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a b s t r a c t 

Over the past two decades, epidemic spreading on complex network has been a vibrant and highly suc- 

cessful research avenue. The dynamics of epidemic spreading on signed networks has nonetheless re- 

ceived fairly little attention. Signed networks contain edges that are labeled as either positive or negative, 

in relation to their propensity to either accelerate or mitigate epidemic spreading. To that effect, we here 

propose a modified signed-susceptible-infectious-susceptible epidemiological model, which incorporates 

positive and negative transmission rates based on structural balance theory. We also consider dynamical 

transmission rates to determine the influence of structural balance on the dynamics of epidemic spread- 

ing. We use Erd ̋os-Rényi random networks and Barabási-Albert scale-free networks, together with the 

Monte Carlo method, to determine the peak fraction of infected nodes and the epidemic thresholds. We 

also use the mean field analysis to show analytically the origin of the computationally obtained results, 

although of course the agreement is not perfect due to the impact of network structure. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Epidemic spreading in the complex networks has drawn wide 

ttention from academic community. The epidemic spreading mod- 

ls have been applied in the propagations processes, such as epi- 

emiological research, computer virus propagation and information 

ransmission [1–5] . Pastor-Satorras and Vespignani [6] proposed a 

lassical model that considers the degree of heterogeneity and ap- 

roximates epidemic spreading in networks using a power-law de- 

ree distribution [3] . Faryad et al. showed that how the epidemic 

hreshold changes with fixed infection strength adopting the spec- 

ral algorithm as a result of being coupled with another network 

7] . Piet Van Mieghem proposed the N-intertwined virus spread 

odel, which can flexibly extend the model to the entire het- 

rogeneous setting and obtain many insights hidden in the exact 

arkov model [8] . Moreover, E. Cator transferred the whole ana- 

ytic machinery of the N-intertwined mean-field approximation to 

he generalized SIS model and established the criterion to com- 

ute the epidemic threshold [9] . Motivated by [9] , N-Intertwined 

ean-Field Approximation [8] is proposed to scrutinize the net- 

ork topology’s effect on epidemic spreading, which simulates 
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he epidemic dynamics using susceptible-infected-susceptible (SIS) 

rocesses. 

Moving beyond networks with a single layer, recently a fo- 

us on epidemiological performance in interconnected networks 

10] also caught researchers’ attention; in this approach, differ- 

nt network layers have different infection rates [11,12] . Consider- 

ng the classical SIS model, we assume homogenous infection and 

ecovery rates; so, each node in the network’s infection and re- 

overy rates is the same. Only a few recent papers have consid- 

red how heterogeneous recovery and infection rates affect epi- 

emic spreading. To investigate network epidemiology, researchers 

xplored many network metrics, including the betweenness cen- 

rality [13] . In addition, correlations between network metrics have 

een studied for identifying a representative set of metrics in the 

ast few years [14,15] . 

The research mentioned above focuses on epidemic spreading 

n networks, in which infections are accelerated by all the edges 

such as friends, whether trusted or allies). However, there are neg- 

tive relations that may inhibit epidemic spreading (such as ri- 

als, whether distrusted or competitors) [16–20] . Generally speak- 

ng, a network with both relationships is called a signed network, 

here we mark a positive or negative sign on each edge—for ex- 

mple, two entities’ partnership or competition [21–23] . An ex- 

mple is shown in Fig. 1 . We have seen wide use of signed net-

orks to model social networks, and in recent years, a throng 

https://doi.org/10.1016/j.chaos.2021.111294
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111294&domain=pdf
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(a) (b)

Fig. 1. (a) An example of signed network. (b) The illustration of triangular structure balance. Here, (1) and (2) shows balanced triangles, while (3) and (4) shows unbalanced 

triangles. In each graph, the lines with ’+’ denote positive interactions, while the lines with ’-’ denote negative interactions. 
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f researchers focused their studies on signed networks. Antal 

t al. note that—regarding the theory of structural balance (as 

 concept)–to achieve social balance, interpersonal relationships 

evelop in signed networks [24] . Ernesto Estrada [25] also ana- 

yzed the opinion spreading under the structural balance, which 

howed that negative edges played a key role in both the structure 

nd dynamics of the network. Kunegis et al. also demonstrated 

hat a signed network’s Laplacian matrix is always a positive- 

emidefinite; and a signed network will only change to a positive- 

efinite if it becomes unbalanced (i.e., it undergoes a period where 

t contains an odd number of negative edges) [26] . To predict the 

ign of each edge in signed networks, Leskovec et al. considered 

nderlying ideas on how to determine signs within large social 

etworks; their work yielded an approach with high prediction ac- 

uracy [22] . 

Although some research on epidemic spreading has been 

pplied on signed networks, they rarely focus on the dynamics 

f “signed” topology and how they influence the epidemic. Thus, 

his paper introduces the Signed-SIS (denoted by S-SIS) epidemic 

preading model and employs the Mean Field Analysis (denoted by 

FA) to explore the spreading dynamics on signed networks. Spe- 

ially, we propose a new Positive/Negative transmission rate based 

n structural balance theory, which is consistent with the real 

orld. For a theoretical analysis of the S-SIS model, we study the 

ynamical infection rates rather than the usual constant infection 

ates to capture the potential influence of structural balance on 

he spreading behaviour. To verify our analysis, we apply the S-SIS 

odel on Erd ̋os-Rényi random network and scale-free network, 

articularly we explore the influence of the positive/negative edge 

ensity and degree correlation. Finally, the Monte Carlo simulation 

s utilized to verify our framework, especially on the infected 

ode fraction and epidemic threshold in a metastable state. As 

 satisfactory theoretical tool, the results show that Mean Field 

nalysis approximates Monte Carlo simulation quite well. 

. The model 

In this section, we propose the original Signed-SIS (S-SIS) 

odel, which is used to study the epidemic spreading’s dynamics 

n signed networks. Specially, we propose a new Positive/Negative 

ransmission rate based on structural balance theory and study the 

ynamical infection rates rather than use a constant parameter to 

apture the potential influence of structural balance on the spread- 

ng behaviour. 
2 
.1. Signed network and structural balance 

Let’s consider a signed, undirected graph G = { V, E, J} to repre- 

ent the signed network, where V is the set of nodes; E ⊆ V × V is

he set of edges, and J is set of signs which illustrate the relation- 

hip between nodes. There are three types of signed relationships: 

1) If J i j = +1 , the relationship between nodes i and j is friendly; 

2) If J i j = −1 , the relationship between nodes i and j is a hostile

elationship; (3) If J i j = 0 , there is no relationship between nodes i 

nd j. 

In signed networks, it is necessary to consider the network 

tructure balance state, which was proposed by Heider [27] and 

mproved by Cartwright et al. [28] . The theory of structural bal- 

nce indicates that the balance among three different individuals 

an create the relationship of friends or enemies. From the social 

nd psychological point of view, one can assume intuitively that 

here are four types of relationships: (1) a friend of my friend is my 

riend; (2) an enemy of my friend is my enemy; (3) a friend of my

nemy is my enemy; (4) an enemy of my enemy is my friend. Nev- 

rtheless, in fact, it is natural to find that the relationship among 

hree individuals can be expressed as an undirected signed net- 

ork, in which the edge is marked as a symbol or sign, as shown 

n Fig. 1 b. 

.2. Positive/negative transmission rate 

In many existing social studies, friendly relationships positively 

pread their influence. When such friendly relationships are rela- 

ively straightforward, people are more inclined to trust and ac- 

ept the opinions of their friends [27] . This situation is following 

he intuitive definition of the balanced structure. On the contrary, 

ccording to [28] , people often oppose specific policies, not be- 

ause they disagree with those policies, but there is disharmony 

r even conflict among their friends when voting. Furthermore, 

his disharmony or conflict, i.e., the unbalanced structure, makes 

im more likely to accept negative opinions. Therefore, based on 

he above conclusions, we can determine the transmission rate of 

pinions according to the degree of triangular balance of the posi- 

ive/negative (+/-) edges in the signed network. 

According to the above conclusions, we have the following def- 

nitions: 

(1) The transmission rate of a positive edge is defined as the 

roportion of balanced triangles it participated. If a positive edge 
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Fig. 2. The illustrations of calculating β+ 
i j 

and β−
i j 

. Here, the solid black lines indicate positive relationships, and the dashed red lines indicate negative relationships. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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articipates in more balanced triangles, the transmission rate of a 

ositive edge is more significant; 

(2) Similarly, a negative edge transmission rate is defined as 

he proportion of unbalanced triangles it participated. If a negative 

dge participates in more unbalanced triangles, the transmission 

ate of negative opinions is more significant. 

According to the Heider’s balance theory [27] , a balanced struc- 

ure is achieved if the sign of all triangles of the network is pos- 

tive, where the sign of a triangle (i, j, k ) is defined as J i j J jk J ki . In

he theoretical view, the balanced or unbalanced status of a tri- 

ngle (i, j, k ) is due to the energy contribution H s = −J i j J jk J ki , as

 s = +1(−1) represents that the triangle has an unbalanced (a bal- 

nced) edge configuration. Based on this theory, we can define the 

ransmission rate of positive edge β+ 
i j 

and negative edge β−
i j 

as 

+ 
i j 

= 

∑ N 
k =1 max { 0 , J i j J jk J ki } ∑ n 

k =1 | J i j J jk J ki | ; (1) 

nd 

−
i j 

= 

∑ N 
k =1 min { 0 , J i j J jk J ki } ∑ n 

k =1 | J i j J jk J ki | . (2) 

To illustrate the calculation of β+ 
i j 

and β−
i j 

, we show two small 

xamples in Fig. 2 . In this figure, the solid black lines indicate pos-

tive relationships, and the dashed red lines indicate negative rela- 

ionships. For example (a), the positive edge between i and j par- 

icipates in forming three balanced triangles (i.e. (i, 1 , j) , (i, 2 , j) ,

i, 3 , j) ) and two unbalanced triangles (i.e. (i, 4 , j) , (i, 5 , j) ). Thus,

ased on Eq. (1) and Eq. (2) , there are β+ 
i j 

= 

3 
5 and β−

i j 
= 

2 
5 . For

xample (b), the negative edge between i and j participates in 

orming two balanced triangles (i.e. (i, 4 , j) , (i, 5 , j) ) and three un-

alanced triangles (i.e. (i, 1 , j) , (i, 2 , j) , (i, 3 , j) ). Thus, there are
+ 
i j 

= 

2 
5 and β−

i j 
= 

3 
5 . 

.3. The signed-SIS model 

Our Signed-SIS (S-SIS) model concentrates on results for the 

ollowing real-world scenario: For a business’s network, there 

ould be a positive edge (cooperative), negative edge (competitive), 

r unconnected (unrelated) relationship between two companies. 

ypically, a company will adopt a new technique to improve its 

wn business if its partners or competitors successfully employed 

his technique. To simplify the calculation process, the competition 

r partnership between any two nodes does not change over time. 

With this in mind, here we propose the S-SIS model. The signed 

etwork is composed of a set of V = { v 1 , v 2 , . . . , v N } of N nodes and 

 set of positive edges and negative edges which the adjacency ma- 

rix is A and B . Rather than using a constant infection rate γ , which
3 
s constant in SIS, in S-SIS, we apply ξi (t) as the dynamic infection 

ate for each node. This infection status of neighbors at time t can 

etermine the infection rate of node i during time (t + �t) . The 

robability that node i infected through a positive edge at time t

s defined as 

+ 
i 
(t) = γ

(∑ N 
j=1 β

+ 
i j 

X j 

d + 
i 

)
, (3) 

here β+ 
i j 

represents the transmission rate of positive edge i j, X j 

enotes the infection state of node j (where 0 means susceptible, 

ut 1 means infected), and d + 
i 

represents i ’s positive degree. Like- 

ise, the probability that node i infected through a negative edge 

t time t is defined as 

−
i 
(t) = γ

(∑ N 
j=1 β

−
i j 

X j 

d −
i 

)
, (4) 

here β−
i j 

represent the transmission rate of negative edge i j, and 

 

−
i 

represents i ’s negative degree. 

Based on Eqs. (3) and (4) ’ definitions, one can find that 
+ 
i 

(t) /ξ−
i 

(t) = γ is the maximum rate at which the positive and 

egative edges can infect one node. Moreover, ξ+ 
i 

(t) and ξ−
i 

(t) are 

roportional to β+ 
i j 

and β−
i j 

, which also proportional to the num- 

er of balanced and unbalanced triangles it involves. This is why 

e can use the S-SIS model to study the influence of structural 

alance on the epidemic spreading. 

.4. Mean field analysis 

For a theoretical analysis of the S-SIS model, we employ the 

ean Field Analysis (denoted by MFA) inspired by Ref [8,29] . MFA 

an be used to compute the infection probability v i (t) of node i at 

ny time t , even during a metastable state. According to the proba- 

ilities of being infected of each node, we can solve the metastable 

raction of infection ρ . We also use MFA to obtain the epidemic 

hreshold τc in signed networks. 

The following is the governing equation of MFA in our S-SIS 

odel at node i : 

dv i (t) 
dt 

= −v i (t) δ + (1 − v i (t)) 

[
γ
(∑ N 

j=1 β
+ 
i j 

X j 

d + 
i 

) N ∑ 

j=1 

a i j v j (t) 

+ γ
(∑ N 

j=1 β
−
i j 

X j 

d −
i 

) N ∑ 

j=1 

b i j v j (t) 

]
. 

(5) 

ext, we explain the terms of the equation: 

• Term (−v i (t) δ) : At a rate of δ, a node recovers when its i is

infected with probability v (t) . 
i 
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Fig. 3. The metastable fractions of infected nodes ρ corresponds to infection rates γ with different (a) positive and (b) negative degrees on Erd ̈o s-R ́e nyi signed networks. 
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Fig. 4. The metastable fractions of infected nodes ρ corresponds to infection rates 

γ with different degree correlation p D on scale-free signed networks. 
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• Term (1 − v i (t )) 

[
γ
(∑ N 

j=1 β
+ 
i j 

X j 

d + 
i 

) N ∑ 

j=1 

a i j v j (t ) 

]
: When the proba- 

bility of node i in healthy is 1 − v i (t) , the rate that the node

might be infected by any of its infected positive neighbors 

is γ
(∑ N 

j=1 β
+ 
i j 

X j 

d + 
i 

)
. We denote the likelihood of node i ’s positive 

neighbors infecting the node at time t as 
∑ N 

j=1 a i j v j (t) , where 

a i j is an element in the positive network’s adjacency matrix 

(denoted as A ). 

• Term (1 − v i (t )) 

[
γ
(∑ N 

j=1 β
−
i j 

X j 

d −
i 

) N ∑ 

j=1 

b i j v j (t ) 

]
: When the proba- 

bility of node i being healthy is 1 − v i (t) , the node might be

affected by each negative neighbors, which is impacted by the 

γ
(∑ N 

j=1 β
−
i j 

X j 

d −
i 

)
rate, where b i j represents the adjacency matrix’s 

element in a negative network (denoted as B ). 
∑ N 

j=1 b i j v j (t) 
4 
gives node i ’s likelihood of becoming infected at time t by neg- 

ative neighbors. 

Specially, the metastable state of the epidemic spreading is of 

ignificant interest to us, which can reach convergence quickly and 

eep it for an extremely long time [30] . Because the initial condi- 

ion doesn’t affect a Markov chain’s metastable state [30] , the ini- 

ial value of Eq. (5) could be any value between 0 and 1. When we

mplement MFA, we choose 0.5 as the initial values v i (0) for all 

odes. For a network, we see that the final solution V (t) consists 

f N elements, and we calculate the metastable fraction of infec- 

ion ρ as the average of V (t) using the following Eq. (6) 

= 

∑ N 
i =1 v i ∞ 

N 

. (6) 

. Simulation results 

In this section, we apply the S-SIS model on signed Erd ̋os-Rényi 

andom networks and signed Scale-Free networks. We explore the 

-SIS model’s epidemic prevalence under two control constraints–

amely, the average positive/negative degree D + / D − on signed ER 

etworks and degree correlation probability p D on signed SF net- 

orks. We mainly focus on exploring the effect of these control 

onstraints on the epidemic threshold τc and the fraction of in- 

ected nodes ρ in a metastable state. Finally, we compare the per- 

ormance of the Mean Field Analysis with Monte Carlo simulation 

o verify our analysis. 

.1. The S-SIS model on signed erd ̈o s-R ́e nyi random networks 

Here, we study the S-SIS model’s properties on signed Erd ̋os- 

ényi (ER) random networks and concentrate on how the average 

ositive/negative degree D + / D − affect the overall spread of epi- 

emics. The results are shown in Fig. 3 , in which the metastable 

ractions of infected nodes ρ correspond to different infection rates 

. One can notice in Fig. 3 that all signed networks’ epidemic 

hresholds are smaller than the unsigned network; and as D + / D −
ncreases, the threshold decreases. 

We interpret this phenomenon analytically: The epidemic 

hreshold is equal approximately to the network spectral radius’s 
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(a)D+ = 4, D− = 2 (b)D+ = 4, D− = 4

(c)D+ = 4, D− = 6 (d)D+ = 10, D− = 10
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Fig. 5. The metastable fractions of infected nodes ρ corresponds to infection rates γ with different positive and negative degrees from (a) to (d) on Erd ̈o s-R ́e nyi signed 

networks. The solid markers indicate MC simulation results, while the hollow markers are MFA approximation results. We depict linear fitting line for the simulation results 

using dotted lines. 
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eciprocal, in which we define the spectral radius as an adja- 

ency matrix’s largest eigenvalue. Because of the signed network, 

e consider it to be a two-layer interconnected network. Here, 
signed 
c = 

1 
λmax (A + B ) approximates the network’s epidemic thresh- 

ld, where A + B represents the network’s adjacency matrix [31] . 

e also regard the unsigned network—which has a null negative 

etwork—as a signed network. Thus, we can deduce that the epi- 

emic threshold of an unsigned network is τ unsigned 
c = 

1 
λmax (A ) 

= 

1 
λmax (A +0 B ) 

. Based on [31] - [32] , we have the following lemma: 

max (A ) ≤ λmax (A + B ) ≤ λmax (A ) + λmax (B ) . (7) 

t follows, then, that τ signed 
c ≤ τ unsigned 

c if negative adjacent matrix 

 is not empty. Moreover, we find that if D + unchanged, with the 

ncrease of D −, τ signed 
c will decrease. This is because with the in- 

rease of the number of edges, τc will rapidly converge to 0 log- 

rithmically in ER networks [33] . Since D = 

2 L 
N , one can find that 

ncreasing the number of negative edges leads a higher value of 

 −. 

Comparing with other signed networks, we notice that signed 

etworks with denser negative edges (i.e., D −) have larger ρ at the 
5 
ame infection rate in a metastable state. According to our analy- 

is, we can also explain our results as follows. Based on Eq. (3) and

q. (4) , the infection rate ξ+ 
i 

and ξ−
i 

of node i are proportionate 

o transmission rate β+ 
i j 

and β−
i j 

, respectively. With the increasing 

umber of negative edges, nodes will have more unbalanced tri- 

ngles since the positive edges D + is unchanged. The increase of 

 − will increase the number of unbalanced triangles and does not 

estroy the existing balanced triangles. This will increase the neg- 

tive transmission rate ξ−
i 

, and result in a larger infection propor- 

ion ρ . 

To prove our findings, we deduce the theoretical result of v i ∞ 

in 

he MFA form. To simplify the proof, we use a completely mixed 

ssumption [1] . That is to say, at any time t , all nodes have a

oughly similar positive degree ( D + ) and negative degree ( D −). Fur- 

hermore, each node has the same proportion of balanced and un- 

alanced triangles, and we simplify the β+ 
i 

and β−
i 

as ξ+ and ξ−, 

espectively. 

According to this assumption, we rewrite Eq. (5) as 

dv i (t) 
dt 

= (1 − v i (t))[ γ · ξ+ · v i (t) · D + · v i (t) 

+ γ · ξ− · v i (t) · D − · v i (t)] − δv i (t) . 
(8) 
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Fig. 6. The metastable fractions of infected nodes ρ corresponds to infection rates γ with (a) P D = 0 . 2 and (b) P D = 0 . 6 on scale-free signed networks. The solid markers 

indicate MC simulation results, while the hollow markers are MFA approximation results. We depict linear fitting line for the simulation results using dotted lines. 
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n a metastable state, we have 
dv i ∞ 

dt 
= 0 and we can write Eq. (8) as

v i ∞ 

= (1 − v i ∞ 

) · v 2 i ∞ 

· γ (ξ+ · D + + ξ− · D −) . (9) 

et δ = 1 . Furthermore, let us simplify Eq. (9) by omitting v i ∞ 

= 0

representing the state of absorption) as the trivial solution: 

1 − v i ∞ 

) · v i ∞ 

= 

1 

γ (ξ+ · D + + ξ− · D −) 
. (10) 

onsidering that v i ∞ 

≤ 1 , we give the solution of Eq. (9) as 

 i ∞ 

= 

√ 

1 

4 

− 1 

γ (ξ+ · D + + ξ− · D −) 
+ 

1 

2 

. (11) 

s Eq. (11) shows, when all other parameters remain the same, 

 i ∞ 

rises up in signed ER networks with the increase of D − and 

 + . Moreover, the larger value of transmission rate ξ+ and ξ− will 

lso lead to a greater value of v i ∞ 

. So as ρ = 

∑ N 
i =1 v i ∞ 

N demonstrates, 

he increase of negative edges (positive edges) may facilitate epi- 

emics’ spread in signed ER networks when the number of posi- 

ive edges (negative edges) remains constant. In conclusion, we can 

nd that this corresponds to the simulation results in Fig. 3 . 

.2. The S-SIS model on signed scale-Free networks 

Next, we study the performance of the S-SIS model in signed 

cale-Free (SF) networks. Since the construction of SF networks 

oes not use the properties D + and D −, in this part, we focus on 

he signed SF networks that are degree-correlated, where node i ’s 

ositive degree d + 
i 

relates to its negative-degree d −
i 

. We develop a 

ethod for creating signed SF networks that are degree-correlated 

nd investigate how the degree correlation p D influences τc (the 

pidemic threshold) and ρ (the metastable fraction of infected 

odes). 

We first introduce our method for creating signed SF networks 

hat are degree-correlated: (1) First, we generate the positive net- 

ork use the ordinary Barabási-Albert Scale-free network model 

34] . Here, the network size is N = 10 0 0 , and the connectivity ex-

onent is 2.5 within our simulations. (2) Next, we generate the 

egative network by copying the positive network’s degree se- 

uence. (3) Given p D (the degree-correlation), a p D fraction of 

odes are selected randomly, where the negative and positive de- 

rees are kept the same. Subsequently, we shuffle the remaining 
6 
egree-sequence elements and randomly reallocate the remaining 

 − p D fraction’s negative degrees of nodes. (4) We repeat step (1) 

o create the negative network. 

In Fig. 4 , we notice that when degree-correlated p D is larger, 

he metastable fraction of infected nodes in signed SF networks 

s also higher. This means we enhance the degree-correlation that 

ay facilitate the epidemic spreading in our framework. These ob- 

ervations may be interpreted as follows. As we mentioned, gener- 

lly speaking, if p D is large, a hub node in a negative network will

ave a large positive degree. Thus, when p D is large, the likelihood 

f a hub node linked by positive edges and becomes infected in a 

egative network is larger than when p D is small. Since hubs have 

any neighbours, they still can facilitate many other nodes having 

igher infection rates, resulting in a higher metastable fraction of 

nfected nodes at larger p D . 

.3. Monte carlo simulations 

To further verify the effectiveness of our analysis, we designed 

nother method, i.e., Monte Carlo simulations with discrete-time 

30] , to approximate the S-SIS model’s epidemic processes. In the 

C simulation, each final result has at least 200 implementations 

n average. We apply �t = 0 . 01 s as the sample time when γ < 1

indicating each time step in the simulation is 0.01 seconds in the 

eal world), and �t = 0 . 001 s when γ > 1 . At first, we set a random

election of 10 % infected nodes for time t = 0 . Then the probability

s �t · ξ+ 
i 

at each time step that the infected positive neighbour 

ay infect any healthy node i , or �t · ξ−
i 

that the infected nega- 

ive neighbour may infect the healthy node i . We calculate ξ+ 
i 

and 

−
i 

based on Eqs. (3) and (4) , respectively, along with the recov- 

ry probability at each time step of each infected node �t · δ. To 

alculate an accurate metastable fraction of infection ρ , we run a 

arge enough number of time steps. For every 20 time steps, we 

ecord ρ and check the difference between adjacent records. We 

now that we have reached the metastable state once the proce- 

ures check the difference for less than a predetermined value at 

east five times consecutively. 

Fig. 5 shows the simulation results of both MC’s and MFA 

ethod on ER networks, which illustrates the linear fitting of γ ∗

ith a metastable fraction of infection ρ . One can find that MFA 

pproximating MC simulation well in all different values of D + and 

 −, which verified the effectiveness of our framework. Especially, 



H.-J. Li, W. Xu, S. Song et al. Chaos, Solitons and Fractals 151 (2021) 111294 

w

w

M  

l

D

a

d

s  

t

(

4

(

e

a

a

o

f

t

i

S

d

m

i

s

i

t

p

t

t

s

w

t

m

f

c

a

D

c

i

A

s

R

A

S

R

 

 

 

 

 

 

[  

 

 

 

[  

[  

[

[  

[  

[

[  

[

[

[  

[

[  

[

[

[

ith the increase of the density of positive and/or negative net- 

orks, i.e., increase the value of D + or D −, we observe that the 

FA fits MC simulation better. Just as shown in Fig. 5 a to 5 d, the

inear fitting lines of MFA and MC get more close when the D + and 

 − is increasing. 

Similar to signed ER networks, we also perform both MC’s 

nd MFA simulation on SF networks, and observe the influence of 

egree-correlation on their linear fitting. The simulation results are 

hown in Figs. 6 a and 6 b. We find that with the increase of p D ,

he MFA and MC simulation fit better. Additionally, crossing points 

γ ∗, ρ∗) appears in Fig. 6 b. 

. Conclusion 

This paper proposes a novel signed epidemic spreading model 

denoted as S-SIS) to study the influence of structural balance on 

pidemic transmission in signed networks. Specially, we propose 

 new Positive/Negative transmission rate based on structural bal- 

nce theory, which is consistent with the real world. For a the- 

retical analysis of the S-SIS model, we study the dynamical in- 

ection rates rather than the usual constant infection rates to cap- 

ure the potential influence of structural balance on the spread- 

ng behaviour. Finally, we develop MC simulations that observe 

-SIS’s performance under varying constraints and scenarios and 

erive an MFA method (based on solutions surrounding nodes’ 

etastable likelihood of infection) to analyze the model theoret- 

cally. We demonstrate that MFA approximates MC simulation re- 

ults quite accurately. 

This work has broader application to other real-world scenar- 

os, for instance, whether a company will opt to adopt a new 

echnology based on its novelty and opportunities, whether com- 

etitors are adopting it, and social media rumours. Based on 

his scenario, we had the following observations: (1) Even if cer- 

ain companies rapidly adopt and use new technology in re- 

ponse to competitors’ use, that does not necessarily mean we 

ill see a larger percentage of companies adopting the new 

echnique. (2) The competitive nature of companies sometimes 

ay result in a higher percentage of adoption than networks 

ocused on cooperative relationships (unsigned networks), espe- 

ially those with indicators of being more reticent to adopt new 

pproaches. 
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