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A B S T R A C T

Recent studies have shown that personal resources have a significant impact on the dynamics of epidemic
spreading. In previous studies, the main way for individuals to be able to obtain resources was through pairwise
interactions. However, the human relationship network is often characterized also by group interactions, not
just by pairwise interactions. To study the impact of resource diffusion on disease propagation in such higher-
order networks, we therefore propose a multilayer network model, where the upper-layer network represents
a resource network composed of random simplicial complexes to transmit resources, while the lower-layer
network represents the network of physical contacts where the disease can spread. We derive the outbreak
threshold expression for the epidemic by means of the micro Markov chain method, which reveals that the
diffusion of resources may substantially change the epidemic threshold. We also show that the final fractions
of infected individuals obtained via the micro Markov chain method and the classical Monte Carlo method are
very similar, thus confirming that the model can predict well the epidemic spreading within the networked
population. Finally, through extensive simulations, we show also that increasing the spread of resources on 2-
simplexes can suppress the epidemic spreading and outbreaks, thus outlining possibilities for novel containment
strategies.
1. Introduction

Epidemic spreading is an important topic in complex systems the-
ory. In recent years, with the emerging infectious diseases, such as
SARS [1], Ebola virus [2], and COVID-19 [3–6], infectious diseases
pose a serious threat to human health and economic development. In
previous studies on epidemic transmission, researcher main focus on
some factors, such as individual birth rate [7], immunity to disease [8,
9], government’s epidemic prevention policy [10,11], individual accep-
tance of vaccines [12], awareness of disease prevention [13–23], and
resources required for epidemic prevention [24,25] and so on.

During the outbreaks, related resources are critical to restrain the
propagation of the disease, such as medical resources, living resources,
etc. For example, [26] studied how resource allocation can be more
effective in suppressing the spread of disease when resources are lim-
ited, and [27] found that the resources had a threshold, and the part
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exceeding the threshold would have a counter-effect of suppressing the
spread of the disease. Them examine the impact of resources on disease
transmission and mainly focus on how investments in public resources
affect disease transmission.

However, in real life, public resources are usually finite, especially
during the spread of the epidemic. Due to the limited public resources,
individuals often get resources by different ways, which through their
own social networks or from their neighbors [28–30]. Therefore, the
interaction between personal resources and epidemiological dynamics
is crucial [31]. At present, most of the research on personal resources
involve the pairwise interaction resources of nodes [32], ignoring the
high-order relationship hidden inside the population. In addition to
directly interacting with neighbors to obtain resources, individuals can
also get resources through their own small groups. Meanwhile, in the
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Fig. 1. Schematic representation of two-layered network model, the upper layer
network is resource layer, which describes the transmission of resources, the lower
layer network is disease layer, which describes the spread of epidemics. The dashed
line between the resource and disease layers represents the nodes are a one-to-one
mapping relationship. Resource layer network and disease layer network are undirected
and weightlessin.

real word scenarios, social networks are often beyond the pair interac-
tions [33–36], and each individual has his own circle or small group.
When you belong to a group, persons around you have resources, then
your probability of getting resources within this group will be greatly
improved. For instance, during the epidemics of COVID-19 in Shanghai,
in addition to exchanging resources directly with neighbors, individ-
uals will also appoint a ‘‘team leader’’ in the corresponding floor or
community to purchase resources, and then exchange resources within
this small group [37]. In this way, the probability of individuals getting
resources in a small group will be greatly improved compared with that
exchanging resources between a pair of neighbors. Thus, in order to
better study this phenomenon of resource diffusion, we introduce the
simplex complex into the diffusion of networked resources.

In this paper, similar to the coupling interaction between infor-
mation diffusion and disease spread, we propose a new two-layered
network model to investigate the role of 2-simplex higher-order struc-
ture in the interactions between resource and epidemics. This model
contains two layers: the resource layer and the disease layer. Among
them, the resource layer is obtained by random simplex complexes
and represents the transmission of resources, while the disease layer is
built on two different networks: random and scale free networks, which
describes the spread of an epidemic within a population. Through ex-
tensive simulations, it is found that the steady-state density of infected
nodes obtained by Micro Markov Chain (MMC) closely matches that
obtained by Monte Carlo (MC), at the same time, it is also indicated
that with the introduction of 2-simplex in the resource layer, the
propagation rate of resources increases, and the proportion of nodes
that own resources in the resource layer increases, reducing the density
of infected nodes in the disease layer. The results suggest that networks
constructed from random simplex complexes at the resource layer have
a potential impact on the spread dynamics of the entire network.

The rest of the paper is organized as follows. In Section 2, we
first introduce the two-layer network model and derive the probability
transition equation, and then utilize MMC to analyze the outbreak
threshold. Then, we present the theoretical and simulation results
obtained by MMC and MC in Section 3. Finally, we conclude this paper
with some promising outlooks in Section 4.
2

Fig. 2. The transition pattern between N and R states on the upper layer. The panel
(a) shows the nodes get resources by pairwise interaction from his neighbors that have
resources(R-type) with 𝜆 becomes R state. The panel (b) represents the node is in a
2-simplex and can get resources by pairwise interaction with 𝜆 and by 2-simplex with
𝜆∗ becomes R state. The panel (c) represents that a node in state R may consume
resources to state N with probability 𝛿 at each time step.

Fig. 3. Transition probability trees for 3 states(RS, NI, RI). People will not be infected
with probability 𝑞𝑖(𝑡). 𝑟𝑖(𝑡) represents nodes that cannot obtain resources from his
neighbors nodes that have resources. Individuals who have resources may consume
them with probability 𝛿. Infected individuals who have resources may recover with
probability 𝜇𝑅. Infected nodes who do not have resources may recover with probability
𝜇𝑁 . We assume that if the individuals are not be infected and do not have resources,
the individuals will generate resources and become RS.
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Fig. 4. Proportion of the final fractions of infected individuals and R-type ones as the function of 𝛽. Panels (a), (b), and (c) are obtained by ER-random network in the lower
layer. Panels (d), (e), and (f) are obtained by scale free network in the lower network. The open circles represent the results obtained by MC, the full circles represent the results
obtained by MMCA. Panels (a) and (d), 𝜆𝛿 = 0. Panels (b) and (e), 𝜆𝛿 = 3.2. Panels (c) and (f), 𝜆𝛿 = 6.4. The value of 𝜆 is set to be 0.15.
2. Methods and models

2.1. Simplicial complexes

In this paper, beyond the traditional binary interactions, we intro-
duce simplicial complexes [37] characterizing the higher-order prop-
erties into the coupling model of resources and epidemics. So as to
better understand the proposed model, let us first introduce the basic
concept related with simplicial complexes. In simple terms, 𝑘-simplex
is a set of 𝑘 + 1 nodes in the network, and these 𝑘 + 1 nodes are
connected to each other. For example, 0-simplex represents one node,
which does not link with any other nodes; 1-simplex represents that
there are two nodes connected to each other, which also represents
links in the network; 2-simplex represents triangles in the network, 3-
simplex represents a tetrahedron in a network, and so on. Combining
simplex of different orders, we call it a simplicial complexes. When
𝑘 > 1, 𝑘-simplex represents the higher-order structure of the network.

2.2. Two-layered coupling network model of resources and epidemics

In this study, we propose a novel two-layer disease transmission
model to study the coupled transmission of epidemics and resources.
Among them, lower layer represents spread of disease, and the tra-
ditional SIS (Susceptible–Infected–Susceptible) model is adopted here.
The upper layer depicts the process through which individuals get re-
sources, likewise it is called the RNR (Resourced-No-resourced-
Resourced) model. However, different from previous studies, we intro-
duce a higher-order network into the upper resource layer, that is, we
do not only consider resource exchange via pairwise interactions, but
also consider the extra way that individuals can get resources through
simplicial complexes. Each node in the upper and lower layers has a
one-to-one correspondence, which means that the state of each node is
jointly determined by resources and diseases. We assume that the upper
and lower layers of the network are un-directed and un-weighted, and
the model is illustrated in Fig. 1.
3

Here, in the lower network, which is the disease layer, we use the
SIS disease propagation model to describe the spread of the disease.
Each node in the lower layer has two states: infected (𝐼) and susceptible
(𝑆). In the disease layer, each S node will be infected by its neighbors
with probability 𝛽, which neighbors are at the 𝐼 state. At the same time,
the node in state I may revert from state 𝐼 to state 𝑆 with probability
𝜇.

In the resource layer, nodes may be at two different states: no-
resourced (𝑁) and resourced (𝑅) states of epidemics. The nodes in the
𝑁-type can obtain resources in two ways, through pairwise interactions
with the probability of 𝜆 and through 2-simplex with the probability
of 𝜆∗ and then become the R-type one. 𝑅-type nodes may consume
resources and enter the state N with the probability of 𝛿, and the
process of nodes getting and consuming resources can be observed in
Fig. 2.

It is worth mentioning that the status of the upper-layer node may
affect the recovery at the disease layer nodes. If the upper-layer node
is in the 𝑅 state, it means that the node is at resource state, and the
lower-layer disease can be easily recovered through resources, and the
upper layer node is at the N state, which means that has no resources
to recover. We use 𝜇𝑅 to represent the recovery probability of 𝑅-
type node, 𝜇𝑁 to represent the recovery probability of 𝑁-type node,
𝜇𝑁 = 𝜉𝜇𝑅(0 ≤ 𝜉 ≤ 1), which indicates that the 𝑁-type node has a lower
recovery probability than the R-type node. Nodes with more resources
are easier to recover, which is also in line with the actual situation. If
𝜉 = 0, infected nodes will not recover without resources.

Taking together, the states on both layers will be divided into three
categories: 𝑅𝐼 , 𝑅𝑆, and 𝑁𝐼 . Note that 𝑁𝑆 state is neglected here since
we assume that the upper node will automatically obtain the resources
once the corresponding lower-layer node is susceptible, that is, by 𝑁𝑆
state change to RS state.

2.3. Analytical results based on MMC

We use 𝑝𝑅𝐼𝑖 (𝑡), 𝑝𝑅𝑆𝑖 (𝑡), and 𝑝𝑁𝐼
𝑖 (𝑡) to express the probability that

node 𝑖 become RI, RS and NI states at the time 𝑡. Let 𝑞 (𝑡) represent
𝑖
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the probability of node 𝑖 not being infected by any neighbor, 𝑟1𝑖 (𝑡) is
he probability of the node 𝑖 that no obtained resources through the
ink(pairwise interaction) from neighbors at time step 𝑡, and 𝑟2𝑖 (𝑡), which
s represent the probability of node 𝑖 does not get resources through 2-
implex from neighbors at time 𝑡. The probability that a node obtains
esources is jointly affected by 𝑟1𝑖 (𝑡) and 𝑟2𝑖 (𝑡), that is, 𝑟𝑖(𝑡). Thus, through

these definitions, we can get,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑞𝑖(𝑡) =
∏

𝑗
(1 − 𝑏𝑗𝑖(𝑝𝑅𝐼𝑗 (𝑡) + 𝑝𝑁𝐼

𝑗 (𝑡))𝛽)

𝑟1𝑖 (𝑡) =
∏

𝑗
(1 − 𝑎𝑗𝑖𝑝

𝑅
𝑗 (𝑡)𝜆)

𝑟2𝑖 (𝑡) =
∏

𝑐𝑖

(1 − 𝑐𝑖𝑗𝑘𝑝
𝑅
𝑗 (𝑡)𝑝

𝑅
𝑘 (𝑡)𝜆

∗)

𝑟𝑖(𝑡) = 𝑟1𝑖 (𝑡)𝑟
2
𝑖 (𝑡),

(1)

here [𝛼𝑖𝑗] and [𝛽𝑖𝑗] represent the adjacency matrices of the resource
nd disease layer networks. 𝑝𝑅𝑗 (𝑡) = 𝑝𝑅𝐼𝑗 (𝑡) + 𝑝𝑅𝑆𝑗 (𝑡), In the equation
f 𝑟2𝑖 (𝑡), 𝑐𝑖 represents the number of 𝑖 nodes in the 2-simplex. 𝑐𝑖𝑗𝑘
epresents the nodes of 𝑖, 𝑗, 𝑘 located in the same 2-simplex. 𝜆∗

epresents the probability of the nodes obtain resources from neighbors
hrough 2-simplex, We can see it specific expression,

∗ = 𝜆𝛿𝛿∕𝑘2, (2)

here 𝜆𝛿 is the rescaled resource diffusion parameter and 𝑘2 represents
he number of this node in 2-simplex. Then, through the above for-
ula, we can deduce the transition probability of each state, and the

ransition diagram, which can be seen in Fig. 3,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑝𝑁𝐼
𝑖 (𝑡 + 1) = 𝑝𝑁𝐼

𝑖 (𝑡)𝑟𝑖(𝑡)(1 − 𝜇𝑁 ) + 𝑝𝑅𝑆𝑖 (𝑡)𝛿(1 − 𝑞𝑖(𝑡))

+ 𝑝𝑅𝐼𝑖 (𝑡)𝛿(1 − 𝜇𝑁 )

𝑝𝑅𝑆𝑖 (𝑡 + 1) = 𝑝𝑁𝐼
𝑖 (𝑡)[(1 − 𝑟𝑖(𝑡))𝜇𝑅 + 𝑟𝑖(𝑡)𝜇𝑁 ]

+ 𝑝𝑅𝑆𝑖 (𝑡)[(1 − 𝛿)𝑞𝑖(𝑡) + 𝛿𝑞𝑖(𝑡)]

+ 𝑝𝑅𝐼𝑖 (𝑡)[(1 − 𝛿)𝜇𝑅 + 𝛿𝜇𝑁 ]

𝑝𝑅𝐼𝑖 (𝑡 + 1) = 𝑝𝑁𝐼
𝑖 (𝑡)(1 − 𝑟𝑖(𝑡))(1 − 𝜇𝑅) + 𝑝𝑅𝑆𝑖 (𝑡)(1 − 𝛿)

(1 − 𝑞𝑖(𝑡)) + 𝑝𝑅𝐼𝑖 (𝑡)(1 − 𝛿)(1 − 𝜇𝑅).

(3)

As 𝑡 → ∞, the diffusion of resources and the spread of disease, that
can get to the stable state, then, the steady states that we can get, and
shown as follows.
⎧

⎪

⎨

⎪

⎩

𝑝𝑅𝐼𝑖 (𝑡 + 1) = 𝑝𝑅𝐼𝑖 (𝑡) = 𝑝𝑅𝐼𝑖
𝑝𝑅𝑆𝑖 (𝑡 + 1) = 𝑝𝑅𝑆𝑖 (𝑡) = 𝑝𝑅𝑆𝑖
𝑝𝑁𝑆
𝑖 (𝑡 + 1) = 𝑝𝑁𝑆

𝑖 (𝑡) = 𝑝𝑁𝑆
𝑖 .

(4)

Thus, we can also get the steady state equations of Eq. (3) as follows,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑝𝑁𝐼
𝑖 = 𝑝𝑁𝐼

𝑖 𝑟𝑖(1 − 𝜇𝑁 ) + 𝑝𝑅𝐼𝑖 𝛿(1 − 𝜇𝑁 ) + 𝑝𝑅𝑆𝑖 𝛿(1 − 𝑞𝑖)

𝑝𝑅𝑆𝑖 = 𝑝𝑁𝐼
𝑖 [(1 − 𝑟𝑖)𝜇𝑅 + 𝑟𝑖𝜇

𝑁 ] + 𝑝𝑅𝑆𝑖 [(1 − 𝛿)𝑞𝑖
+ 𝛿𝑞𝑖] + 𝑝𝑅𝐼𝑖 [(1 − 𝛿)𝜇𝑅 + 𝛿𝜇𝑁 ]

𝑝𝑅𝐼𝑖 = 𝑝𝑁𝐼
𝑖 (1 − 𝑟𝑖)(1 − 𝜇𝑅) + 𝑝𝑅𝐼𝑖 (1 − 𝛿)(1 − 𝜇𝑅).

+ 𝑝𝑅𝑆𝑖 (1 − 𝛿)(1 − 𝑞𝑖).

(5)

As is known to all, near epidemic threshold, the proportion of infected
individuals at the steady state is close to 0. So we can assume 𝑝𝐼𝑖 → 0,
where 𝑝𝐼𝑖 = 𝑝𝑅𝐼𝑖 + 𝑝𝑁𝐼

𝑖 , and then we can obtain,

𝑞𝑖 ≈ 1 − 𝛽
∑

𝑗
𝑏𝑗𝑖 𝑝

𝐼
𝑗 = 1 − 𝛼𝑖 (6)

By substituting Eq. (6) into 𝑝𝑁𝐼
𝑖 and 𝑝𝑅𝐼𝑖 of Eq. (5), we can derive

the follow equation,

⎧

⎪

⎨

⎪

𝑝𝑁𝐼
𝑖 = 𝑝𝑁𝐼

𝑖 𝑟𝑖(1 − 𝜇𝑁 ) + 𝑝𝑅𝐼𝑖 𝛿(1 − 𝜇𝑁 ) + 𝑝𝑅𝑆𝑖 𝛿𝛼𝑖
𝑝𝑅𝐼𝑖 = 𝑝𝑁𝐼

𝑖 (1 − 𝑟𝑖)(1 − 𝜇𝑅) + 𝑝𝑅𝐼𝑖 (1 − 𝛿)(1 − 𝜇𝑅)
𝑅𝑆

(7)
4

⎩
+ 𝑝𝑖 (1 − 𝛿)𝛼𝑖.
By adding 𝑝𝑁𝐼
𝑖 and 𝑝𝑅𝐼𝑖 of Eq. (7) to get 𝑝𝐼𝑖 , after simplify, we can

obtain,

⎧

⎪

⎨

⎪

⎩

𝑝𝐼𝑖 = −𝑝𝑁𝐼
𝑖 𝑟𝑖𝜇

𝑁 − 𝑝𝑅𝐼𝑖 𝛿𝜇𝑁 + 𝑝𝑅𝑆𝑖 𝛿𝛼𝑖
+ 𝑝𝐼𝑖 − 𝑝𝐼𝑖 𝜇

𝑅 + 𝑝𝑁𝐼
𝑖 𝑟𝑖𝜇

𝑅 + 𝑝𝑅𝐼𝑖 𝛿𝜇𝑁

+ 𝑝𝑅𝑆𝑖 (1 − 𝛿)𝛼𝑖

(8)

The 𝜇𝑁 = 𝜉𝜇𝑅(0 ≤ 𝜉 ≤ 1), by substituting it into Eq. (8), we can
simplify further and get,

𝑝𝑅𝑆𝑖 𝛼𝑖 = 𝑝𝐼𝑖 − 𝑝𝑁𝐼
𝑖 𝑟𝑖(1 − 𝜉) − 𝑝𝑅𝐼𝑖 𝛿(1 − 𝜉)𝜇𝑅 (9)

Because 𝑝𝐼𝑖 = 𝑝𝑁𝐼
𝑖 + 𝑝𝑅𝐼𝑖 ≪1, we simplify Eq. (9) as follows,

𝑝𝑅𝑆𝑖 𝛽
∑

𝑗
𝑏𝑗𝑖 𝑝

𝐼
𝑗 = 𝜇𝑅𝑝𝐼𝑖 . (10)

By inserting Eq. (6) into Eq. (10), and because 𝑝𝐼𝑖 = 𝑝𝑁𝐼
𝑖 + 𝑝𝑅𝐼𝑖 ≪1,

we can get 𝑝𝑅𝑆𝑖 ≈ 𝑝𝑅𝑖 , so it can be rewritten as follows,
∑

𝑗
(𝑝𝑅𝑖 𝑏𝑗𝑖 −

𝜇𝑅

𝛽
𝛿𝑗𝑖)𝑝𝐼𝑖 = 0, (11)

here 𝛿𝑖𝑗 is the element of the identity matrix. Noting that the solution
f Eq. (11) is an eigenvalue problem for the matrix 𝐻 whose elements
re ℎ𝑗𝑖 = 𝑝𝑅𝑖 𝑏𝑗𝑖. Then, we can obtain the critical threshold of the
roposed model as follows,

𝑐 =
𝜇𝑅

𝛬max(𝐻)
, (12)

where 𝛬max(𝐻) represents the maximum eigenvalue of matrix 𝐻 . Then,
for the resource layer, we are able to know that the disease outbreak
threshold is related to 𝑝𝑅𝑖 by the Eqs. (11) and (12). For the disease
layer, by the Eqs. (11) and (12), we can know the 𝜇𝑅 can make an
influence on the threshold.

3. Numerical results

Firstly, we depict the evolution of 𝜌𝐼 and 𝜌𝑅, in which 𝜌𝐼 represents
the proportion of infected nodes when the disease spread in the entire
disease layer reaches a steady state, 𝜌𝑅 represents the proportion of
nodes with resources when the resource diffusion in the entire resource
layer reaches a steady state. The resource layer networks are built
by random simplicial complexes [37]. The disease layer networks are
constructed by two different networks: ER-random network [38] and
scale free network [39]. The resource layer and disease layer nodes are
set to be 𝑁 = 2000. The initial value of 𝜌𝐼 is equal to 1%. 𝛿 = 0.6,
𝜇𝑅 = 0.4, 𝑘1 = 20, 𝑘2 = 4, we herein set 𝜉 = 0, (i.e., 𝜇𝑁 = 0, and
𝜇 = 𝜇𝑅). According to Eq. (2), when 𝜆𝛿 = 3.2, 𝜆∗ ≈ 0.48, when 𝜆𝛿 =
6.4, 𝜆∗ ≈ 0.96. All experimental results are obtained by averaging over
50 independent runs and the experimental parameters in the text are
all defined above.

In order to better check the influence of 𝛽 on 𝜌𝐼 and 𝜌𝑅, we use
wo different networks in the lower layer. In Fig. 4, we can see the
hange of the final results of 𝜌𝐼 and 𝜌𝑅. The resource diffusion rate is

set to be 0.15. In panels (a) and (d), 𝜆𝛿 = 0, 𝜆∗ = 0, which means do
not introduce the 2-simplex to the resource layer, and the nodes can
obtain resources in one way, which through pairwise interactions. we
can observe that 𝜌𝐼 increases with 𝛽, 𝜌𝑅 decreases with 𝛽, then both
reach a steady state. In panels (b) and (e), 𝜆𝛿 = 3.2, 𝜆∗ = 0.48, the nodes
can get resources by 2-simplex, compared with 𝜆𝛿 = 0, we can observe
that 𝜌𝐼 at the stable state is smaller, but 𝜌𝑅 is bigger, which introducing
the 2-simplex interactions in the upper layer, increases the diffusion of
resources and then reduce consumption of resources. In panels (c) and
(f), 𝜆𝛿 = 3.2, 𝜆∗ = 0.96, compared with 𝜆𝛿 = 0 and 𝜆𝛿 = 1.6, the nodes
have higher probability of getting resources by 2-simplex, so 𝜌𝐼 is more
smaller, 𝜌𝑅 tends to be more bigger, but the change of 𝜌𝐼 is less obvious
than that of 𝜌𝑅.

Finally, by introducing 2-simplex interactions, the probability and
the way for nodes to get resources are increased, and then reduce
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Fig. 5. Proportion of the final fractions of infected individuals and R-type ones with the change of 𝜆. Panels (a), (b), 𝜌𝐼 and 𝜌𝑅 are obtained by ER-random network in the lower
layer. Panels (c) and (d), 𝜌𝐼 and 𝜌𝑅 are obtained by scale free network in the lower network. The open circles represent the results obtained by MC, the full circles represent the
results obtained by MMCA. Different color lines represent different results under different values of different 𝜆𝛿 . The value of the 𝜆𝛿 is set to be 0, 3.2, and 6.4. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Proportion of the final results of infected individuals and individuals that have resources with the change of 𝛿. Panels (a), (b), 𝜌𝐼 and 𝜌𝑅 are obtained by ER-random
network in the lower layer. Panels (c) and (d), 𝜌𝐼 and 𝜌𝑅 are obtained by scale free network in the lower network. The open circles represent the results obtained by MC, the full
circles represent the results obtained by MMCA. Different color lines represent different results under different values of different 𝜆𝛿 . The value of the 𝜆𝛿 is set to be 0, 3.2 and
6.4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Proportion of the final results of infected individuals and R-type ones with the change of 𝛽 and 𝜆. All the results are obtained by MMCA. The lower network is obtained
by SF network. Panels (a), (b) and (c) are the results of 𝜌𝐼 . Panels (d), (e) and (f) are the results of 𝜌𝑅. Panels (a) and (d), 𝜆𝛿 = 0. Panels (b) and (e), 𝜆𝛿 = 3.2. Panels (c) and
(f), 𝜆𝛿 = 6.4.
consumption of overall resources. However, the impact of 2-simplex
on 𝜌𝑅 is more obvious than that of 𝜌𝐼 . We can see that the above
experimental results obtained by MMC and MC have small errors and
can be perfectly matched, indicating that our proposed resource-disease
model can achieve correct predictions.

Next, we focus on the impact of resources on disease transmission,
that is, the resource transmission rate(𝜆) and resource consumption
rate(𝜆) in the resource layer. Fig. 5 is the final results of 𝜌𝐼 and 𝜌𝑅

with the change of 𝜆. In panels (a) and (b) of Fig. 5, the disease
layer is obtained by ER-random network. but in panels (c) and (d), is
obtained by scale free network. Three different colored lines represent
different results under different values of 𝜆𝛿 . Specifically, 𝜌𝐼 decreases
with 𝜆 and 𝜌𝑅 increases with 𝜆. For 𝜌𝐼 in panels (a) and (c), we can
observe that a smaller 𝜆 can dramatically reduce 𝜌𝐼 , then, 𝜌𝐼 reach the
stable state when 𝜆 ≃ 0.3. When 𝜆 is small, we can observe that 𝜌𝐼

decreases rapidly with the increases of 𝜆𝛿 , and then reaches a stable
state, especially when 𝜆𝛿 = 6.4, when 𝜆 = 0, the value of 𝜌𝐼 is much
smaller. Then, 𝜌𝐼 decreases faster. The reason is even if 𝜆 = 0, nodes
can also get resources by 2-simplex interaction to recover. When the
upper layer does not introduce 2-simplex, resources can only transmit
through pairwise interactions among nodes. When 𝜆 is small, the spread
of resource is weak. After 2-simplex interactions are introduced, we
find that 𝜆∗ increases with the increase of 𝜆𝛿 , which means that as
𝜆∗ increases, it can help the propagation of resources on the higher-
order network, which is referred to as 2-simplex, so that can the
propagation of resources in the resource layer can be promoted. Then,
the resourceful nodes can recover faster, so that can quickly reduce the
risk of infected individuals and reach the stable state. But when 𝜆 is
large(𝜆>0.3), the infected nodes will not decrease with the increase
of 𝜆𝛿 . The reason can be that when 𝜆 reaching a value (𝜆 ≃ 0.3), the
resources in the entire resource layer reach saturation state, it means 𝜌𝑅
reaches the stable state, When 𝜆 is small, increasing 𝜆𝛿 , the resources
can quickly spread and then reach a stable state, but the final density
of resource nodes will not be affected.

In Fig. 6, we present the impact of 𝛿 on the epidemic and resource
spreed, in panels (a) and (b), the lower layer network is obtained by
ER-random network, but in panels (c) and (d), is obtained by scale free
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network. Three different colored lines represent different results under
different value of 𝜆𝛿 . For 𝜌𝐼 in panels (b) and (d), we can observe
that 𝜌𝐼 increases with 𝛿 increases. The reason is that as 𝛿 increases,
resources are consumed. The nodes that be infected have no resources
to recover, and then cause 𝜌𝐼 rising quickly. With the increase of 𝜆𝛿 , the
probability of the node getting resources increases, and then the rate
of resource consumption is slowed down. After that, the nodes have
resources to recover, and inhibiting the spread of the disease. For 𝜌𝑅

panels (a) and (c), we can observe that 𝜌𝑅 decreases as 𝛿 increases.
By introducing 2-simplex, with 𝜆𝛿 being increased, the propagation of
resources is promoted in the resource layer, thus the rate of resource
consumption is slowed down.

We have studied the effects of 𝛽, 𝜆, and 𝛿 on the spread of the
disease alone. However, in the actual situation, the influencing factors
of the disease are not single, but compound. So, we consider the
combined effects of influencing factors on disease transmission. Fig. 7
shows the proportion of the final results of 𝜌𝐼 and 𝜌𝑅 with the change
of 𝜆 and 𝛽 with different 𝜆𝛿 . In Fig. 7, the panels (a), (b) and (c)
are heat map of 𝜌𝐼 of influence of 𝛽 and 𝜆. In panel (a), 𝜆𝛿 = 0, it
means the individuals that not have resources can only get resources
from neighbors through link(pairwise interaction). We can observe that
when 𝜆 is small(𝜆<0.03), the disease will break out with small 𝛽(𝛽 ≃
0.05), then the disease can quickly spread to the whole lower layer
network. As the increasing of 𝜆𝛿 , as shown in panels (b) and (c), we can
see, when 𝜆 is small, the dynamic is difficult to break out and bigger 𝛽
helps to spread to the whole lower layer network. The reason is nodes
can also get resources by 2-simplex when 𝜆 is small. Thus, introducing
the 2-simple into the upper layer, can increase the probability of nodes
getting resources, especially when 𝜆 is small. By the way, it can affect
both the dynamic outbreak. In Fig. 7, the panels (d), (e) and (f) are heat
map of 𝜌𝑅 of influence of 𝛽 and 𝜆. When 𝜆𝛿 = 0, it means the individuals
that not have resources can only get resources from neighbors through
link(pairwise interaction), and when 𝜆 is small, as increasing of 𝛽, even
when 𝛽 is small, the resources in the upper layer will still be consumed
rapidly. After introducing 2-simplex, nodes can get resources through
2-simplex interactions. With the increase of 𝜆𝛿 , the probability of nodes
getting resources grows. Even when 𝜆 is small, the resources in the
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Fig. 8. Proportion of the final results of infected individuals and R-type ones with the change of 𝛽 and 𝛿. All the panels are obtained by SF network in the lower layer network.
Panels (a), (b) and (c) are the results of 𝜌𝑅. Panels (d), (e) and (f) are the results of 𝜌𝐼 . Panels (a) and (d), 𝜆𝛿 = 0. Panels (b) and (e), 𝜆𝛿 = 3.2. Panels (c) and (f), 𝜆𝛿 = 6.4.
entire upper network will not be consumed rapidly with the increase
of 𝛽.

Fig. 8 shows the heat map of 𝜌𝐼 and 𝜌𝑅 with respect to both 𝛿 and
𝛽 with different 𝜆𝛿 . In Fig. 8, panels (a), (b) and (c) denote the heat
map of 𝜌𝑅 of the influence of 𝛽 and 𝜆, panels (d), (e) and (f) depict the
heat map of 𝜌𝐼 of the influence of 𝛽 and 𝜆. In panels (a) and (d), the
𝜆𝛿 = 0, in panels (b) and (e), the 𝜆𝛿 = 3.2, in panels (c) and (f), the
𝜆𝛿 = 6.4. For 𝜌𝑅 in panel (a), when 𝜆𝛿 = 0, resources can only get by
pairwise interaction among nodes. With 𝛿 and 𝛽 being increased, the
resources will be consumed completely, the infected nodes will have
no resources to recover, which indirectly leads to the increase of 𝜌𝐼 ,
as shown in panel (d). When introducing the 2-simplex, nodes can get
resources by 2-simplex, as 𝜆𝛿 increasing, even if 𝛽 and 𝛿 are bigger,
resources will not be consumed completely, as shown in panels (b) and
(c), which causes infected nodes to have resources and then recover,
and thus 𝜌𝐼 becoming smaller, as shown in panels (e) and (f).

4. Conclusions

In summary, we propose a new two-layer network model: RNR-
SIS model, where the upper resource layer network is constructed by
random simplicial complexes, and the lower disease layer network
adopts two different networks: ER network and SF network. After the
introduction of 2-simplex into the resource layer, we study the effect
of resources on disease transmission. We obtain the outbreak threshold
of the disease spreading through MMC, and then by comparing the
experimental results, it is found that the experimental results of MMC
and MC have a smaller error and a higher degree of matching, which
shows that our proposed model can predict the coupling of resources
and diseases well.

Then, through the experimental results, the following conclusions
can be obtained: first, when the resource transmission(𝜆) rate is low,
increasing the resource diffusion on the 2-simplex(𝜆∗) can suppress
disease outbreak; Second, when the value of resource diffusion is small,
but the value of disease spread is big, increasing the resource diffusion
on the 2-simplex can promote the resource diffusion on the whole
resource layer, and the individuals can get resources and use them
to recover, thus can reduce the density of infected individuals; Third,
7

for resource dissemination, we also found that when the probability of
nodes obtaining resources is very low and the probability of consuming
resources is very high, this is not conducive to suppressing the spread
of diseases; At last, we find resources have a saturation value. Before
reaching the saturation value, resources can more effectively inhibit the
spread and outbreak of diseases.

Based on the above experimental results and theoretical predictions,
it can be observed that the current outcome has a great inspiration for
us to devise the epidemic prevention strategy. Meanwhile, the related
conclusions can assist us to deeply understand the role of limited re-
sources during disease transmission, and then enable the public health
governments and the population to effectively distribute these limited
resources when facing the possible epidemics in the future.
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