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Identifying themost influential nodes in networked systems is of vital importance to optimize their function and
control. Several scalar metrics have been proposed to that effect, but the recent shift in focus towards network
structures which go beyond a simple collection of dyadic interactions has rendered them void of performance
guarantees. We here introduce a newmeasure of node's centrality, which is no longer a scalar value, but a vector
with dimension one lower than the highest order of interaction in a hypergraph. Such a vectorial measure is
linked to the eigenvector centrality for networks containing only dyadic interactions, but it has a significant
added value in all other situations where interactions occur at higher-orders. In particular, it is able to unveil dif-
ferent roles which may be played by the same node at different orders of interactions – information that is oth-
erwise impossible to retrieve by single scalar measures. We demonstrate the efficacy of our measure with
applications to synthetic networks and to three real world hypergraphs, and compare our results with those ob-
tained by applying other scalar measures of centrality proposed in the literature.

© 2022 Elsevier Ltd.
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1. Introduction

Ranking nodes in a graph is certainly the most fundamental task in
modern network science [1–4]. Already in 1977, Linton C. Freeman
gave the first definition of betweenness centrality, and used it to rank
individual clout in social networks [5,6]. The earliest definition and
use of eigenvector centrality can even be traced more than a century
ago, in 1895, when Edmund Landau used it for scoring chess tourna-
ments [7]. Nonetheless, it was not before the discovery of heterogeneity
in the degree distributions of real world networks [8] that the full depth
.
cript.
of implications of node centrality was realized. The ‘hub’ became, and
still is, a popular meme that stands for influence, importance, or virality
in social, biological and technological networks [1,9–12]. The identifica-
tion of the most central nodes in complex networks is crucial for error
and attack tolerance [13,14], viral marketing [15], information spread-
ing [16–18], influence maximization [19,20], as well as plant genomic
[21] and cancer research [22,23], just to name but a few examples. Not
tomention that companies like Google are actually building their entire
business in providing efficient and customized rankings of webpages.

Although the relevance of quantifying node centrality is undisputed,
the best measure for it very much depends on the particularities of the
problem at hand. The various measures adopted so far to quantify node
centrality, from the simplest node degree to the variations of between-
ness and eigenvector centrality [24–27], do not optimize a global
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Fig. 1. An illustrative example of a linegraph L(G) [panel (b)] of a higher-order network
G = (V,E) with five nodes [panel (a)] and its projection network π2(G) [panel (c)].
See text for specifications.
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function of influence, and are thus inherently unable to guarantee opti-
mal performance [19]. Therefore, the correct question one has to ask
himself is not how central is a given node in a network, but rather
how central is a given node in a networkwith respect to a given process.

The issue is further exacerbated by the recent departures from tradi-
tional networks towardsmultilayer and higher-order networks asmore
apt representations of real world systems [28–30]. Although a general-
ization of eigenvector centrality for multiplex networks has been pro-
posed [31], this does not account for the fact that in higher-order
networks a link can connect more than two nodes. The potential of
higher-order interactions has been recognized already in the early 70s
by Ronald H. Atkin [32], but the interest peaked only recently with the
inability of classic graph representations to describe group interactions.
This ineptitude comes to a headwhen studying peer pressure, public co-
operation, complex contagion or opinion formation, to list just a few ex-
amples that clearly extend well beyond dyadic interactions in social
science [33,34], or when considering three or more species that rou-
tinely compete for food and territory in a complex ecosystem [35], or
when functional [36] or structural [37] brain networks or protein inter-
action networks [38] are studied. Several different approaches to define
higher-order interactions have been considered in the literature (see
the reviewworks [30,39–41] for a comprehensive account of the differ-
ent definitions adopted for higher-order interactions). In specific in-
stances, higher-order interactions have been modeled as (directed)
sequences of nodes, sequences of set interactions, or motifs of dyadic
edges, or combinations of two or several of those types [39–41]. In our
work, we adopt what is possibly the most common notion of higher-
order networks, i.e., is that of hypergraphs or simplicial complexes,
where interactions between nodes are represented by a generalization
of edges to hyperedges which capture (undirected and unweighted)
group interactions. The generalization of our study to other settings
will be considered in future works, in the line of what was recently sug-
gested in Refs. [42–44].

In viewof these recent developments, it is therefore crucial to gener-
alize centrality measures in a way that they can account for higher-
order interactions. In fact, some measures have been introduced in the
literature that extends the classic notion of centrality to hypernetworks
[45–48], but they all compute a single (scalar) number per node. In our
study, we consider the most general case of an ensemble of N nodes
which interplay by means of interactions of any order d ≤ D (with D in-
dicating the maximum order of group interactions taking place in the
ensemble), and introduce instead ameasure of centralitywhich is a vec-
tor assigned to each node, with dimension D - 1. While our vector cen-
trality is related to the classical eigenvector centrality for networks
containing only dyadic interactions, we will demonstrate that our mea-
sure has instead a significant added value (if comparedwith scalarmea-
sures) in all situations where interactions occur at higher-orders. We
will show with practical applications that our measure is, indeed, able
to distinguish different roles which may be played by a same node at
different orders of interactions, a feature which is evidently impossible
to be revealed by any single scalar measure.

1.1. The vector centrality measure

Let us start with considering N nodes which are interplaying by
means of l2 links (dyadic interactions), l3 hyperlinks of order 3 (triadic
interactions), l4 hyperlinks of order 4 (quadratic interactions), and in
general by ld hyperlinks of order d (with d = 2, 3, …, D). We here
concentrate on the case where all such hyperlinks are undirected.
Mathematically this defines an undirected higher-order network (or
hypergraph)G=(V,E), i.e., a finite set V containingN nodes, and a fam-

ily ε of ‘ ¼ ∑
D

i¼2
li non-empty and non-singleton subsets of nodes of G,

each subset defining a hyperlink.
Our idea is to associate toG its linegraph L(G), as introduced byHass-

ler Whitney for graphs in 1932 [49] and extended for higher-order
2

networks by Jean-Claude Bermond et al. in 1977 [50,51]. In particular,
L(G) is a graph of l nodes (each ofwhichmapping one of the hyperedges
of G). The links of L(G) stand for adjacency between hyperedges in G: if
h1∈ E and h2∈ E are two hyperlinks, then there is an undirected link in L
(G) between the nodes h1 and h2 if and only if h1 ∩ h2 ≠ ∅.

Fig. 1 depicts an illustrative example, where a hypergraph G=(V,E)
is defined by V = {1,2,3,4,5} and E = {{1,2,3}, {1,2,3,4}, {2,4,5}, {4,5}}.
The figure shows also the associated linegraph L(G), and the projection
network π2(G) of G. Notice that the projection of an hypergraph into a
graph can be constructed in different ways. For instance, it can be
defined as an unweighted network (see Ref. [30]) given by the
number of hyperedges between two nodes [52], or as a weighted
network [53], among others formalisms. In our work, the projection
network π2(G) of the hypergraph G = (V,E) is defined as the classic
undirected and unweighted network formed by the same set of nodes
as in G and whose links represent the dyadic interactions resulting
from the projection of the hyperlinks of G.

Now, it is straightforward to demonstrate that if G is undirected and
connected, then also L(G) is undirected and connected. Indeed, for any
pair of hyperedges hi and hj in L(G) a path can be constructed by
choosing a node v from hi and a node w from hj, and by using the
same sequence of hyperedges as in path from v to w in G. Then, the
classic Perron-Frobenius theorem [54,55] guarantees the existence
and uniqueness of the eigenvector centrality of L(G). In other words,
one can compute with standard methods the classical eigenvector cen-
trality of each node in L(G), and one obtains a value c(h) ∈ [0,1] for all
hyperlinks h ∈ E in G, such that ∑h ∈ E c(h) = 1.

With the l values of c(h) at hand, we can now define the vector cen-

trality of each node i ∈ V, a non-negative vector c
!

i ¼ ci2,⋯, ciDð Þ ∈ RD�1

such that, for every 2 ≤ k ≤ D one has

cik ¼
1
k

∑
i ∈ h ∈ E
hj j ¼ k

c hð Þ, ð1Þ

where ∣h∣ indicates the order (or size) of the hyperedge h, and D=max
{|h| ;h ∈ E} is themaximal size of hyperedges inG (themaximal order of
the group interactions affecting the N nodes in the ensemble).

In other words, the kth component cik of the vector centrality of node
i is the sum of the centralities of all hyperlinks of size k that contain i as
one of the incident nodes, and the weight value 1

k makes that

∑
i ∈ V

∥c
!
i∥1 ¼ ∑

i ∈ V
∑
D

k¼2
cik ¼ ∑

i ∈ V
∑
D

k¼2
∑

i ∈ h ∈ E
hj j ¼ k

c hð Þ
k

: ð2Þ

Image of Fig. 1
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Now, for each i ∈ V, one has that

∑
D

k¼2
∑

i ∈ h ∈ E
hj j¼k

c hð Þ
k

¼ ∑
i ∈ h ∈ E

c hð Þ
∣h∣

because in the last double summation each hyperlink h ∈ E such that i ∈
h appears exactly once. Therefore, by using this last expression in
Eq. (2), and by summing over all nodes i ∈ V, one gets that

∑
i ∈ V

∥c
!
i∥1 ¼ ∑

i ∈ V
∑

i ∈ h ∈ E

c hð Þ
hj j ¼ ∑

h ∈ E
∑
i ∈ h

c hð Þ
∣h∣

¼ ∑
h ∈ E

c hð Þ ¼ 1:

This latter expression has been obtained by simply changing
the summation order, and taking into account that every summand
c hð Þ
∣h∣ appears exactly ∣h∣ times. The final result is, therefore, that

∑
i ∈ V

∥c
!
i∥1 ¼ 1, which implies that our measure is properly normalized.

Notice that if D= 2, i.e., only dyadic interactions exist in G, then for

each node i one has c
!
i ¼ ci2ð Þ ∈ R, where the scalar value ci2 is related

with the ith component (c0i) of the classic eigenvector centrality of G, as
it was proved in [56]. Precisely, for D = 2, calling λ1 and λ2 the
greatest and second greatest eigenvalue of the adjacency matrix of G,
and denoting by Δ the norm of the difference between our measure
and the eigenvector centrality, Ref. [57] gave the following bounding
relationship:

Δ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
ci2 � c0i
� �2s

≤
4 �

ffiffiffi
2

p� � ffiffiffi
24

p ffiffiffiffi
N

p ffiffiffiffiffiffiffi
2l28

p
λ1 � λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 � 2l2

N
4

r
,

which holds as far as the so called graph irregularity I Gð Þ ¼ λ1 � 2l2
N is

smaller than
ffiffiffi
2

p
� 1

� �2
= 4

ffiffiffi
2

p
� 2

� �4
N2

ffiffiffiffiffiffiffi
2l2

p� �
λ1 � λ2ð Þ4 (see Ref.

[57] for details).We remark that this expression shows analytically that,
forD=2, i.e.,when only dyadic interactions exist inG, ci2 is very close to
the ith component (c0i) of the classic eigenvector centrality of G, and
actually the more regular the network is the closer ci2 is to c0i. In fact, it
can actually be demonstrated that a more complicated construction of
L(G) (where the setting of both nodes and links would account also
for all possible permutations in the order of the nodes forming
hyperlinks in G), would lead to recover exactly (at D = 2) the classical
eigenvector centrality. For all practical purposes of this article,
however, such a “directed” construction leads to the same qualitative
results and quantitative rankings, and therefore we decided to report
it elsewhere as a mathematical extension of our measure.

Moreover, we would like to remark here that the same entire proce-
dure can be actually used for extensions of other structural measure
(like, for instance, node betweenness) to higher-order networks:
given a hypergraph G, one can always construct the associated
linegraph, calculate the measure values for all hyperedges, and then
use expressions similar to (1) to define vectorial quantities associated
to the nodes in G.

2. Results

We here consider several practical examples to illustrate the added
value of our vectorial centrality in distinguishing different roles a
given node may have with respect to processes which may occur on
top of interactions of different orders, a capacitywhich is instead greatly
dwindled, if not prevented at all, using classical measures on the
(weighted or unweighted) projections of the hypergraph.
3

2.1. Synthetic networks

In order to provide a first comparison between our vectorial mea-
sure and the scalar centralities proposed so far, let us refer to the mea-
sures introduced in Refs. [45–48].

Reference [47] extends the methodology of eigenvector centrality
for the case of simplicial complexes. A direct comparison with our mea-
sure is therefore not possible, as in simplicial complex one has to as-
sume that the existence of a d-simplex (a simplex of order d)
automatically implies the existence of all possible interaction orders
from 2 to d - 1, which is not the case for many real world higher-order
networks, and which makes that framework totally different from the
more general case of hyper-networks considered here.

In Ref. [46] three possible generalizations of eigenvector centrality
for regular hypergraph are presented. The evident difference between
our measure and the ones proposed in [46] is therefore the fact that
we do not restrict hypergraph to be regular. However, even if we limit
ourselves to the case of regular hypergraph, our results differ from the
ones presented in [46]. In particular, let us refer to the same example
that was made in Ref. [46], the so called sunflower hypergraph, a star-
like hypergraph having one central node and r edges (sunflower's
petals), each one of order d. In this example, our measure directly
provides the ratio between the value of centrality of the central node,
c0d, and that of every other node i, cid. One indeed has that c0d ¼
1
d ∑
0 ∈ h ∈ E, ∣h∣¼d

c hð Þ ¼ rc
d and cid ¼ 1

d ∑
i ∈ h ∈ E, ∣h∣¼d

c hð Þ ¼ c
d , i ≠ 0, with c

being the line graph nodes' centrality (which, in this case, is equal for
each node in L(G), as the line graph is a clique of r nodes). It
immediately follows that c0d/cid = r, which makes a strong difference
with respect to what reported in Fig. 1 of Ref. [46].

Finally, Ref. [48] suggests a generalization of the famous HITS algo-
rithm to hypergraphs, in which the nodes are more central if they are
connected with more central hyperedges, and vice versa. This approach
shares, indeed, similarities with the idea proposed in our study, as the
components of our vector centrality are calculated from the values of
the hyperedges' centralities in the line graph. However, the information
that one can extract from the two measurements is completely differ-
ent. For instance, let us analyze the same example presented in Ref.
[48], i.e., a sunflower hypergraphwith eight petals, which however cor-
respond now to hyperedges of different sizes (from 3 to 10, see the pic-
torial sketch at the left of Fig. 2). In Ref. [48] node 0 has the highest
centrality value, no matter which function (linear, max, log-exp) is
used in the process of centrality calculation. For all other nodes, in the
linear case (the log-exp case) the higher is the order of the hyperedge
to which they belong the higher (the lower) is the value of the central-
ity, while in the max case the centrality values are all equal. In compar-
ison, our vectorial measure provides a much richer information, as one
can immediately see from Fig. 2. The central node's properties are
now clearly distinguishable from those of all other nodes, primarily be-
cause it is the only one having non-zero values in all its centrality's com-
ponents, whereas all other nodes feature a localized centrality value in
the component corresponding to the order of the hyperedge to which
they are belonging. Furthermore, at each hypergraph order, all the
nodes in the corresponding petal have the same centrality component,
once again differentiating our results from those of Ref. [48].

In order to better illustrate the qualities of our vectorial measure, let
us nowmove to amore complicated synthetic hypergraph consisting of
N=100 nodes, 400 hyperlinks of order 2, 400 hyperlinks of order 3 and
400 hyperlinks of order 4 (i.e., l2= l3= l4=400),mapping therefore an
ensemble of units interplaying by means of dyadic, triadic, and
quadratic interactions. Here, we want to highlight how our vectorial
centrality outperforms classical measures in tracking the importance
of nodes when changes occur in the network structure. To this
purpose, we initially prepare a graph with all l3 hyperlinks of order 3
which are randomly distributed. As instead for the l2 links of order 2
(the l4 hyperlinks of order 4), 350 of them are distributed randomly,



Fig. 2. The values of all components of the vector centrality for thenodes of a sunflower hypergraphwith eight petals, each one corresponding to a hyperedge of different size (from3 to 10,
as it is seen in the pictorial sketch at the right of the figure, which has to be regarded also for the color code of the different bars appearing in themain plot). Ourmeasure allows to clearly
distinguish the properties of the central node's from those of all other nodes, as node 0 it is the only one having non-zero values in all its components, whereas the centrality of all other
nodes is localized only in the component corresponding to the order of the hyperedge to which they are belonging.
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whereas 50 of themare placed so as tomake vertex 1 (vertex 100) a hub
for dyadic (quadratic) interactions, i.e., they are constructed so as to in-
clude vertex 1 (vertex 100) as one of the incident nodes. Then, we sim-
ulate limitations processes in group interactions by removing at random
a fraction p of quadratic interactions, and we keep track on how the dif-
ferent centrality measures are efficient in monitoring the change of rel-
evance of each node following the changes in the network structure.
Precisely, one surveils the behavior of c1, 2 (the first component of the
vector centrality of node 1), of cN,4 (the last component of the vector
centrality of node 100), c1,π and cN,π (the first and last components

of the classical eigenvector centrality for the projected graph, c
!
π), and

c1,πw
and cN,πw

(the first and last components of the classical

eigenvector centrality for the projected weighted graph, c
!
πw). In π two

nodes are connected if there exists a hyper-link to which they both be-
long to; in πw the weight of each link is the number of hyperlinks to
which the two end nodes are belonging to.

The results are reported in Fig. 3, and show clearly that only our
vectorial measure (by comparison of c1,2 and cN,4) is able to reveal a
substantial loss of centrality of node 100 as the number of quadratic
interactions is progressively reduced, and a corresponding gain in
centrality of node 2 which eventually remains the only hub in the
system.
Fig. 3. c1,2, cN,4, c1,π, cN,π, c1,πw
and cN,πw

(see text for definition) vs. the fraction p of removed
quadratic interactions, for the first synthetic network described in the text. The color code
of the different curves is reported in the legend. Each point corresponds to an ensemble
average over 5000 simulations: 100 different network realizations and for each one of
them 50 different realizations of random removal of the l4 hyperlinks.

4

In a second example of a synthetic network, we probe the capability
of our measure to reveal different scaling properties which may affect
different orders of interactions in the graph, even in the case in which,
at variance with the previous case, such orders do not correspond to
the same number of hyperlinks. To that purpose, we construct another
synthetic graph with dyadic, triadic, and quadratic interactions, this
time with N = 1,000, l2 = 4,000 hyperlinks of order 2, l3 = 1,000
hyperlinks of order 3, and l4 = 2,000 hyperlinks of order 4. All l2 and
l4 hyperlinks are chosen randomly, this way determining a strongly
homogeneous distribution for dyadic and quadratic interactions.
Instead, the l3 hyperlinks (which are in the minimum number with
respect to all other hyperlinks) are chosen so as to determine a
strongly heterogeneous distribution: at each time those hyperlinks are
constructed with a probability which explicitly depends on the actual
node degree.

It has to be remarked that any projection (weighted or unweighted)
of such synthetic higher-order networkwould result in a heterogeneous
degree distribution, with the consequence that any centrality measure
applied to such projected graph would reveal a strong heterogeneity.
The results of applying our measure are, instead, shown in Fig. 4,
where we report the histograms of the first (c2, panel a), the second
(c3, panel b) and the third (c4, panel c) component of our vectorial
Fig. 4. (a–c) Histograms (sampled with 100 bins) of the first (c2, panel a), the second (c3,
panel b) and the third (c4, panel c) component of the vectorial centrality, calculated over
the second synthetic network described in the main text. Each histogram refers to
values which are ensemble averaged over 10 different graph realizations.

Image of Fig. 2
Image of Fig. 3
Image of Fig. 4


Fig. 5. (a) μ100(ci,cj) (see Eq. (3) of the text for definition) for the hypergraph representing
scientific co-authorship in mathematics. Reported values are limited to the first ten
components, out of the 66, of the vector centrality. It is clearly seen that, in general, the
values of μ100 are rather small for i ≠ j. (b–e) Correlation between the rankings provided
by the different components (from the second to the sixth, see color code in the legend
at the right of the figure) of our vector centrality and the unique ranking obtained by
adopting the algorithm of Ref. [48] with a log-exp (b,d) and a max (c,e) function. Panels
b and c report the Kendall rank correlation (KRC) coefficients, while panels d and e
report the values of the function μ (from the same Eq. (3), in which cj are substituted
with the values of centralities extracted with the algorithm of Ref. [48]).
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centrality. It is seen that while the histograms reveal strong
homogeneity at the level of dyadic and quadratic interactions (panels
a and c), they clearly show heterogeneity traits at the level of triadic
interactions (panel b), this way accounting exhaustively for the overall
structural properties which have been engineered in the hypergraph.

2.2. Real-world hypergraphs

Finally, we calculate ourmeasure on several real-world hypergraphs
and discuss the added value of our measure in revealing important in-
formation on the structure of the considered hypernetworks.

The first considered hypergraph is that mapping the information
publicly available in the arXiv (https://arxiv.org/, https://github.com/
mattbierbaum/arxiv-public-datasets/) database, with the data parsing
made by Ref. [58]. In particular, we focus on the data of preprints pub-
lished in mathematics, and extract those papers which were written
in collaboration, i.e., those having at least two co-authors. The extracted
dataset consists of a total of 498,071 papers co-written by 230,605 au-
thors.

The data were mapped into a hypergraph Gmath, where nodes were
scientists, and each paper formed a hyperlink (a group interaction) of
length equal to the number of co-authors. The maximal number of co-
authors of a single papers (i.e., the maximal length D of hyperlinks in
Gmath) is 67, which implies that the vectorial centrality of each
scientist will have 66 components. The associated linegraph L(Gmath) is
rather large in size: it is obviously formed by 498,071 nodes, and it
has 9,808,188 links. The eigenvector centrality of L(Gmath) is then
calculated, and the vector centrality of each scientist in Gmath is
evaluated.

Various rankings of scientists may be extracted according to the dif-
ferent components of the vector centrality, i.e., scientists may have dif-
ferent role and importance with respect to different hyperedges' sizes.
In particular, we here analyze how many of the members of the top x
authors's list in the ranking with respect to a given component of the
vector centrality is also belonging to the top x authors's list in the rank-
ing made with respect to another component. To do so, we introduce
the fraction μx as follows:

μx ci; c j
� �

¼
		topx ci

� �
∩ topx c j

� �		
x

; ð3Þ

where ci and cj are, respectively, the ith and jth components of the vector
centrality of the nodes, topx(ci) (topx(cj)) is the set of the nodes which
are occupying the top x positions in the ranking made by comparing
the ith (the jth) component of their vector centralities, and ∣ ⋅ ∣ stands
here for the cardinality of the set. μx(ci,cj) measures therefore how
large is the overlap between the two sets, and its values μx(ci,cj) form
a square matrix of 66 × 66 elements, which actually describes how
correlated are the positions scientists are holding in the ranking
calculated with respect to a given component of the vector centrality
with those held by the same scientists in the ranking calculated with
respect to another component.

The values of μ100(ci,cj) (limited to the first ten components, out of
the 66, of the vector centrality) are reported in panel a) of Fig. 5. It is
seen that, except for the few values close to i = j, the fractions μ100
(ci,cj) are relatively small for i ≠ j and, therefore, the lists of the 100
top leaders in the rankings made with respect to different hyperedges
sizes are significantly different. This confirms that the use of our
measure is essential for extracting information on such differences,
which would be instead unaccessible by any other scalar measure of
centrality. In panels (b-e) of Fig. 5 a comparison is made with the
unique ranking obtained by the use of the scalar measure of centrality
proposed in Ref. [48] with a log-exp (panels b and d) and amax (panels
c and e) function. This is done by reporting two different correlation
measures: the Kendall rank correlation (KRC) coefficients (panels b
and c) and the values of the function μ as calculated by Eq. (3) when
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the values cj are substituted with those extracted with the algorithm
of Ref. [48] (panels d and e). Both correlation measures are reported
as functions of the length of the ranking list. Lines of different colors cor-
respond to different hyper-edge orders in our vector centralitymeasure.
It is clearly seen that, when the ranking list is small in size, the intersec-
tions of the various sets of top ranked nodes is significant, implying that
our measure individuates the same fundamental actor of the game.
However, as the size of the ranking list increases, the corresponding
Kendall rank correlation coefficients shrink, up to getting close to zero
for every hyper-edge order. This implies that the obtained rankings do
not differ substantially in individuating the really top nodes in the
hypergraph, while they are fundamentally different as far as nodes of
medium importance are considered.

A second real-world hypergraph is constructed from the data avail-
able at https://www.cs.cornell.edu/arb/data/NDC-substances/ [59]. The
dataset contains information on the composition of commercial drugs,
posted by the U.S. Food and Drug Administration. In the dataset, each
node represents a substance (or active principle, e.g., octinoxate, tita-
nium dioxide, etc.) and each hyperlink stands for a commercial drug
made of a given composition of such active principles. For the purposes
of our application, drugs composed by nomore than 25 substanceswere
taken (the same as in Ref. [59]). Moreover, drugs consisting of only one
active principle were excluded from the analysis. The result is an
hypergraph consisting of 3438 nodes and 29,296 hyperlinks.

Panels a) and b) of Fig. 6 reports the results for μ10 and μ100, as
defined by Eq. (3). The information that our measure provides allows
to infer that there are principles which are important for both the
drugs with small number of ingredients and the ones with complex

https://arxiv.org/
https://github.com/mattbierbaum/arxiv-public-datasets/
https://github.com/mattbierbaum/arxiv-public-datasets/
https://www.cs.cornell.edu/arb/data/NDC-substances/
Image of Fig. 5


Fig. 6. (a) μ10(ci,cj) and (b) μ100(ci,cj) (see Eq. (3) for definition) for the commercial drug
higher-order network (all specifications of the hypergraph are given in the text). (c-f)
Correlation between the rankings provided by the different components (from the
second to the sixth, see color code in the legend at the right of the figure) of our vector
centrality and the unique ranking obtained by adopting the algorithm of Ref. [48] with a
log-exp (c,e) and a max (d,f) function. Panels c and d report the KRC coefficients, while
panels e and f report the values of the function μ (from the same Eq. (3), in which cj are
substituted with the values of centralities extracted with the algorithm of Ref. [48]).

Fig. 7. μ10(ci,cj) (see Eq. (3) for definition) for the primary [panel (a)] and high [panel (b)]
school contacts hypernetwork (all specifications of the hypergraph are described in the
text). It is seen (with particular evidence in the case of high school contacts) that social
interactions pilot the emergence of leaderships of students which tend to be central
independently on the group size.
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composition [yielding a non negligible overlap between the top 10
ranked components for all hyperlink sizes in between 2 and 8, as can
be seen in panel a) of Fig. 6]. However, in general [see panel b) of
Fig. 6)] the sets of key ingredients of the drugs with simple and
complex compound are significantly different. Once again, we remark
that such information would have not been extracted from scalar
centrality measures. In panels (c-f) of Fig. 6 we again compare the
ranking obtained by the different components of our vector centrality
measure with the unique ranking obtained by the use of the scalar
measure of centrality proposed in Ref. [48] with a log-exp (panels c
and e) and a max (panels d and f) function. One can actually draw the
same conclusions as above: when the list is small in size, the top ranked
nodes are common to both rankings, but when the size of the ranking
list increases the KRC coefficients get close to zero for every hyper-
edge order.

As a third application, we consider the hypergraphs that can be con-
structed from the data on primary school contacts [taken from https://
www.cs.cornell.edu/arb/data/contact-primary-school/ [59,60]] and
those on high school contacts [taken from https://www.cs.cornell.edu/
arb/data/contact-high-school/ [59,61]]. In both cases, data refer to ex-
periments where wearable sensors, registering social interactions by
proximity at a resolution of 20 s, are beard by students (242 kids in
the case of the primary school, and 327 adolescents in the case of high
school). As the dataset contains a lot of repetitions of the same group
of people (the duration of the interactions are in general far larger
than the 20 s resolution time), only unique groups were analysed.
Furthermore, only edges with size no less than 2 were considered.
The resulting hypergraph for primary school (high school) contacts
consists therefore of 242 (327) nodes and 12,704 (7818) hyperlinks
6

corresponding to the total number of unique groups, i.e., the total num-
ber of nodes forming the line graph, which in its turn consists of a total
number of edges of 2,238,167 (593,188).

For both hypergraphs, the largest group size (the maximal order of
interaction) is 5. Once again, to compare the ranking of students related
to distinct edge sizes, we use the same measure μx, defined by Eq. (3).
The results are shown in Fig. 7). It is seen that central students in
groups with size 2–4 are mainly not present in the top list of the groups
of 5 people. However, it is seen (with particular evidence in the case of
high school contacts) that such social interactions pilot the emergence
of a leadership of students which tends to be central independently on
the group size.

As the fourth application, we consider the hypergraph constructed
from the data taken from https://www.cs.cornell.edu/arb/data/senate-
bills/ [62–64]. There, nodes are US Congress persons and hyper-links
are co-sponsorships of bills which were put forth in the Senate. The
dataset can be mapped into a hypergraph made of 294 nodes and
29,157 hyperedges, and the corresponding line graph has 29,157
nodes and 82,211,358 edges. After application of our method, Fig. 8 re-
ports the KRC coefficients (panel a, calculated now for each pair of
ranking lists, as obtained with the ith and jth components of the vector
centrality) and μ30(ci,cj) (panel b, limited to the first ten components
of the centrality vectors). From the plot μ30(ci,cj) it is rather evident
that the leading roles are played always by the same actors (the
parties' leaders), independently on the number of persons co-
sponsoring the bill. Moreover, the orderings inside the leading groups
are rather close to each other, as non-trivial KRC coefficients are ob-
tained. Only the ranking with respect to hyperedges having size 2
seems to be weakly correlated with the others.

From the one hand this case is therefore rather different from all the
previous ones, in that all components of the centrality vector are corre-
lated rather strongly, and one could be tempted to say that there is no
need here for the use of a vectorial measure. However, from the other
hand it is only using our vector centrality that one can reveal that, in
order to protect their leadership, central persons in political parties try
to play key roles in groups of different sizes. In other words, a high cor-
relation of the rankings related to different hyper-links orders gives also
meaningful information.

Our final application is the hypergraph constructed with the data
taken from https://www.cs.cornell.edu/arb/data/walmart-trips/ [65].
In this hypergraph, nodes are products at Walmart and hyperlinks are
sets of co-purchased products. It is composed by 88,860 nodes and
69,906 hyperedges, with a corresponding line graph made of 69,906
nodes and 33,046,972 edges.

The resulting KRC coefficients (panel a) and the values of μ10(ci,cj)
(panel b) are presented in Fig. 9. It is seen that the intersections of the
sets of top 10 products with respect to different orders are very high.

https://www.cs.cornell.edu/arb/data/contact-primary-school/
https://www.cs.cornell.edu/arb/data/contact-primary-school/
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Fig. 9. KRC coefficients (panel (a), calculated for each pair of ranking lists obtained with
the ith and jth components of the vector centrality) and μ10(ci,cj) (panel (b), limited to
the first ten components of the centrality vectors) for the hypergraph constructed from
the Walmart-tips dataset (all specifications of the hypergraph are described in the text).

Fig. 8. KRC coefficients (panel (a), calculated for each pair of ranking lists obtained
with the ith and jth components of the vector centrality) and μ30(ci,cj) (panel (b), limited
to the first ten components of the centrality vectors) for the hypergraph reflecting bills'
co-sponsorships in the US Senate (all specifications of the hypergraph are described in
the text).
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This means that there are some essential products which appear
in each bill, no matter its sizes. However, when we analyze the set
of top 100 products the sizes of these intersections progressively
decrease, and the values of the KRC coefficients for vectors relating
to the top 100 rankings are negligible (not shown in the figure).
One can conclude that there exists a set of essential products which
are bought frequently no matter which size the bill has. Other prod-
ucts are bought not to so frequently, and their appearance in the bill
is not highly determined by the bill size. Once again, we highlight
that such kind of conclusions can be drawn only when the centrality
measure has a vectorial character.

3. Discussion

Taken together, we have introduced a centrality measure able to
overcome the inherent limitations of scalar centralities in higher-order
networks. Our measure assigns a vector to each node, with dimension
one lower than the dimension of the longest hyperlink in the network,
and with every component thus determining the centrality of that
node for a link with a particular length.

Our vector centrality is related to the classical eigenvector centrality
for networks containing only dyadic interactions. Furthermore, by using
artificially generated higher-order networks as well as data from real-
world higher-order networks, we have demonstrated that our measure
has instead a significant added value in all situationswhere interactions
occur at higher-orders, in that it unveils different roles which may be
played by a same node at different orders of interactions and therefore
is the only one which accounts exhaustively for the properties of the
overall interactive structure of the hypergraph. In particular, our mea-
sure gives a much richer information about centrality relationships
than that extracted from other scalar measures recently introduced for
hypergraphs.

As noted already when introducing our vector centrality, the same
approach can be readily applied to other structural measures, which
thus opens the path towards a wider applicability of our approach.

We expect our measure to become widely used with further prog-
ress in network science and related research fields.
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