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A B S T R A C T

A continuously growing body of evidence indicates that astrocytes, which is the most abundant sub-type of
glial cells in the nervous system, not only provide structural and metabolic support to neurons, but also they
are essential sentinels and dynamic modulators of neuronal and synaptic functions. However, the potential
constructive role of astrocytes in information processing at the neuronal and synaptic level, and especially
also in the presence of different noise sources in the neural system, is yet unclear. With this in mind, we
here study the phenomenon of stochastic resonance – the enhanced detection of weak signals in the presence
of noise – in neuronal dynamics by means of a mathematical model that includes interactions between the
neuron and the astrocyte. We show that astrocytes may evoke a second peak in the neuronal detection of weak
signals in dependence on the noise intensity, which is the hallmark of double stochastic resonance. We explore
in detail the mechanisms underlying this discovery, in particular focusing on the determinants of astrocytic
function and their role in the emergence of the second stochastic resonance peak. Our research thus provides
fundamental insights into the possible roles of astrocytes in inherently noisy neuronal information processing.
1. Introduction

A typical characteristic property of all biological systems, their
parts or populations is the existence of non-linear processes affecting
their intrinsic dynamics and functioning, in such a way that these
systems can generate different outputs which can propagate in space
and time, some of them unpredictable, for small variations on the
system’s influences. Even though non-linearity is commonly expressed
as an undesirable feature which allow, e.g., for the propagation of
effects without damping, it has been demonstrated that it plays an
essential role for the ability and adaptation observed in biological
systems [1,2].

A prominent example of such living systems using advantage of
non-linearity is the nervous system of animals. The brain of mam-
mals, for instance, has a complex network structure which is the
result of different biophysical non-linear processes occurring during
its development [3–5], that allow it to optimally perform many so-
phisticated tasks (e.g. information processing, memory acquisition and
consolidation, attention and perception to name a few) despite the
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complicated and varied interactions among neurons and of these with
the noisy environment. For instance, animals continuously are receiv-
ing behaviorally essential data from their surrounding through sensory
neurons (e.g. visual, olfactive or auditory), which provide some in-
formation about navigation, communication and preying in order to
survive. In most of situations, such relevant information is continu-
ously perturbed by other signals, sometimes uncorrelated, originated
in a constantly varying environment. Capturing relevant data from
such varying noisy background of stimuli sometimes requires properly
decoding sub-threshold weak signals which may be an indicator of a
possible emerging issue, such as environmental hazards or predator
and prey localizations. A complete understanding of the mechanisms by
which weak signals can be processed in a background of noisy activity
is crucial to decipher how sensory relevant information is processed by
human brain. With this aim, recently, there was an increasing interest
in neuroscience research to study the underlying mechanisms that help
to enhance such weak signals from its noisy surrounding activity [6–
10]. In particular, experimental and theoretical studies have revealed
960-0779/© 2023 Elsevier Ltd. All rights reserved.
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that central nervous system neurons, like sensory neurons, can capture
and amplify sub-threshold signals through several non-linear resonance
mechanisms that have previously been discovered in some other natural
and physical systems [11–16].

In the context of resonance-based weak signal capturing and en-
hancement in non-linear systems, a notable phenomenon is the so
called stochastic resonance (𝑆𝑅) whereby the response of the neuronal
ystem under the action of a subthreshold input signal can be amplified
y the presence of an optimal level of noise [17–22]. Up to date, many
tudies have been conducted to examine the effect of 𝑆𝑅 phenomenon
n neural dynamics at both single neuron and population level under
arious biophysical conditions [23–31]. Indeed, the findings suggest
hat weak signal amplification is possible in the presence of the moder-
te level of noise in neural environment. In addition, it has been widely
eported that the efficiency of 𝑆𝑅 can also be tuned by many biophysi-
al properties of neural systems such as network structure, dynamics of
on concentrations and heterogeneity [32–36]. Moreover, some studies
ave also indicated that biophysical processes at the synapses involved
n neurotransmitter trafficking, release and recycling, and which are
n the base of short-term synaptic plasticity, strongly influence the 𝑆𝑅

characteristic of neural circuits inducing, for instance the appearance of
bi-modal 𝑆𝑅 resonances while processing weak signals [17,24,37–39].

In most previous modeling studies on 𝑆𝑅 in neural systems, includ-
ing specific brain areas and neuronal populations, neurons have been
recognized as the most prominent cell types for information processing
in the brain, and most of the times uncorrelated neural activity from
other areas has been considered as the sole source of noise to induce
neuronal stochastic behavior. However, such an assumption in neuronal
systems modeling lacks in imitating real biophysical conditions and it
does not provide a clear understanding of 𝑆𝑅 behavior in terms of
concrete biological mechanisms. Thus, recently other possible sources
of noise that can induce intriguing 𝑆𝑅 phenomena have been consid-
ered including ionic channel noise and synaptic noise [40,41], but still
we are far from understanding all biological aspects that can induce
𝑆𝑅 in actual neural systems. Hence, for instance, findings from exper-
imental studies both in vivo and in vitro have revealed that glia cells
are also important elements in neuronal systems, which are initially
thought to serve only metabolic and structural support for neurons and
synapses [42–47]. Namely, a glial cell mass with embedded neurons
provides a more realistic picture of the brain tissue.

Astrocytes are the most prevalent glial cells in the brain. Experi-
ments have shown that these star-shaped cells actively participate in
a large variety of central nervous system functions including synap-
togenesis, neuronal communications and synaptic plasticity [48,49].
In particular, during synaptic transmission dressed neurons [50–53],
namely neurons surrounded by astrocytes, release neurotransmitters
such as glutamate that are partially bound by glutamate receptors at
the astrocytes membrane. This binding process induces calcium release
from internal stores increasing its concentration in the astrocyte cytosol
and causing the subsequent release of astrocyte gliotransmitter (e.g. D-
serine, astrocytic glutamate, ATP) into synaptic cleft, affecting both the
presynaptic and the postsynaptic neurons and consequently modulating
the synaptic transmission [54–56]. This indicates that astrocytes are
able to contact bidirectional communication with dressed neurons,
based on mutual glutamatergic signaling pathways.

An interesting question to address in the present context is if such
complex interaction between pre and postsynaptic neurons and as-
trocytes, which constitutes the so called tripartite synapse, can affect
optimal detection of weak signals in a background of noise through
the 𝑆𝑅 mechanism. This issue has been systematically studied in re-
cent years using theoretical models. For instance, Liu and Li have
modeled four different neuronal network motifs in a two-dimensional
astrocyte field with mutual neuron–astrocyte interactions and discussed
the impacts of astrocytes on 𝑆𝑅 in these building blocks of neuronal
networks [57]. In an another recent study, by modeling a system
2

containing a neuron and an astrocyte, Erkan et al. investigated how c
weak signal transmission performance of the neuron changes in the
presence and absence of the astrocyte [58]. They have found that the
neuron’s performance for detecting weak signals at an optimal noise
level of the environment is significantly improved in the presence of
astrocytes.

These intriguing findings have motivated us to further investigate
in the present work the phenomenon of 𝑆𝑅 in a bipartite neuron–
astrocyte system using a FitzHugh–Nagumo model for neuronal dynam-
ics under more realistic conditions. For example, the above-mentioned
existing studies investigating the effect of astrocyte on 𝑆𝑅 have not
evaluated the inhibitory effect of astrocytic feedback on the presynaptic
neuron. Moreover, these studies have not analyzed in detailed the
relevant parameters although the strength of this feedback is highly
dependent on the internal dynamics of astrocyte. Thus, here, we explore
the weak signal detection performance of the dressed neuron under the
variation of different biologically-plausible intrinsic astrocytic factors
as the production and degradation rate of inositol trisphosphate, and
neuron–astrocyte coupling strength. Our results reveal that the interac-
tion between neuron and astrocyte may induce the emergence of double
𝑆𝑅 phenomenon similar to those already found in neural dynamics due
to different biophysical factors [28,59]. We show that this intriguing
effect can be modulated by internal dynamics of the astrocyte and
clarify the underlying mechanism that give rise to double 𝑆𝑅 in terms
of the non-monotonic variation of astrocytic feedback with noise.

2. Model and methods

A schematic illustration of the system under study in the present
work is depicted in Fig. 1. This consists of a neuron–astrocyte pair,
which is driven by a weak periodic signal and subjected to a noisy
background activity originated from the network or other biophysical
factors. As seen in the plot, the neurotransmitter release into the
synaptic cleft is sensed by mGluR receptors of the astrocyte, which then
induces movement of gliotransmitter molecules towards the synaptic
space due to the increase of 𝐼𝑃 3-mediated Ca2+ concentration in the
intracellular space.

To investigate the stochastic resonance phenomenon in the response
of the neuron, we use the Fitzhugh–Nagumo (𝐹𝐻𝑁) equations to
simply model the neural dynamics, defined as follows [60–62]:

𝜀
𝑑𝑉𝑚
𝑑𝑡

= 𝑉𝑚 − 1
3
𝑉 3
𝑚 − 𝜔 +

√

2𝐷𝜉(𝑡) + 𝐼𝑒𝑥𝑡 (1)

and
𝑑𝜔
𝑑𝑡

= 𝑉𝑚 + 𝑎𝑒 + 𝜆𝐼𝑎𝑠𝑡𝑟𝑜 (2)

where 𝑉𝑚 is the fast variable that accounts for the electrical activity
of the neuron and 𝜔 is the slow recovery variable which can be
biophysically related with the activity of several types of membrane
channel proteins, e.g. potassium channel kinetics [63]. 𝜀 characterizes
the time-scale separation between fast (𝑉𝑚) and slow (𝜔) variables of
the neuron model and it is fixed to 0.01 in this study. The excitability
level of the neuron is determined with the bifurcation parameter 𝑎𝑒
where the FHN neuron is excitable for ∣ 𝑎𝑒 ∣ ≥ 1, while for ∣ 𝑎𝑒 ∣< 1,
he system exhibits an oscillatory (limit cycle) behavior generating a
eriodic spike sequence. In our analysis, the bifurcation parameter is set
lightly outside the oscillatory regime to 𝑎𝑒 = 1.03. 𝜉(𝑡) represents the
aussian white noise with zero mean and intensity 𝐷 which accounts,

or instance, for uncorrelated input activity from the surrounding ar-
iving to the neuron and affecting its excitability. The sub-threshold
nput signal, which could be related with environmental weak stimuli
eaching to the sensory neurons in actual brains, is defined by 𝐼𝑒𝑥𝑡 =
𝑠𝑖𝑛(𝜔𝑠𝑡) with amplitude 𝐴 and angular frequency 𝜔𝑠.

The 𝐼𝑎𝑠𝑡𝑟𝑜 term in Eq. (2) is an inhibitory feedback to the presynaptic
euron, which may be originated from the release of astrocytic glio-
ransmitters, e.g. ATP/Adenosine, that can bind to A1R channels and

ause the opening of the potassium channels on the presynaptic neuron.
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Fig. 1. The schematic illustration of the neuron–astrocyte coupled system used in the present study. This bipartite system is composed of a presynaptic neuron and an astrocyte
that enwrapes the synapse. The neuron (in blue) receives a sub-threshold input signal, and it is also exposed to the noise which may be originated from the synaptic background
activity or other biophysical factors (in black). The release of neurotransmitter from the neuron acts both on the synaptic terminal as well as on astrocytic receptors mediating
intracellular 𝐼𝑃3 and calcium elevation in astrocyte. This triggers the release of gliotransmitters that bind with the presynaptic terminal receptors resulting in the emergence of an
astrocytic feedback 𝐼𝑎𝑠𝑡𝑟𝑜 that modulates the excitability of the neuron. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
This fact influences the intracellular potassium dynamics of the neuron
which affects both the generation of spikes near the synapse (through
hyperpolarization) and the subsequent synaptic transmission [64,65].
Since the 𝐼𝑎𝑠𝑡𝑟𝑜 is a slow current, we coupled it with the slow variable 𝜔
of the model neuron equations (since 𝜔 can also account for potassium
concentration dynamics in the presynaptic neuron) and its influence is
adjusted with the coupling strength 𝜆. 𝐼𝑎𝑠𝑡𝑟𝑜 is indirectly originated by
the dynamical changes in the intrinsic calcium (Ca2+) concentration of
the astrocyte that causes gliotransmitter release at the synaptic cleft.
This happens after astrocyte cytosolic Ca2+ level increase from the
intrinsic stores which occurs depending on inositol 1,4,5-triphosphate
(𝐼𝑃 3) production. The later is triggered by the binding of glutamate
(Glu) released into the synaptic cleft to the metabotropic glutamate
receptors (mGluRs) of the astrocyte, when the neuron fires an action po-
tential. To model this briefly introduced processes, we assume that the
production of 𝐼𝑃 3 in the astrocyte obeys the following dynamics [66]:

𝑑[𝐼𝑃 3]
𝑑𝑡

= 1
𝜏𝐼𝑃 3

([𝐼𝑃 3]∗ − [𝐼𝑃 3]) + 𝑟𝐼𝑃3
1

1 + 𝑒(𝜃𝑠−𝑉𝑚)∕𝜎𝑠
(3)

where the first term on the right-hand side of the equation repre-
sents the degradation in intracellular 𝐼𝑃3 concentration whereas the
second one, defined by a sigmoid function with steepness 𝜎𝑠, refers
to its production which is triggered when 𝑉𝑚 exceeds the threshold
voltage 𝜃𝑠. Based on experimental studies [67–69], the 𝐼𝑃 3 equilibrium
concentration 𝐼𝑃 3∗ and the rate of 𝐼𝑃3 degradation 1∕𝜏𝐼𝑃 3 are set as
160 nM and 0.00014 ms−1, respectively. The parameter 𝑟𝐼𝑃 3 denotes the
astrocyte 𝐼𝑃 3 production rate in response to each spike activity of the
presynaptic neuron [70].

The cytosolic Ca2+ concentration of the astrocyte is modeled by
using the Li–Rinzel (𝐿𝑅) equations [71] which describe the Ca2+

dynamics with three different fluxes: 𝐽𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is Ca2+ flux from Endo-
plasmic Reticulum (𝐸𝑅) lumen to the intracellular space via 𝐼𝑃 3𝑅
channels, 𝐽𝑝𝑢𝑚𝑝 is the Ca2+ flux from cytosol into 𝐸𝑅 through 𝐴𝑇𝑃 -
dependent pumps and 𝐽 is the leakage flux from the 𝐸𝑅 to the
3

𝑙𝑒𝑎𝑘
cytosol due to difference in Ca2+ concentrations between the intracel-
lular stores and the cytosol. Then, the Ca2+ dynamics part of the model
consists of the following differential equations [71,72]:

𝑑[Ca2+]
𝑑𝑡

= −𝐽𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝐽𝑝𝑢𝑚𝑝 − 𝐽𝑙𝑒𝑎𝑘 (4)

and
𝑑𝑞
𝑑𝑡

= 𝛼𝑞(1 − 𝑞) − 𝛽𝑞𝑞. (5)

Here, q refers to the fraction of activated 𝐼𝑃 3 receptor channels (IP3Rs)
calculated according to activation 𝛼𝑞 and inactivation 𝛽𝑞 rates of IP3Rs
(see also [66]). The definitions of calcium flows 𝐽𝑐ℎ𝑎𝑛𝑛𝑒𝑙, 𝐽𝑝𝑢𝑚𝑝 and 𝐽𝑙𝑒𝑎𝑘
across the 𝐸𝑅 are as follows:

𝐽𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑐1𝑣1𝑚
3
∞𝑛3∞𝑞3([Ca2+] − [Ca2+]𝐸𝑅) (6)

𝐽𝑝𝑢𝑚𝑝 =
𝑣3([Ca

2+]2)

𝑘23([Ca
2+]2)

(7)

𝐽𝑙𝑒𝑎𝑘 = 𝑐1𝑣2([Ca
2+] − [Ca2+]𝐸𝑅) (8)

where

𝑚∞ = [𝐼𝑃3]
[𝐼𝑃 3] + 𝑑1

, 𝑛∞ = [Ca2+]
[Ca2+] + 𝑑5

(9)

and

[Ca2+]𝐸𝑅 =
𝑐0 − [Ca2+]

𝑐1
. (10)

Lastly, the astrocytic inhibitory feedback is defined as a function of
intracellular Ca2+ concentration as follows [66]:

𝐼𝑎𝑠𝑡𝑟𝑜 = 2.11𝑙𝑛(𝑦)𝛩(𝑙𝑛(𝑦)), 𝑦 = [Ca2+] − 196, 69 (11)

where 𝑦 is the amount of Ca2+ above the threshold level and 𝛩 represent
a Heaviside step function: 𝐻(𝑥) = 1 for 𝑥 > 0, and 𝐻(𝑥) = 0 for 𝑥 < 0.
The values of other astrocyte parameters appearing in above model
equations are listed in Table 1 [73].
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Table 1
Astrocyte standard parameters.

Parameter Value Description

𝑐1 0.185 Ratio of ER volume to cytosol volume
𝑣1 6 s−1 Maximum 𝐶𝑎2+ channel flux
𝑣2 0.11 s−1 𝐶𝑎2+ leak flux constant
𝑣3 0.9 μM s−1 Maximum 𝐶𝑎2+ uptake
𝑘3 0.1 μM SERCA activation constant
𝑑1 0.13 μM 𝐼𝑃3 dissociation constant
𝑑5 0.08234 μM 𝐶𝑎2+ activation dissociation constant
𝑐0 2.0 μM Cytosolic free 𝐶𝑎2+ concentration

The response of the neuron to the weak signal is quantified by
eans of the Q factor which is a measure of the Fourier spectrum of
𝑚 at the frequency 𝜔𝑠 [74,75]:

𝑄 =
√

𝑄2
𝑠𝑖𝑛 +𝑄2

𝑐𝑜𝑠 (12)

where 𝑄𝑠𝑖𝑛 and 𝑄𝑐𝑜𝑠 are computed via the Fourier coefficients:

𝑠𝑖𝑛 =
𝜔𝑠
2𝑛𝜋 ∫

2𝑛𝜋∕𝜔𝑠

0
2𝑉𝑚(𝑡)𝑠𝑖𝑛(𝜔𝑠𝑡)𝑑𝑡 (13)

and

𝑄𝑐𝑜𝑠 =
𝜔𝑠
2𝑛𝜋 ∫

2𝑛𝜋∕𝜔𝑠

0
2𝑉𝑚(𝑡)𝑐𝑜𝑠(𝜔𝑠𝑡)𝑑𝑡 (14)

and where 𝑛 is the number of stimulus periods covered during the
integration time. The described mathematical model is integrated nu-
merically using the forward Euler method with a time step 𝛿𝑡 = 0.005.
For statistical accuracy, all computational results are presented below
have been averaged over 50 realizations of the coupled system for any
given set of the model parameters.

3. Results

In what follows, we systematically analyze the impact of the as-
trocyte dynamics on the weak signal detection performance of the
dressed-neuron in the considered bipartite system (Fig. 1). To demon-
strate the role of astrocyte explicitly, we first consider the case of an
isolated neuron where its connection with astrocyte is blocked and
assumed that it is only subjected to weak periodic signal and noise.
Obtained results are presented in Fig. 2 which depicts, in panel (a), the
variation of Fourier coefficient 𝑄 versus noise intensity 𝐷. It is seen
that 𝑄 follows a bell-shaped performance curve, so-called SR, reaching
maximum values for a particular range of 𝐷. This indicates that the
presence of an optimal noise level in the system may result in strong
correlation between the output spike pattern and the weak input signal.
To explore such correlation and the underlying mechanism of the 𝑆𝑅
in the considered model neuron, we plot output voltage traces of the
isolated neuron along with the weak input signal in panel (b) for five
different selected points on the 𝑆𝑅 curve as marked with 𝑏1–𝑏5 in panel
(a). It is seen in the left side of panel (b) that the spiking activity of
the model neuron exhibits a pronounced increase as the noise intensity
increases. Since such a long-term spiking behavior of the neuron seems
to be noisy and it is hard to follow whether the neuron fires spikes in a
manner correlated with the weak signal, we explore randomly selected
epochs (blue boxes) of the firing patterns and plot them on the right
panels of Fig. 2(b). It is obvious that the isolated neuron is almost in a
quiescent state for small values of 𝐷 because such noise levels (𝑏1) are
not enough strong to frequently excite the neuron. With the increase of
noise (at 𝑏2), the neuron still fires sparsely but we observe that all the
firings occur almost at the same phase of the weak periodic input signal,
indicating that such noise levels trigger a phase-locked neuronal firing
mode [76,77], which results in an increase of the correlation coefficient
𝑄 (see panel (a)). It should be noted that this phase-locked activity
form was observed not only during the observed time interval, but also
4

throughout the entire activity period. With further increase of noise l
(at 𝑏3), the phase-locked mode still exists in neural dynamics but with
rare false spikes occurring at different phases of the stimulus (labeled
with red asterisks). It can be said that the increased spiking rate along
with the phase-locked firing mode for such an optimal noise level result
in a strong correlation between neuronal output and the input signal.
When the noise strength increases beyond the optimal level, we observe
that the phase-locking mode disappears from neural dynamics and the
number of false spikes increases significantly (at 𝑏4 and 𝑏5). This causes
a dramatical decrease in correlation between input and output of the
considered system as can be understood from variation of 𝑄 at such
noise levels in panel (a).

After introducing and explaining the 𝑆𝑅 effect in our isolated model
neuron dynamics above, we now turn our attention to the role of
astrocyte on weak signal detection performance of the dressed neuron.
Following the same protocol as in the case of isolated neuron, we
computed the variation of 𝑄 as a function of 𝐷 for a fixed coupling
strength (𝜆) among astrocyte and neuron dynamics. Fig. 3(a) features
the obtained results. Interestingly, it is seen that a double 𝑆𝑅 with two
distinct peaks centered at different noise ranges occurs in the response
of the dressed neuron. To express the underlying mechanism of this
double 𝑆𝑅, we plot astrocytic feedback current (in cyan) and output
voltage traces of the dressed neuron (in black) along with weak input
signal (in green) in panel (b) for six different selected points on 𝑆𝑅
curve (marked with 𝑏1–𝑏6).

Compared with the isolated neuron, it is seen in the left column of
panel (b) that there exists a dramatic variation in the firing profile of
the dressed neuron as the noise strength 𝐷 increases. More precisely,
he dressed neuron exhibits sparse, burst-like and intense firing behav-
ors at low, moderate and high levels of noise, respectively. We believe
hat such astrocytic feedback induced multi-firing modes in neuron
ynamics may determine the emergence of double 𝑆𝑅 phenomenon.
or instance, when the noise level is low, the firing rate of the neuron
s not enough for the efficient release of Glu molecules in the synaptic
left, which then cannot be uptake by the astrocyte, so the production
f IP3 molecules within the astrocyte decreases. Accordingly, the IP3-
ependent calcium concentration in the astrocyte does not reach the
equired level to generate astrocytic output in the form of released
liotransmitters [78]. In practice, this results in lack of astrocytic
eedback and therefore at low noise levels, the neuron fires sparsely and
ncorrelatedly as in the case of an isolated cell (see panel 𝑏1) resulting
n low 𝑄.

On the other hand, when the neural activity increases further due to
ncreased noise an oscillating astrocytic output emerges (see left panels
f 𝑏2–𝑏4) arising from the excitatory–inhibitory coupling between neu-
on and astrocyte dynamics. In our model, it should be noted that while
euronal activity excites the astrocyte to generate an output signal, the
strocytic output lowers the excitability level of the neuron. This push–
ull mechanism results in a burst-like neuronal firing regime (𝑏2–𝑏3),
hich includes noise-induced firing periods and astrocytic output signal

nduced silent periods, or spiking regime (𝑏4) with only a few local
ilences in firing activity. As can be seen in the right panels of 𝑏2–𝑏4
he dressed neuron acts as in the case of isolated cell within the firing
eriods of these patterns, exhibiting phase-locked spiking activity at
ptimal noise strength (𝑏3). This indicates that the emergence of the
irst resonance peak of double 𝑆𝑅 is based on the same mechanism as
n the case of isolated neuron. Besides, the silent periods in the burst-
ike regime result in a decrease in resonance peaks compared with the
solated case, which refers to a lower weak signal detection quality (cf.
-axis in panels Fig. 2(a) and Fig. 3(a)).

Finally, the second resonance peak occurring at large noise re-
ion (𝑏4–𝑏6) can be understood by considering again the competition
etween neuronal excitation and astrocytic inhibition. Namely, the
ncreased noise first results in very high neural activity that induces

quick inhibitory astrocytic feedback signal to the neuron. Since the
oise is very large, the inhibition from astrocyte cannot silence the

arge noise-induced firing of the neuron but it decreases the spiking
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Fig. 2. Weak signal detection performance of the isolated neuron where its connection with astrocyte is blocked and assumed that it is only subjected to weak periodic signal
and noise. (a) Variation of Fourier coefficient 𝑄 with noise intensity 𝐷. (b) The voltage traces (black) of the neuron at various noise intensities marked with 𝑏1–𝑏5 in panel (a).
Here, while the first column shows long term activity of the model neuron, the second column demonstrates randomly selected short epochs (blue boxes) of the same voltage
traces shown in the left column along with the weak periodic input signal (green). As can be inferred from panels, a stable phase-locked firing mode exists in neural dynamics
until the noise reaches a certain level (𝑏3). With further increase of noise beyond this level, the false spikes occurring at negative phase of the stimulus (labeled with red asterisk)
decrease the correlation between the input signal and neuronal output. The frequency 𝜔𝑠 and amplitude 𝐴 of subthreshold signal are adjusted as 1.42 and 0.01, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
activity slightly by lowering the neuronal excitability further away
from the firing threshold. The overall effect is that the neuron still
continues triggering the astrocyte to generate an output which reaches
its maximum saturating level for very large noise levels. Such saturating
level is unable to cease the spiking activity as for low level of noise
described above and results in an almost constant maximum inhibitory
astrocytic signal as noise increases further (see blue cyan lines in left
panels marked with 𝑏5–𝑏6 of Fig. 3(b)). With such a stable inhibitory
feedback, the neuron achieves a stable excitability state where it be-
comes less excitable than the isolated neuron. Then, as shown in right
panels of 𝑏4–𝑏6, an optimal large noise induces the same phase-locked
spiking mode in neuron dynamics, resulting in the emergence of second
resonance peak of the double 𝑆𝑅 curve.

The above results clearly demonstrate that dynamics of an astrocyte
may induce double 𝑆𝑅 as well as may provide a control mechanism
for such resonance behavior. In order to further elaborate on this
assessment, we first investigate the effect of coupling strength between
the neuron and astrocyte by tuning the 𝜆 in Fig. 3. Obtained results are
presented in Fig. 4(a). It is evident that the dressed neuron can exhibit
double 𝑆𝑅 phenomenon only for an optimal range of 𝜆 and its effect is
more pronounced on the second resonance peak. More precisely, with
the decrease of 𝜆, the second resonance peak first shifts to the left (less
noise) and then collapses with the first resonance peak resulting in
disappearance of double 𝑆𝑅. On the other hand, although the increase
of 𝜆 does not effect significantly the width and location of the first
resonance peak, the second resonance peak shifts to the right (high
noise) with decreasing maximums and finally completely disappears
when 𝜆 exceeds a certain value (see red line in the left column).

To understand how 𝜆 has such a modulatory role on the resonance
behavior, we plot the 𝐼𝑎𝑠𝑡𝑟𝑜 feedback signal in panel (b) for various
representative values of 𝜆 at critical noise regions where the 𝑆𝑅 curves
reach their peaks (marked with 𝐷1 and 𝐷2 noise regions in panel (a)).
In 𝐷1 noise region, it is seen that 𝐼𝑎𝑠𝑡𝑟𝑜 exhibits an oscillatory profile
which, as explained above, induces burst-like firing behavior in neuron
dynamics if the astrocytic inhibition is strong enough to silence the
5

neuron for a certain period. Considering this, one can interpret that
the insignificance of 𝜆 on the first resonance peaks in 𝐷1 noise region
arises from the fact that the astrocytic inhibition is very strong and such
noise levels cannot overcome this inhibition. Thus, the neuron exhibits
almost exactly the same burst-like firing patterns for all considered
values of 𝜆 resulting in similar signal detection performance in 𝐷1
noise region. On the other hand, in 𝐷2 noise region, variation of 𝜆
causes various 𝐼𝑎𝑠𝑡𝑟𝑜 profiles which are first a DC-like with increasing
amplitude as 𝜆 increases and then an oscillatory mode for very high
level of 𝜆. (see bottom panel in Fig. 4b). Recall that this profile change
occurs due to the fact that 𝜆 induced amplified inhibition disrupts
balanced state in the excitatory–inhibitory interaction between neuron
and astrocyte. Since the required stable neuronal excitability condition
for the emergence of second resonance peak does not exist anymore
with the emergence of oscillatory 𝐼𝑎𝑠𝑡𝑟𝑜, double 𝑆𝑅 phenomenon dis-
appears from system behavior at large values 𝜆. The decrease and shift
in second resonance peaks with the increase of 𝜆 can be understood
by considering the optimal noise requirements to trigger the phase-
locked spiking behavior. Since the increased inhibition with large 𝜆
requires more noise, the second resonance occurs at higher noise levels
which cause the occurrence of false spikes more frequently in phase-
locking behavior. These increased number of false spikes decreases the
maximums in resonance peaks.

Next, we extend our analyses by investigating the influence of
internal dynamics of the astrocyte on the double 𝑆𝑅 phenomenon.
To do so, we explore the weak signal response of the dressed neuron
under the variation of 𝑟𝐼𝑃3 by scanning the lower and higher values of
𝐼𝑃 3 production rates. Obtained results are presented in Fig. 5(a). It is
seen that the double 𝑆𝑅 behavior appears only for moderate values
of 𝑟𝐼𝑃 3 and it turns into classical single peak 𝑆𝑅 at low and high
𝐼𝑃 3 production rates: in fact, the first and second resonance peaks in
double 𝑆𝑅 are suppressed respectively with increased and decreased
values of 𝑟𝐼𝑃3. To improve our understanding on the effect of 𝑟𝐼𝑃 3 on
resonance curves, we plot the traces of the 𝐼𝑎𝑠𝑡𝑟𝑜 feedback signal in
panel (b) for various representative values of 𝑟 in 𝐷 and 𝐷 noise
𝐼𝑃 3 1 2
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Fig. 3. Emergence of double stochastic resonance in a dressed neuron. (a) Fourier coefficient versus 𝐷 for a fixed coupling strength 𝜆 = 0.009 and 𝐼𝑃 3 production rate 𝑟𝐼𝑃 3 = 1.25.
b) Following the same description as in Fig. 2, we plot long (left column) and short term (right column) voltage traces (black) of the neuron at various noise intensities marked
ith 𝑏1–𝑏6 in panel (a). The astrocytic output signal (cyan) having slow dynamics and the relatively faster weak periodic input (green) are also superimposed into the plots. As

xplained in the main text, the underlying mechanism for the emergence of double 𝑆𝑅 in the dressed neuron is based on the astrocytic modulation of the neuronal excitability
hat triggers the phase-locked spiking mode in neuron dynamics at two different noise intensities. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
Fig. 4. The influence of neuron–astrocyte coupling strength on the weak signal detection performance. (a) 𝑄 versus 𝐷 for different values of 𝜆 and a fixed 𝑟𝐼𝑃3 = 1.25. (b)
Temporal profiles of 𝐼𝑎𝑠𝑡𝑟𝑜 emerging in low (𝐷1) and high (𝐷2) levels of 𝐷 defined in panel (a). Astrocytic feedback is shown for five selected 𝜆 values that are the same color
coded with the 𝑆𝑅 curves in the left panel. Note that the corresponding astrocyte activity with very high amplitude and oscillating profile is not shown in the right panel, as the
second resonance peak disappears when the lambda is too large, as seen in the left panel. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
s

regions where the 𝑆𝑅 curves reach their peaks (see panel (a)). It is
seen that 𝐼𝑎𝑠𝑡𝑟𝑜 emerges in 𝐷1 noise region with an oscillating profile
and the increase in 𝑟𝐼𝑃 3 enlarges both lifetime and amplitude of 𝐼𝑎𝑠𝑡𝑟𝑜.
Such modulation of astrocytic feedback indicates that the oscillatory
𝐼𝑎𝑠𝑡𝑟𝑜 induced burst-like neuronal firing activity patterns includes longer
silent periods resulting in decreased weak signal detection performance
as 𝑟𝐼𝑃3 increases in 𝐷1 noise region. On the other hand, in 𝐷2 high
noise region, 𝐼𝑎𝑠𝑡𝑟𝑜 exhibits first an oscillatory profile and switches to
DC-like profile when 𝑟𝐼𝑃 3 increases, as it is seen in bottom panel of
Fig. 5(b). Also note that 𝐼 does not change very much with further
6

𝑎𝑠𝑡𝑟𝑜
increase in 𝑟𝐼𝑃3, saturating almost at a constant level. These observed
profile switch and saturation behaviors in 𝐼𝑎𝑠𝑡𝑟𝑜 clearly explain why the
econd resonance peaks tends to disappear as 𝑟𝐼𝑃3 decreases.

Then, to gain a better understanding about the effect of astrocyte
on weak signal detection performance, in Fig. 6, we illustrate the joint
role of the degradation rate of 𝐼𝑃3, i.e. 1∕𝜏𝐼𝑃3, and noise level (D) in a
3D plot of the 𝑄 behavior. When 𝜏𝐼𝑃 3 is very large (i.e. degradation
of IP3 is slow), the diffusion process of 𝐼𝑃3 which is responsible
for Ca2+ release from intracellular stores occurs very slowly. As a
consequence, these extremely slow kinetics are not enough to induce
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Fig. 5. The weak signal detection performance of the dressed neuron for various 𝐼𝑃3 production rates. (a) 𝑄 versus 𝐷 for different values of 𝑟𝐼𝑃 3 and a fixed 𝜆 = 0.009. (b)
Astrocytic feedback profiles for different 𝑟𝐼𝑃3 in 𝐷1 and 𝐷2 noise regions marked in panel (a). The feedback profiles are shown for the three considered 𝑟𝐼𝑃3 values that are the
same color coded with the 𝑆𝑅 curves in the left panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Fourier coefficient 𝑄 in parameter space 𝐷 and 1∕𝜏𝐼𝑃3. As seen in the 3D plot,
the neuron elicits single or double resonance behavior on D axis, depending on decay
constant 𝜏𝐼𝑃 3. The other astrocyte parameters and subthreshold signal parameters are
at their default values. (𝜔𝑠 =1.42, 𝐴=0.01, 𝜆=0.009 and 𝑟𝐼𝑃3=1.25). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

𝐼𝑎𝑠𝑡𝑟𝑜, and then the dressed neuron exhibits classical 𝑆𝑅 behavior as
in the isolated neuron state. On the other hand, 𝐼𝑃3 diffusion on a
fast temporal scale (i.e. when 𝜏𝐼𝑃 3 is small) can leads to the strong
release of Ca2+ from intracellular stores even if the neuron fires a
small number of spikes. Thus, when the noise level is low, the dressed
cell remains silent for a long time due to the high level of astrocyte
inhibitory feedback and then the weak signal detection performance of
the system becomes low due to the sparse firing activity. As the noise
level increases, the phase-locked mode emerges between the dressed
neuron’s membrane trace and the weak input signal, as the inhibitory
effect of the astrocyte is not sufficient to silence neuronal activity at
such these noise level. So far we have set the 𝜏𝐼𝑃3 value at a constant
optimal level and our analyses showed that the astrocytic feedback can
induce double resonance behavior when 𝜏𝐼𝑃3 is in the optimal range
and other parameters are properly adjusted. Fig. 6 also supports these
findings and it demonstrates that 𝜏𝐼𝑃 3 is a relevant parameter to control
the impact of the noise on 𝑆𝑅 phenomenon by providing single or
double 𝑆𝑅 behaviors.
7

4. Discussion

In summary, we have numerically investigated the effect of an
astrocyte on the stochastic resonance behavior of a neuron that is
initially subject to a source of uncorrelated noise. To do so, we used
a bipartite model that includes a neuron and an astrocyte and explored
the output of the neuron in response to a weak periodic input signal.

First, for comparison, we illustrated that the system exhibits the
classical 𝑆𝑅 behavior for the isolated neuron case in which the neuron
is not coupled with the astrocyte dynamics. Then, we showed that the
inherent dynamics of the astrocyte can lead to emergence of double
𝑆𝑅 behavior in neuron’s dynamics via the astrocytic feedback which
modulates synaptic transmission by changing the frequency of neuronal
firing. To explain the origin of intriguing crosstalk among these two
different cell types, we focused on the properties of the astrocytic
feedback, 𝐼𝑎𝑠𝑡𝑟𝑜, that can vary in amplitude and width depending on
relevant parameters of the astrocyte dynamics and on the different
presynaptic neuron firing modes. More precisely, our model shows how
the voltage of the presynaptic neuron acts on the astrocyte calcium dy-
namics via several processes including glutamate release at the synapse
and posterior uptake by the astrocyte and IP3 production. Then, after
calcium induced gliotransmitter release, it generates 𝐼𝑎𝑠𝑡𝑟𝑜 through A1R
channels in the presynaptic neuron which affects the distance to its
firing threshold and then modulating its firing pattern. Moreover, we
showed that such astrocyte modulated firing activity of this dressed
neuron leads to a second resonance peak by exhibiting phase-locked
activity with the weak signal input at high levels of noise intensity.

Finally, in order to observe what would be the impact of neuron–
astrocyte coupling strength and astrocyte intrinsic dynamics on such
double 𝑆𝑅, we analyzed in detail each relevant parameter. Our explo-
rations about the effects of the astrocyte–neuron coupling strength, 𝐼𝑃 3
production and degradation rate on double 𝑆𝑅 reveal that the double
𝑆𝑅 behavior may occur over some specific parameter ranges, and it
changes smoothly into classical 𝑆𝑅 behavior outside these ranges.

Our main findings here present a foresight about the potential
effect of astrocyte on weak signal detection and transmission in neural
systems which include neuron and astrocyte cooperation. Therefore,
the present study can be extended to study the effects of astrocyte
dynamics on different types of resonance phenomena in complex net-
works topologies including neurons and astrocyte as basic elements. We
hope that our results could be helpful for further understanding the
important roles which are served by astrocytes in neural information
processing.
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