transition becomes explosive: an abrupt

nset of synchronization follows an infinitesimally small change

n the coupling strength, and hysteresis loops may be observed as

n a thermodynamic first-order phase transition [6] . Explosive syn-

hronization (ES) has been described in different extensions of the

uramoto model [10] , including inertia [11,12] , noise [13] , and dif-

erent frequency distributions [14–16] . In particular, the finite-size

ehavior of systems with uniform and other finitely-supported dis-

ributions provided important insights into the mechanism under-

ying ES [17] . 

The departure from all-to-all to irregular coupling architectures

purred on by the coming of network science [5,18] , and gave rise

o a new wave of interest in phase transitions to synchronization.

S in heterogeneous networks was initially linked to natural fre-
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quencies being linearly related to the degrees of the oscillators

[19] , and this feature was indeed observed experimentally in non-

linear electronic circuits exhibiting chaotic dynamics [20] . How-

ever, later on it was clarified that linear frequency-degree corre-

lations are a sufficient but not necessary condition for ES: non lin-

ear correlation features can actually arise spontaneously from con-

ditioning or weighting the networks’ links according to the mis-

match in natural frequencies of neighboring oscillators [21,22] . In

fact, other disassortativity rules are also known to give rise to ES

transitions [23,24] . 

Ultimately, it became clear that not even correlations between

natural frequencies and local topological properties are necessary

for such a fascinating phenomenon to occur. Indeed, any restric-

tive condition preventing either the formation or the merging of

synchronization clusters during the transition to the coherent state

can lead to ES. While the former mechanism was elucidated al-

ready in Refs. [21,22] , the prevention of cluster merging was first

shown in Ref. [25] by means of a simple adaptive rule involving a

dependence of the nodes’ interactions on the local order parame-

ter. Mean-field analysis and simulations of very large size networks

reveal that any nonzero fraction of oscillators adapting coopera-

tively their coupling to the local order parameter is already suffi-

cient for ES in the thermodynamic limit [26] . 

In this paper, we significantly advance such recent studies in

two fundamental directions. First, we consider a population frag-

mented into cooperative and competitive units, i.e. we account for

the two adaptation mechanisms describing dynamical competition

and cooperation (or interdependence) in networks [27] . Second, we

examine the role of different graph’s mesoscales in the feedback

leading to adaption. Not only we reveal that the type of transition

can in fact be controlled simply by means of the balance between

the two oscillator types, but we also show that the irreversibility

associated to ES is actually enhanced when the adaptation feed-

back occurs from global to local scales. These findings have im-

portant implications for the robustness of ES in different network

topologies, for its analytical treatment by means of mean-field ap-

proximations, and for elucidating once and for all the fundamental

role played by synchronization clusters along the synchronization

transition. 

2. Model and results 

We start by considering an adaptive Kuramoto model consisting

of N phase oscillators, where the instantaneous phase of oscillator

i (denoted by θ i ( i = 1 , 2 , . . . , N)) evolves in time as 

˙ θi = ω i + λαi 

N ∑ 

j=1 

A i j sin 

(
θ j − θi 

)
, (1)

where ω i is the natural frequency of the oscillator, λ is the overall

coupling strength, and A ij are the elements of the adjacency matrix

( A i j = 1 if oscillators i and j are coupled and zero otherwise). The

degree of a given oscillator i is defined as k i = 

∑ N 
j=1 A i j . 

The novelty of the model lies in the coupling strength being

controlled by the global order parameter R through the local vari-

able αi . R satisfies Re i� = 

∑ N 
j=1 

∑ N 
k =1 

A jk e 
i θk ∑ N 

j=1 k j 
, where � is the average

phase. On the other hand, R quantifies the synchronization level in

the network (0 ≤ R ≤ 1, with the two extreme values corresponding

to incoherence and full synchrony, respectively [7] ). Our network is

furthermore partitioned into two sets of nodes (oscillators): there

are competitors ( αi = 1 − R ) which decouple from their neighbors

as global synchrony increases, and cooperators ( αi = R ) which tend

instead to couple more strongly to their neighbors as the net-

work becomes more synchronized. We here consider N ρ competi-

tors and N(1 − ρ) cooperators, the populations being controlled by
he competition fraction ρ . The case ρ = 0 has been studied in Ref.

25] , where ES was found. On the other hand, at ρ = 1 the ability

f synchronous oscillators to form small clusters is enhanced by

ompetition, and therefore one expects to have a continuous syn-

hronization transition. 

Our results refer to networks consisting of N = 1 , 0 0 0 oscilla-

ors, with natural frequencies { ω i } randomly drawn from a uni-

orm probability distribution in [ −1 , 1] . These are Erd ̋os-Rényi

ER) networks [28] and Barabási-Albert scale-free (SF) networks

29] , which are paradigmatic examples of homogeneous and het-

rogeneous graphs, respectively, with an average degree 〈 k 〉 ≡
1 
N 

∑ N 
i =1 k i = 12 . At each value of ρ , λ is gradually increased from

 to 0.5 (where already one has R ∼ 1) for the tracking of the for-

ard transition (Fw), and then decreased back again to 0 for the

racking of the backward transition (Bw), with a step δλ = 0 . 02 .

he system is allowed to reach its stationary state for each λ value,

nd the order parameter at stationarity is computed [30] . 

In Fig. 1 (a,b), R vs. λ curves for Fw and Bw are reported for

wo values of the competition fraction ρ in ER (a) and BA (b) net-

orks. One can see clearly that when competitors are in majority

i.e., ρ = 0 . 8 for ER), continuous transitions occur as in the all-to-

ll classical Kuramoto model. By contrast, a large fraction of co-

perators (for instance ρ = 0 . 2 for ER) induces abrupt (explosive)

ransitions with hysteresis effects. The insets in Figs. 1(a,b) give

nformation on the critical points λB (for Bw) and λF (for Fw).

y calculating the same Fw and Bw at different values of ρ , one

an reconstruct the phase diagram showing the order parameter

 as a function of ρ and the coupling strength λ. This is shown

n Fig. 1 (c) for an ER network with the same properties discussed

bove. The (continuous) transition is seen to become steeper as ρ
s decreased, but it continues being reversible, which makes it pos-

ible to assign a single value to R for the forward and backwards

weeps. For ρ � 0.5, the transition becomes abrupt and hysteresis

ffect appear, which means the order parameter R for fixed ρ is no

onger a single-valued function of λ. Similar results are obtained

n BA network, as shown in Fig. 1 (d). 

More information on the mechanisms behind ES can be gath-

red by monitoring each oscillator’s effective frequency ω 

eff 
i 

=
1 
T 

∫ τ
τ−T 

˙ θi (t ) dt . The probability distribution function f ( ω 

eff) at dif-

erent λ is shown in Fig. 2 for ER networks ( τ and T are set as

0 5 and 10 4 , respectively). At ρ = 0 . 2 , f ( ω 

eff) changes sharply af-

er the threshold, while a much smoother behavior is observed at

= 0 . 8 , where the transition is instead continuous. One therefore

ees that the main difference between ES and a continuous tran-

ition lies in the fact that in the latter case (for large ρ) the giant

ynchronization cluster coexists with several small clusters, while

n the former case it forms abruptly at the transition point without

elying on any pre-existing mesoscale correlations. 

Let us now further extend our study, and consider explicitly

hat adaptation may depend on specific graph’s mesoscales. For

his purpose, we define a penetration depth l for the adaptation

eedback (with 0 ≤ l ≤ D , and with D being the diameter of the

raph), and introduce a scaled order parameter γ l 
i 

which measures

he level of synchronization between oscillator i and the subgraph

ormed by all other oscillators whose distances from i are smaller

r equal to l . One then has 

l 
i = 

∑ 

j∈N l (i ) 

∑ N 
j=1 A i j e 

i φ j ∑ 

j∈N l (i ) k j 
, (2)

here N l (i ) is the set of l -order neighbors of oscillator i . There-

ore, N 0 (i ) = { i } and γ 0 
i 

recovers the local order parameter used

n Ref. [25] , while N D (i ) is the entire graph minus node i (im-

lying that γ D 
i 

	 R ). Then αi = γ l 
i 

for a fraction 1 − ρ of oscilla-

ors, and αi = 1 − γ l 
i 

for the remaining ones. Our results show that

S may emerge at all values of the penetration depth. Further-
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Fig. 1. Forward (Fw) and backward (Bw) synchronization transitions on (a) ER and (b) BA networks with N = 1 , 0 0 0 and 〈 k 〉 = 12 . The two insets report the distance d 

between the critical points λB (for Bw) and λF (for Fw), as well as λB and λF themselves. The contour plots of R (color codes in the right bars) in the parameter space 

( λ, ρ) are displayed in (c) for the ER network, and in (d) for the BA network. In panels (c,d) the cyan area is the parameter region where ES emerges. The red continuous 

(black dashed) lines represent λB ( λF ). Panel (e) reports the mean-field solution of Eq. (11) for an ER network and for ρ = 0 . 3 . The blue-dashed-line represents the un-stable 

solution, while the green-inverted-triangle-line (the red-triangle-line) is the coherent (incoherent) solution. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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ore, one can see from Fig. 3 that the hysteresis associated to ES

s actually enhanced as l increases on both ER and BA networks

 | 〈 λF 〉 − 〈 λB 〉 | becomes larger in both cases). 

In order to gain analytical insight into the problem at hand, one

an recast Eq. (1) as 

˙ 
i = ω i + λαi k i r i sin ( �i − θi ) , (3) 

here r i and �i ( i = 1 , 2 , . . . , N) are, respectively, the local or-

er parameter and the local mean phase, which satisfy r i e 
i �i =

1 
k i 

∑ N 
j=1 A i j e 

i φ j . The mean-field approximation consists in replacing

 i → R and �i → �, and to referring to the rotating frame in terms

f deviations from the mean phase �θi = θi − �: 

˙ θi = ω i −  − λαi k i R sin ( �θi ) (4) 

here ˙ � =  is the mean angular velocity. 

For vanishing ρ , Eq. (4 ) becomes � ˙ θi = ω i −  −
k i R 

2 sin ( �θi ) , and oscillators satisfying | ω i − | ≤ λk i R 
2 reach

 fixed point given by �θi = arcsin 

(
ω i −

λk i R 
2 

)
(i.e. they phase-lock

o the mean field). The number of oscillators that do satisfy this

equirement grows with increasing λ, or k i , or R (as they are

ooperative oscillators). All other oscillators are either too fast or

oo slow to synchronize, and drift away from the mean field at all
imes. To provide a mean-field solution, one can define 

 = 

∑ N 
j=1 k j r j ∑ N 

j=1 k j 
= 

∑ N 
j=1 e 

−i� j 
∑ N 

k =1 A jk e 
i θk 

∑ N 
j=1 k j 

. (5) 

If the average phases �j associated with the local order param-

ter r j are similar ( �1 ≈ �2 . . . ≈ �N ), they can be simply denoted

y �, and e −i � j ≈ e −i � can be taken out of the sum as a common

actor, yielding 

 ≈ e −i�

∑ N 
j=1 k j e 

i θ j 

∑ N 
j=1 k j 

. (6) 

hen 

 = 

∑ N 
j=1 k j r j ∑ N 

j=1 k j 
≈

∣∣∣∣
∑ N 

j=1 k j e 
i θ j 

∑ N 
j=1 k j 

∣∣∣∣ = R, (7) 

.e., one can (for strong phase coherence) approximate R by R and

ne has 

 = 

1 

N〈 k 〉 
∑ 

| ω i | <λR 2 k j 

k j cos 
(
�θ j 

)
. (8) 

Substituting �θ j into Eq. (8) leads to 

 = 

1 

N〈 k 〉 
∑ 

| ω i | <λR 2 k j 

k j 

√ 

1 −
(
ω j /λR 

2 k j 
)2 

, (9) 
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Fig. 2. The contour plots (see color codes on the right bars) report the probability 

distribution function of the effective frequency, f ( ω 

eff) (see text for definition), ver- 

sus λ for an ER network. Parameters are: (a) Bw for ρ = 0 . 2 , (b) Fw for ρ = 0 . 2 , (c) 

Bw for ρ = 0 . 8 , and (d) Fw for ρ = 0 . 8 . 

Fig. 3. Critical points for Bw ( 〈 λB 〉 ) and Fw ( 〈 λF 〉 ) for (a) an ER network with ρ = 

0 . 2 and (b) a BA network with ρ = 0 . 0 . Plotted points refer to ensemble averages 

over 10 distinct network realizations. 
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and in the continuum form one has 

R = 

1 

〈 k 〉 
∫ 
| ω| <λR 2 k 

h (k, ω ) k 

√ 

1 −
(

ω 

λR 

2 k 

)2 

dω dk. (10)

Here h ( k, ω) is a joint distribution and can be written as h (k, ω) =
P (k ) g(ω) , with P ( k ) being the network’s degree distribution (if os-

cillators’ degrees and natural frequencies are independent). In the

more general condition where ρ ∈ [0, 1], one has F (k, ω, λ, α, R ) =∫ 
| ω| <λαRk h (k, ω ) k 

√ 

1 −
(

ω 
λαRk 

)2 
dω dk, and 

R = 

1 

〈 k 〉 ( ρF (k, ω, λ, 1 − R, R ) 

+(1 − ρ) F (k, ω, λ, R, R ) ) . 
(11)

By means of Eq. (11) one can calculate the mean-field solution for

R on a network with given degree distribution. The case of a ER

network with 〈 k 〉 = 12 and ρ = 0 . 3 is plotted in Fig. 1 (e), in which

one clearly sees that the existence of an unstable solution is re-

sponsible for the emergence of ES. 
. Conclusion 

In summary, we reported on an adaptive Kuramoto model

herein cooperative (or interdependent) oscillators increase the

oupling strength with their neighbors in proportion to the degree

f synchronization, whilst competitive oscillators do the opposite.

he continuity of the synchronization transition in this model can

e controlled simply by adjusting the balance between the two os-

illator populations. Our observations are independent of the net-

ork topology, and they can be captured analytically already at the

evel of a mean-field approximation. By focusing on different net-

ork mesoscales, we further showed that the scale plays an im-

ortant role in facilitating ES. Lastly, we have shown that the hys-

eresis associated to ES is enhanced with a shift from the local to

he global order parameter. 

These results significantly deepen our understanding of ES tran-

itions, as they reveal an alternative way to control whether the

nset of synchronization is gradual or abrupt. This in turn opens

p many avenues for the application of such shift for synchroniza-

ion transitions, in particular on multilayer networks [31] , where a

uality of oscillatory types is likely on two or more different net-

ork layers [27] . Cooperative and competitive duality is also com-

on in several social settings, for example in deciding whether or

ot to cooperate and vaccinate [32] . As recent research empha-

izes the importance and prevalence of using different strategies

ith different partners over time [33] , our research opens up the

rospect of moderating the temporal activity in communities and

ifferent network layers to achieve an optimal timing in collec-

ive action dilemmas. Our results are furthermore of value in brain

ynamics: competitors and cooperators in our model resemble in-

eed inhibitory/excitatory neurons in the brain, and an imbalance

atio between these two types of populations is reported to be at

he origin of disorders like epilepsy and fibromyalgia, both being

ignificant examples of ES [34–36] . Moreover, anesthetized brain

tates undergo frequent loss and recovery of consciousness during

hich hysteresis loops are observed and demonstrates conditions

f ES [37] . There is also little doubt that our research can be ver-

fied and extended in more traditional experimental settings, for

xample using nonlinear electronic circuits, as has been done suc-

essfully in the past [20] . 
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