
Chaos, Solitons and Fractals 154 (2022) 111607 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Frontiers 

Determining liquid crystal properties with ordinal networks and 

machine learning 

Arthur A.B. Pessa 

a , Rafael S. Zola 

a , b , Matjaž Perc 

c , d , e , f , ∗, Haroldo V. Ribeiro 

a 

a Departamento de Física, Universidade Estadual de Maringá - Maringá, PR 87020-900, Brazil 
b Departamento de Física, Universidade Tecnológica Federal do Paraná, Apucarana, PR 86812-460, Brazil 
c Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 20 0 0 Maribor, Slovenia 
d Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan 
e Alma Mater Europaea, Slovenska ulica 17, 20 0 0 Maribor, Slovenia 
f Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria 

a r t i c l e i n f o 

Article history: 

Received 22 October 2021 

Accepted 13 November 2021 

a b s t r a c t 

Machine learning methods are becoming increasingly important for the development of materials sci- 

ence. In spite of this, the use of image analysis in the development of these systems is still recent and 

underexplored, especially in materials often studied via optical imaging techniques such as liquid crystals. 

Here we apply the recently proposed method of ordinal networks to map optical textures obtained from 

experimental samples of liquid crystals into complex networks and use this representation jointly with 

a simple statistical learning algorithm to investigate different physical properties of these materials. Our 

research demonstrates that ordinal networks formed by only 24 nodes encode crucial information about 

liquid crystal properties, thus allowing us to train simple machine learning models capable of identi- 

fying and classifying mesophase transitions, distinguishing among different doping concentrations used 

to induce chiral mesophases, and predicting sample temperatures with outstanding accuracy. The preci- 

sion and scalability of our approach indicate it can be used to probe properties of different materials in 

situations involving large-scale datasets or real-time monitoring systems. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The use of machine learning methods for probing physical and 

hemical properties of materials is becoming increasingly popular 

mong researchers working in physics [1–4] , chemistry [5,6] , and 

aterials science [7–11] . These recent developments are closely re- 

ated to important advances in computational technologies, novel 

tatistical learning methods, and the availability of large datasets. 

he combination of these scientific advances has great potential 

o revolutionize the role of computational methods in applied re- 

earch and has been considered by many as the ‘fourth paradigm 

f science’ in materials science [12] capable of paving the way to 

he fourth industrial revolution. 

Several of these works, particularly those involving biological 

nd complex materials, use optical imaging techniques and ben- 

fit from their non-destructive features. Liquid crystals are a typi- 

al example of materials that have been, and still are, extensively 

tudied through imaging methods. This is because liquid crystals 
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re birefringent, so that polarized optical microscope imaging of- 

en suffices to determine many different properties of these mate- 

ials [13,14] . Despite that, the use of machine learning methods in 

iquid crystals remains surprisingly limited, and indeed only a few 

orks have tried to directly associate physical properties of these 

aterials with their optical textures [15,16] . As in other machine 

earning problems (regressions or classifications) involving images, 

ne can learn the underlying physics of liquid crystals by extract- 

ng features from optical textures and training algorithms with a 

et of examples consisting of images and their associated physi- 

al properties. The process of extracting features from images to 

e used in classification or regression problems often demands do- 

ain knowledge about the material structure [7,17,18] , and it is of- 

en helpful to have more general methods capable of generating 

mage features regardless of the particularities of a material. 

An interesting possibility is to use image features derived from 

ermutation entropy and the ordinal symbolization introduced by 

andt and Pompe [19] . Initially proposed for time series and later 

eneralized to higher-dimensional data structures [20] , the Bandt- 

ompe approach consists of estimating a probability distribution 

ssociated with the occurrence of ordinal patterns at very local 

https://doi.org/10.1016/j.chaos.2021.111607
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111607&domain=pdf
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cales of a dataset (typically 2 × 2 pixels in images and usually 

ess than seven elements in time series). The Shannon entropy of 

his ordinal distribution defines the permutation entropy that, to- 

ether with statistical complexity [21,22] , are the most commonly 

sed quantifiers associated with the Bandt-Pompe symbolization 

ethod [23] . Beyond counting ordinal patterns, recent develop- 

ents related to the Bandt-Pompe approach have shown that ana- 

yzing transitions among ordinal patterns as complex networks can 

e even more effective for characterizing datasets [24–28] . These 

rdinal networks were also originally proposed for mapping time 

eries into complex networks [24] and only very recently have 

een extended to produce a map between images and complex 

etworks [28] . 

Due to their recency, the use of ordinal methods — particu- 

arly ordinal networks — to characterize images of physical sys- 

ems remains limited. Here, we reduce this shortage by combin- 

ng image features extracted from ordinal networks and a simple 

achine learning method to investigate experimental samples of 

iquid crystals. Our research shows that the combination of these 

ools is quite effective in identifying phase transitions, distinguish- 

ng between first-order and second-order transitions, and predict- 

ng doping concentrations and sample temperatures. The impres- 

ive accuracy of learning methods trained with features directly 

xtracted from ordinal networks allows us to conjecture that this 

pproach is likely to be very helpful to solve other problems in 

aterials science that involve imaging techniques. 

. Experimental procedures and dataset of textures 

We start by describing our experiments with liquid crystal sam- 

les used to obtain a dataset of textures of these materials (data 

nd code are available at gitlab.com/arthurpessa/ordinal_nets_lc). 

hese experiments were carried out with 3 samples of 8CB and 

4 samples of E7 liquid crystal hosts mixed with one or two chi- 

al dopants (all purchased from Merck) at different weight per- 

entages and other 2 samples of 8CB and E7 without dopants. 

he 3 doped 8CB samples were mixed with 3.26% of the R811 

opant (right-handed enantiomer). The 26 E7 samples were di- 

ided into two main groups. The first group consists of 2 pure 

amples and 10 samples mixed with the R811 dopant at different 

oncentrations ranging from 0.75% to 23.20%. The second group 

omprises 16 samples mixed with the R811 and the S811 (left- 

anded enantiomer) dopants, such that the concentrations of the 

811 are always smaller than the S811 (allowing the pitch to 

ary), but the amount of doping remained fixed at 10% of total 

ample weight (here called racemic mixtures). Table 1 shows de- 

ailed information about the doping concentrations in each sam- 

le. At room temperature, the pure 8CB samples display a smectic 

 mesophase and form a chiral smectic A mesophase after being 

oped with R811. In turn, the pure E7 samples present a nematic 

esophase and become cholesteric once doped with the chiral ad- 

itive. The different concentrations of dopants translate into differ- 

nt cholesteric pitches. The samples with fixed amount additives 

llow the cholesteric pitch to change without changing other phys- 

cal properties of the mesophase. 

To obtain typical textures of each mesophase and avoid flow 

lignment, all samples are capillary filled into hollow rectangular 

orosilicate glass capillaries (100 μm × 1.0mm) without internal 

reatment at 60 ◦C. Next, the samples are cooled up to room tem- 

erature and placed on a temperature controller (Instec MK20 0 0) 

nder a polarized light microscope setup (Leica). We then heat 

hese samples at 0 . 1 ◦C/min in temperature ranges involving first- 

rder and second-order mesophase transitions while taking pic- 

ures of the textures every 10s with a camera (Leica ICC50W) at- 

ached to the microscope. After reaching a maximum temperature, 

e cool down the samples at −0 . 1 ◦C/min while taking pictures 
2 
f the textures every 10s. After cropping, these images have 800 

1070 pixels of size and are saved in JPEG format with 24 bits 

er pixel (8 bits for red, green, and blue colors in the RGB color 

pace). The 8CB samples (pure or doped) first undergo a second- 

rder transition (smectic A to nematic for pure and chiral smec- 

ic A to cholesteric for doped samples) before presenting a first- 

rder transition (nematic to isotropic for pure and cholesteric to 

sotropic for doped samples), whereas the E7 samples display a 

rst-order transition (nematic to isotropic for pure and cholesteric 

o isotropic for doped samples). Fig. 1 a shows examples of textures 

btained from an 8CB sample doped with 3.26% of R811 in a tem- 

erature range where the second-order transition takes place. We 

bserve that textures immediately before and after the phase tran- 

ition are very similar, such that even a well-trained eye is likely 

o have great difficulty in precisely identifying the critical temper- 

ture only by visually inspecting these images. Textures obtained 

rom E7 or 8CB samples immediately before the first-order transi- 

ions are equally hard to distinguish visually. 

. Ordinal networks 

After obtaining the typical textures from the mesophases 

resent in our samples, we average the image pixels over the 

hree RGB layers to represent each texture as a simple array M = 

 y u t } u =1 , ... ,N y 
t=1 , ... ,N x 

, where y u t represents the average pixel intensity at col- 

mn t and line u , while N x and N y are respectively the image width

nd height. We then map these two-dimensional arrays into ordi- 

al networks [28,29] . To illustrate this method, suppose we have a 

 × 3 pixels image represented by 

 = 

( 

4 8 3 

6 7 5 

2 8 9 

) 

. (1) 

he first step of the algorithm is to partition the matrix M into 

verlapping submatrices of size d x × d y (the embedding dimen- 

ions). While other choices are certainly possible [20,28,30] , it 

s common to set d x = d y = 2 when dealing with images [28] .

or this choice, the matrix M is partitioned into four sub- 

atrices { w 

q 
p } q =1 , ... ,n y 

p=1 , ... ,n x 
(with n x = N x − d x + 1 and n y = N y − d y +

 ): w 

1 
1 = 

(
4 8 

6 7 

)
, w 

1 
2 = 

(
8 3 

7 5 

)
, w 

2 
1 = 

(
6 7 

2 8 

)
, and w 

2 
2 =

7 5 

8 9 

)
. These matrices are then horizontally flattened, yield- 

ng: w 

1 
1 

= (4 , 8 , 6 , 7) , w 

1 
2 

= (8 , 3 , 7 , 5) , w 

2 
1 

= (6 , 7 , 2 , 8) , and w 

2 
2 

=
7 , 5 , 8 , 9) . The core of the ordinal network algorithm is to ap-

ly the Bandt-Pompe symbolization approach [19] in order to ob- 

ain another array { πq 
p } q =1 , ... ,n y 

p=1 , ... ,n x 
representing the ordinal pattern 

q 
p associated with each data partition. These ordinal patterns 

re obtained by evaluating the permutation of the index numbers 

0 , 1 , . . . , d x d y − 1) that sorts the elements of w 

q 
p in ascending or-

er. For instance, the sorted version of w 

1 
1 

is (4,6,7,8) and so this 

artition is associated with the ordinal symbol π1 
1 = (0 , 2 , 3 , 1) ,

here the index number 0 corresponds to the position of the 

umber 4 in w 

1 
1 
, 2 corresponds to the position of the number 

 in w 

1 
1 , and so on. Similarly, we find that w 

1 
2 , w 

2 
1 , and w 

2 
2 are

espectively associated with π1 
2 

= (1 , 3 , 2 , 0) , π2 
1 

= (2 , 0 , 1 , 3) , and
2 
2 

= (1 , 0 , 2 , 3) . 

Having obtained the array of permutation symbols { π q 
p } , we 

onsider all its unique permutations �i [ i = 1 , . . . , (d x d y )!] as

odes of the ordinal network. These nodes are connected by 

irected edges if they appear vertically ( π q 
p → πq +1 

p for q = 

 , . . . , n y − 1 ) or horizontally ( πq 
p → πq 

p+1 
for p = 1 , . . . , n x − 1 ) ad-

acent in the symbolic array. These links are further weighted ac- 

ording to the relative occurrence of each transition in the sym- 

olic array, such that we can write the elements ρi, j of the 
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Fig. 1. Identifying mesophase transitions in liquid crystal samples with ordinal networks. (a) Examples of optical textures obtained from an 8CB liquid crystal sample doped 

with 3.26% of R811 at 5 temperatures around the critical temperature T c = 33 . 39 ◦C associated with a second-order transition between the mesophases chiral smectic A and 

cholesteric. (b) Visualization of the ordinal networks mapped from the images in the previous panel with d x = d y = 2 . We have made node sizes proportional to the occurring 

frequency of their associated ordinal patterns and used a grayscale color map to highlight edge weights (the darker the shade, the higher the weight). (c) Dependence with 

the temperature of three network metrics calculated from ordinal networks mapped from the same 8CB liquid crystal sample doped with 3.26% of R811. We observe that 

the three metrics undergo abrupt changes precisely at the critical temperature (indicated by dashed lines). 
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eighted adjacency matrix A representing the ordinal network as 

i, j = 

total of transitions �i → � j in { π q 
p } 

2 n x n y − n x − n y 
, (2) 

ith i, j = 1 , 2 , . . . standing for all permutations �i occurring in

 πq 
p } . Following this procedure, we can map our 3 × 3 example im- 

ge ( Eq. 1 ) into an ordinal network composed by four nodes [ �1 =
0 , 2 , 3 , 1) , �2 = (1 , 0 , 2 , 3) , �3 = (1 , 3 , 2 , 0) and �4 = (2 , 0 , 1 , 3) ]

nd represented the following adjacency matrix: 

ig. 1 b depicts visualizations of ordinal networks mapped from 

extures collected around the transition between the mesophases 

hiral smectic A and cholesteric of an 8CB sample doped with 

.26% of R811. We have used d x = d y = 2 in these examples and in

ll other results of this work, which in turn constrains our ordinal 

etworks to have up to 24 nodes and 416 edges [28] . Furthermore, 

e have used the numerical implementation of ordinal networks 

vailable in the Python module ordpy [29] . 

After mapping images into ordinal networks, we can use stan- 

ard network metrics [31] to characterize our liquid crystal tex- 

ures. In addition to usual network metrics, ordinal networks have 

lso two entropy-related quantifiers [25–28,32] . At the vertex level, 

e can calculate the local node entropy for node i (permutation 
3 
i ) as s i = −∑ 

j∈O i ρ
′ 
i, j 

log ρ′ 
i, j 

, where ρ′ 
i, j 

= ρi, j / 
∑ 

k ∈O i ρi,k repre- 

ents the renormalized probability of transitioning from permuta- 

ion nodes i to j (permutation symbols �i and � j ), and O i is the 

utgoing neighborhood of node i . This quantity measures the de- 

erminism of transitions among permutation symbols at the node 

evel, such that s i is maximum when all edge weights of edges 

temming from i are uniformly distributed, while s i = 0 solely if 

ne edge leaves the node i . Using the values of s i , we can further

valuate the global node entropy [25,26,28] as 

 GN = 

n π∑ 

i =1 

ρi s i , (4) 

here n π is the number of nodes in the ordinal network and ρi is 

he probability of finding the permutation symbol �i in the sym- 

olic array. 

. Results 

In an initial test with ordinal networks mapped from liquid 

rystal textures, we investigate whether simple network metrics 

an efficiently detect the different mesophase transitions displayed 

y our samples. To do so, we map all textures in our dataset into 

rdinal networks with d x = d y = 2 and evaluate the temperature 

ependence of three network metrics for all samples. Following 

ef. [28] , we calculate the Gini coefficient G associated with edge 

eights of ordinal networks, the global node entropy S GN ( Eq. 4 ), 

nd the average weighted shortest path 〈 l〉 . Fig. 1 c illustrates the 

ependence of these three quantities on the temperature T for 
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Fig. 2. Determining the order of mesophase transitions with ordinal networks. (a) Confusion matrix associated with the task of distinguishing between first-order and 

second-order transitions. The values are an average over 100 k -nearest neighbor classifiers trained with different train and test sets randomly split ( ± indicates one standard 

deviation). (b) Average accuracy of the k -nearest neighbors method ( ≈96%) compared with the accuracy of a dummy classifier ( ≈85%) that always predicts the mode of 

transition orders (the error bar stands for one standard deviation). 
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n 8CB sample doped with 3.26% of R811. We observe that the 

hree network metrics show abrupt variations at T = 33 . 39 ◦C , a

alue that agrees with the critical temperature related to the tran- 

ition between the mesophases chiral smectic A and cholesteric 

eported in the literature [33] . These marked and abrupt changes 

ccur around the phase transition temperatures of all samples. To 

ystematically estimate these critical temperatures, we determine 

he temperature associated with the largest change in each net- 

ork metric and use a majority vote strategy to select a single 

emperature value to represent our estimate for the critical tem- 

erature. We find this strategy to work quite well, yielding esti- 

ates that almost perfectly agree with values reported in the lit- 

rature [33,34] . 

In another application related to mesophase transitions, we ask 

hether the information encoded in ordinal networks can dis- 

riminate between first-order and second-order transitions. To in- 

estigate this possibility, we set up a binary classification task 

n which liquid crystal textures near the critical temperature are 

sed to train a k -nearest neighbors classifier — a very simple 

nd intuitive learning algorithm [35,36] — to decide whether the 

ssociated transition is of first or second order (all algorithms 

sed in this work were implemented using the Python module 

cikit-learn [35] ). The weights of all 416 possible edges of or- 

inal networks with d x = d y = 2 are used as features in this clas-

ification task (edges not occurring are assigned zero weight). We 

elect five images for each sample in our study (two before, two 

fter, and one at the critical temperature) and their correspond- 

ng mesophase transitions. It is worth remembering that our sam- 

les undergo four different transitions, two of first order (nematic 

o isotropic and cholesteric to isotropic) and two of second order 

smectic A to nematic and chiral smectic A to cholesteric). 

This procedure leads us to a dataset comprising 155 images 

apped into ordinal networks, 130 related to first-order transi- 

ions and 25 associated with second-order transitions. We separate 

hese data into training (75%) and test (25%) sets (stratifying by 

he different classes) and perform a grid search (with 5-fold cross- 

alidation strategy) on the training set to optimize the number 

f nearest neighbors (the only parameter of the algorithm) in the 

odel [35,36] . Because of the relatively small number of images, 

e further generate 100 random partitions of training and test sets 

o estimate the average performance of the best classification mod- 

ls. Fig. 2 a depicts the confusion matrix associated with this binary 

lassification problem, where we observe that ordinal networks are 

ery good at identifying the order of the mesophase transitions. In- 
4 
eed, Fig. 2 b shows that the average performance of the k -nearest 

eighbors classifiers is around 96%, significantly outperforming the 

ccuracy of a dummy classifier that assigns the most common class 

n the training set (first-order transition) to all instances in the test 

et. 

We now focus on the two groups of E7 samples ( Table 1 ) to in-

estigate whether ordinal networks are capable of discriminating 

mong different doping concentrations regardless of the sample 

emperature. All these samples present transitions to the isotropic 

hase at high temperatures, and are thus indistinguishable when 

eaching this mesophase (isotropic textures are entirely black). Be- 

ause of this, we restrict our analysis to textures obtained up to 

 

◦C before the critical temperature. It is worth noticing that the 

ritical temperatures of E7 samples doped only with R811 decrease 

s the doping concentration increases, such that the temperature 

anges vary among samples with different doping concentrations. 

onversely, the E7 samples with a fixed amount of doping (racemic 

ixtures of R811 and S111) display practically the same critical 

emperatures and are constrained to approximately the same tem- 

erature range in this analysis. Thus, discriminating among racemic 

amples can be considered (at least in principle) more challenging, 

ince the different temperature ranges of E7 samples doped only 

ith R811 add additional information to the classification tasks 

hat may eventually help to distinguish these samples. 

Similarly to the classification of transition orders, we use the k - 

earest neighbors algorithm to classify the doping concentrations 

f E7 samples. We have a total of 1527 images for the E7 sam- 

les doped only with R811 at six different concentrations and 1813 

mages of E7 samples doped with six different racemic mixtures 

f R811 and S811 ( Table 1 ). In both cases, we separate the data

nto training (75%) and test (25%) sets, stratifying by the six differ- 

nt classes of samples (the different doping concentrations). Again, 

e use all the 416 edge weights of the ordinal networks mapped 

rom these images with d x = d y = 2 as features to train the learn-

ng method. We further consider a grid search and a 5-fold cross- 

alidation strategy to tune the number of nearest neighbors in the 

 -nearest neighbors algorithm. Figs. 3 a and 3 b depict the confu- 

ion matrices obtained by applying the trained algorithm to the 

est sets of both types of samples. We observe that the diagonal el- 

ments of these matrices are very close to one, indicating that our 

pproach almost perfectly classifies the doping concentrations. We 

ave also verified that the accuracy of the k -nearest neighbors clas- 

ifiers trained with the weights of ordinal networks significantly 

utperforms the accuracy of dummy classifiers based on the fre- 
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Fig. 3. Distinguishing among different doping concentrations with ordinal networks. (a) Confusion matrix associated with the predictions of the trained k -nearest neighbors 

classifier on the test set of E7 samples doped only with R811. The first matrix row corresponds to 0% of R811, the second to 0.75% of R811, and so on, following the same 

order of Table 1 . (b) The analogous confusion matrix obtained for E7 samples doped with racemic mixtures of R811 and S811. In this case, the first matrix row corresponds 

to 0% of R811 and 10% of S811, the second to 1% of R811 and 9% of S811, and so on, following the same order of Table 1 . (c) Accuracy of the trained k -nearest neighbors 

classifier for the E7 samples doped only with R811 compared to dummy classifiers that make predictions based on the relative frequency of each doping concentration 

(stratified) and on the most frequent doping concentration (mode). (d) The same as in the previous panel, but estimated for E7 samples doped with racemic mixtures of 

R811 and S811. 

Table 1 

Summary of the liquid crystal samples used in our study. The percentages of chiral 

dopants (R811 and S811) are relative to sample weight, and the number of images 

refer to all samples with the same doping concentration. 

Host R811 S811 Samples Images 

8CB 0.00% 0.00% 2 323 

8CB 3.26% 0.00% 3 495 

E7 0.00% 0.00% 2 316 

E7 0.75% 0.00% 2 316 

E7 3.14% 0.00% 2 309 

E7 5.50% 0.00% 2 301 

E7 8.00% 0.00% 2 282 

E7 23.20% 0.00% 2 186 

E7 0.00% 10.00% 3 451 

E7 1.00% 9.00% 3 470 

E7 2.00% 8.00% 3 473 

E7 3.00% 7.00% 1 150 

E7 4.00% 6.00% 2 331 

E7 4.85% 5.15% 2 331 
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uency of each class or the mode of classes in the training set, as 

hown in Figs. 3 c and 3 d. Thus, these results imply that ordinal

etworks are equally good at predicting doping concentrations of 

amples doped only with R811 or with racemic mixtures of R811 

nd S811. 
5 
To further demonstrate the versatility of our approach, we pro- 

ose now to predict the sample temperatures independently of 

oping concentration. Once again, we consider, separately, E7 sam- 

les doped only with R811 and E7 samples doped with racemic 

ixtures of R811 and S811. This task represents a regression prob- 

em in which we train a learning algorithm to predict the sam- 

le temperature using the weights of ordinal networks. For the E7 

amples doped only with R811, we select images in the temper- 

ture range between 25 ◦C and 44 ◦C to ensure that each sample 

oes not undergo a phase transition. In the case of E7 samples 

oped with racemic mixtures of R811 and S811, the temperature 

ange is homogeneous and allows us to consider textures within 

 range of temperatures from 41 ◦C to 54 ◦C . This selection leads

s to 898 images for E7 samples doped only with R811 and 1454 

extures related to racemic mixtures of R811 and S811. To increase 

mage sampling over the temperature ranges, we slice each image 

nto six non-overlapping parts of size 800 × 175 pixels before map- 

ing each one into ordinal networks with d x = d y = 2 . 

We have again separated the datasets representing both types 

f samples into training (75%) and test (25%) sets and performed a 

 -nearest neighbors regression with the number of nearest neigh- 

ors optimized using a grid search in a 5-fold cross-validation 

trategy. Figs. 4 a and 4 b show the relationships between the true 

nd predicted temperatures for the E7 samples doped only with 
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Fig. 4. Predicting the temperature of E7 liquid crystal samples with ordinal networks. (a) Relationship between the predicted and true sample temperatures obtained by 

applying the trained k -nearest neighbors model to the test set comprising E7 samples doped only with R811. (b) The same relationship as in the previous panel obtained 

for E7 samples doped with racemic mixtures of R811 and S811. (c) Coefficients of determination obtained from k -nearest neighbors models trained with ordinal network 

weights to predict the temperature of E7 samples doped only with R811 after grouping the data by each concentration of R811. (d) The same as in the previous panel, but 

determined for each combination of the E7 racemic mixtures of R811 and S811. 
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811 and for the racemic mixtures of R811 and S811. We observe 

he data points are concentrated near the 1:1 relation. Indeed, the 

oefficients of determination ( R 2 scores) are R 2 = 0 . 89 for E7 sam-

les doped only with R811 and R 2 = 0 . 96 for E7 samples doped

ith racemic mixtures of R811 and S811, reinforcing the good pre- 

ision of our method. 

In a last application, we propose to predict the sample temper- 

tures after grouping the data by each concentration of R811 and 

y each combination of the racemic mixtures of R811 and S811 

 Table 1 ). In this case, we use the largest available temperature 

ange of each group of samples. Again, we slice all images into 

 non-overlapping parts and map each one into ordinal networks 

ith d x = d y = 2 . These datasets are then split into training (75%)

nd test (25%) sets. For each group of samples, we train a k -nearest

eighbors algorithm using the weights of ordinal networks to pre- 

ict the sample temperatures (with number of nearest neighbors 

ptimized via a grid search in a 5-fold cross-validation strategy). 

igs. 4 c and 4 d show that R 2 scores are always larger than 0.92 for

ll types of E7 samples and even better ( R 2 > 0 . 96 ) for the group

f samples with racemic mixtures of R811 and S811. 

Taken together, the outstanding performance obtained in our 

pplications with liquid crystal samples and simple machine learn- 

ng methods indicates that ordinal networks are an excellent repre- 

entation of liquid crystal textures capable of encoding information 

bout their mesophases, doping concentrations, and temperatures. 
6 
. Conclusions 

We have presented a comprehensive investigation of liquid 

rystal properties using optical textures obtained from several ex- 

erimental samples. We have mapped these images into ordinal 

etworks formed by only 24 nodes and asked whether this rep- 

esentation can encode essential information about liquid crystals. 

ur research has addressed this question by combining ordinal 

etworks with a simple machine learning method (the k -nearest 

eighbors algorithm) to predict different physical properties of liq- 

id crystals. This approach has shown to be quite effective in iden- 

ifying and classifying mesophase transitions, distinguishing among 

ifferent doping concentrations, and determining sample tempera- 

ures. Furthermore, beyond the impressive accuracy obtained in all 

lassification and regression tasks, ordinal networks naturally in- 

erit all advantages of the Bandt-Pompe method [19] , which are 

omputational efficiency, robustness against noisy data, and invari- 

nce under monotone increasing nonlinear scaling of data. This 

n turn makes our approach easily scalable to situations involv- 

ng large-scale datasets or real-time monitoring systems. These fea- 

ures corroborate ordinal networks as a simple and versatile tool 

or extracting image features that are likely to be useful in other 

roblems of materials science. Thus, we hope our research moti- 

ates other investigations that use ordinal networks to probe phys- 

cal properties of different materials. 
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