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A B S T R A C T

Transitions from incoherent to coherent dynamical states can be observed in various real-world networks,
ranging from neurons to power-grids. These transitions can be explosive or continuous, with far-reaching
implications for the functioning of the affected system. It is therefore of the utmost importance to determine
the conditions under which such transitions occur. While a lot of studies in literature focused on the dynamical
and/or structural network properties that may generate explosive synchronization, here we report on the effects
of different initial conditions. To this purpose, we consider the minimal network of Kuramoto oscillator that
may display explosive synchronization, and we show that the nature of the transition changes from continuous
to discontinuous as phases are differently initialized. We also determine the critical coupling strength for
explosive synchronization, which also depends on the initial conditions.
1. Introduction

The study of synchronization has attracted interest since the 17th
century, when Christian Huygens described the collective behavior
(called by him ‘‘sympathy’’) of two coupled pendulum clocks [1].
Synchronization is a coherent state that is seen ubiquitously in real-
world systems [2], and is due to coupling or external stimuli [3,4].
Besides phase oscillators, networks of periodic and even chaotic os-
cillators can show synchronization as well [1,5]. Moreover, different
types of synchronization, such as complete, phase, lag, generalized, and
time-scale synchronization are considered [1]. Initial conditions may
affect the collective dynamics of the network of chaotic oscillators with
multistability features [6,7].

On the other hand, the Kuramoto model [8] has been widely
used as a paradigmatic model to investigate synchronization. This
model, indeed, can properly capture the dynamics of different systems
like power-grids [9], neuronal networks [10], and seismology [11].
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Some modified forms of the Kuramoto model, including the second-
order Kuramoto, Kuramoto–Sakaguchi, and stochastic Kuramoto mod-
els have been also investigated to reproduce some experimental obser-
vations [12,13].

A transition from asynchronous to synchronous state can be ob-
served in most networks, as the coupling strength increases [14].
In general, networks have a smooth and continuous route to syn-
chrony. However, in some circumstances an abrupt and discontinuous
transition to synchronization may occur [15], which was termed as
explosive synchronization (ES) [16]. A lot of studies have shown that
either different network properties (the graph structure, the coupling
scheme, a time-varying positive feedback) or the local (node) dynam-
ics may greatly influence the synchronization transition [16–18]. In
ES, the forward and backward critical coupling strengths are often
different; hence, a hysteresis loop is observed. Ref. [19] has shown
that the hysteresis is originally produced because of the changes in
960-0779/© 2023 Elsevier Ltd. All rights reserved.
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the basin of attraction of the synchronization manifold. ES has been
observed in electric power-grids, mercury beating-heart oscillators,
epileptic seizures, and conscious to unconscious transitions [16,20].

Although the general mechanisms behind ES have not yet com-
pletely identified, the interplay between the oscillators’ dynamic and
the network structure has been revealed as one of the causes [17].
Researchers have proposed four frameworks that relate network struc-
tural property to the oscillator dynamics feature [21]. These frame-
works include correlated degree-frequency [14], correlated frequency-
coupling [22], frequency gap conditioned [23], and adaptive schemes
[24]. Furthermore, recent studies have shown that the Kuramoto model
exhibits ES in networks with higher order interactions [25,26]. Other
phase, periodic, and chaotic oscillators have also been considered
[27,28], and abrupt transitions have been observed in some network
structures [27,29].

In this paper, the effect of initial conditions on explosive syn-
chronization is studied in networks with a small number of coupled
oscillators. First, in Section 2, the simplest network with ES is intro-
duced. Then, in Section 3, we investigate in details the order parameter
diagrams, the 2D representations of the order parameter, the occur-
rence of explosive synchronization, and the critical coupling strength
for the proposed network. Finally, results are explained and interpreted.
The work is concluded in Section 4.

2. Designing the simplest network exhibiting explosive synchro-
nization

Most studies have analyzed explosive synchronization from the
viewpoint of intrinsic frequency distribution [23], network structure
[30], and dynamical and structural relationship [14]. To the best of our
knowledge, the role of Initial Conditions (ICs) in explosive synchroniza-
tion has not yet been well identified. In small networks, as there are a
few coupled oscillators, the ICs’ effect can be actually visualized, and
therefore we consider here a simple network of Kuramoto oscillators
for analyzing the effect of different ICs on synchronization transition.

Star networks formed by a hub and ten or tree leaves were inves-
tigated in Refs. [14,31], respectively. From one side, star structures of
Kuramoto oscillators are the simplest network configuration where ES
may occur. From the other side, such configurations make the model
analysis straightforward, and allow investigating the effect of ICs. A
network of 𝑁 Kuramoto oscillators can be modeled by [14],

𝜃̇𝑖 = 𝜔𝑖 + 𝜆
𝑁
∑

𝑗=1
𝐴𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖), 𝑖 = 1, 2, 3,… , 𝑁 (1)

where 𝜃𝑖 and 𝜔𝑖 are, respectively, the phase and intrinsic frequency of
the 𝑖th oscillator, dot stands for temporal derivative, and 𝜆 and 𝐴 are,
respectively, the coupling strength and the network’s adjacency matrix.
To quantify synchronization, the oscillators are considered as 𝑁 points
distributed in the unit circle of a plane, and then the phase average is
calculated as

𝑟(𝑡)𝑒𝑖𝜙(𝑡) = 1
𝑁

𝑁
∑

𝑗=1
𝑒𝑖𝜃𝑗 (𝑡), (2)

where 0 ≤ 𝑟(𝑡) ≤ 1 is the order parameter that measures the similarity
of the oscillators’ phases during time. 𝑟(𝑡) ∼ 0 in the incoherent state,
whereas 𝑟(𝑡) = 1 when all oscillators are perfectly synchronized. 𝜙(𝑡)
denotes the average phase in time. Averaging 𝑟(𝑡) over time yields the
global order parameter 𝑅.

The dependence on ICs of the transition to synchronization is inves-
tigated ‘‘adiabatically’’, in the following way. At each specific choice
of initial conditions, the system is at first evolved for a time lapse
𝑇 , after which the value of the coupling strength 𝜆 is incremented
by 𝛿𝜆. A new simulation is then run over the same time lapse 𝑇
taking as initial condition the system’s state attained at the end of the
previous evolution. In other words, all the times that an increment in
2

Fig. 1. The evolution of the order parameter in the Kuramoto model with two
oscillators as a function of the coupling strength for a grid of initial points ranging from
−2𝜋 to 2𝜋 in System (3). All ICs lead to the same 𝑅 evolution, which is continuous.

Fig. 2. The evolution of the order parameter in the Kuramoto model with three
oscillators as a function of the coupling strength for (𝜃ℎ,0 = −0.99, 𝜃𝑙1 ,0 = 1.69, 𝜃𝑙2 ,0 =
−1.44) in Eq. (4). An explosive transition to synchronization occurs for the specific IC
considered.

the coupling strength is realized, the new system’s evolution occurs
adiabatically from the final state of the previous run. Unless otherwise
specified, in our simulations we fixed 𝑇 = 40,000 s and 𝛿𝜆 = 𝜆𝑚𝑎𝑥∕200.

Let us now consider, first, the case 𝑁 = 2 which is described by

𝜃̇𝑖 = 𝜔𝑖 + 𝜆 sin(𝜃𝑗 − 𝜃𝑖), 𝑖, 𝑗 = 1, 2 𝑎𝑛𝑑 𝑗 ≠ 𝑖. (3)

In this system, the effect of ICs can be appropriately shown in the
𝜃1,0 − 𝜃2,0 plane. The evolution of the global order parameter in a
grid of initial points ranging from −2𝜋 to 2𝜋 is presented in Fig. 1.
It shows that the system has the same 𝑅 evolution for all ICs. The
intrinsic frequencies are equal to 𝜔1 = 1 and 𝜔2 = 10 in Fig. 1.
Although further simulations show that considering different positive
and negative values of the intrinsic frequencies does not change the 𝑅
evolution.

Let us now move to consider, instead, star configuration with two
leaves and one hub (𝑁 = 3). The oscillators are furthermore taken in
the correlated degree-frequency framework that forces them to display
the 𝜔𝑖 = 𝑘𝑖 relation, with 𝑘𝑖 being the degree of the 𝑖th node. The model
can be rewritten as

𝜃̇𝑖 = 𝑘𝑖 + 𝜆
𝑁=3
∑

𝑗=1
𝐴𝑖𝑗 sin(𝜃𝑗 − 𝜃𝑖), 𝑖 = 1, 2, 𝑎𝑛𝑑 3. (4)

In this equation, 𝑘1 = 𝑘ℎ = 2 and 𝑘2,3 = 𝑘𝑙 = 1 when ℎ and 𝑙
stand for hub and leaf. Fig. 2 shows that this system may display an
explosive, discontinuous, transition for the specific initial condition
(𝜃 = −0.99, 𝜃 = 1.69, 𝜃 = −1.44).
ℎ,0 𝑙1 ,0 𝑙2 ,0
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Fig. 3. The evolution of 𝑅 by increasing the coupling strength from 0 to 1. The
maximum jump (𝛥𝑅𝑚) of the order parameter and the corresponding critical coupling
strength (𝜆𝑐 ) are clearly defined. 𝛥𝑅𝑚 determines the transition type: the higher the
maximum jump is, the more likely an explosive transition occurs.

Fig. 4. The evolution of order parameter as a function of the coupling strength for
100 different ICs of System (4); these ICs are in the interval [−𝜋, 𝜋]. The figure shows
that 𝛥𝑅𝑚, 𝜆𝑐 and the order parameter in 𝜆 = 0 depend on the value of the ICs. Also,
the synchronization measure has an explosive transition in some ICs with large values
of 𝛥𝑅𝑚 and 𝜆𝑐 .

3. Studying the effect of the initial conditions on the synchroniza-
tion transition

In the studied network, the three initial conditions are (𝜃ℎ,0, 𝜃𝑙1 ,0
, 𝜃𝑙2 ,0). For each set of ICs, the transition to synchronization is simulated.
The maximum jump (𝛥𝑅𝑚) of the order parameter in the 𝑅−𝜆 plane, as
shown in Fig. 3, is a good indicator of the transition type of the system.
As the maximum jump increases, the transition tends to be explosive.
So, for each set of ICs, this measure is calculated. Also, the critical
coupling strength 𝜆𝑐 corresponding to the maximum jump in the order
parameter is calculated.

For hundred sets of ICs, ranging in the interval [−𝜋, 𝜋], the order
parameter is calculated for 𝜆 ∈ (0, 1) and 𝛿𝜆 = 0.005. For all ICs,
the model is run for 40,000 s, and the parameter 𝑅 is calculated
for the last 200 s using the fourth order Runge–Kutta method. These
hundred evolutions of 𝑅 are plotted in Fig. 4. As one can see, some ICs
have continuous, and some have explosive synchronization transitions.
The figure also shows that the critical coupling strength value mainly
depends on the ICs. Moreover, most ICs with continuous transitions
have larger order parameters in 𝜆 = 0 and lower 𝜆𝑐 comparing to ICs
with explosive transitions. All ICs have equal 𝑅 for large values of the
coupling strength.

To better visualize the results, we consider 2D views where one
of the ICs is set to be constant. There are two cases, depending on
whether this IC is a hub or a leaf. As the network has a sine function in
the coupling term, the ICs are considered in the interval of [−2𝜋, 2𝜋],
3

as the observed patterns are periodically repeated. Fig. 5 shows 𝑅 in
the 𝜃𝑙1 ,0 − 𝜃ℎ,0 plane for different values of the coupling strength as
(a) 𝜆 = 0, (b) 𝜆 = 0.348, (c) 𝜆 = 0.364, (d) 𝜆 = 0.428, (e) 𝜆 =
0.468, and (f) 𝜆 = 0.512 where 𝜃𝑙2 ,0 = 0. In this figure, the red and
green colors show the minimum and maximum values of the measure,
respectively. In Fig. 5a, the points located in the light green region
have higher order parameter values when the coupling strength is
zero. Comparing different parts of the figure, the green regions become
darker continuously, as the coupling strength increases, following a
continuous transition from an asynchronous state to synchronous one.
However, the red region, standing for the low value of the order
parameter, becomes narrower suddenly and eventually disappears by
increasing 𝜆, marking the existence of an explosive synchronization.

To analyze the effect of the ICs, a grid of 1000 × 1000 initial points
is chosen in 𝜃𝑙1 ,0−𝜃ℎ,0 plane. On this plane, the length of the maximum
jump of the order parameter, 𝛥𝑅𝑚, is shown with colors (Fig. 6). In the
figure, the IC of the second leaf is (a) 𝜃𝑙2 ,0 = 0 and (b) 𝜃𝑙2 ,0 = 𝜋∕2.
The red color shows the minimum value (𝛥𝑅𝑚 ≈ 0.04), and the green
color displays the maximum value (𝛥𝑅𝑚 ≈ 0.48) of the measure. Fig. 6
shows that 𝛥𝑅𝑚 has a periodic pattern on the ICs surface, reflecting
the periodicity of the sine function in the coupling term. Comparing
Fig. 6(a) and (b), it is shown that changing 𝜃𝑙2 ,0 shifts the pattern, equal
to its value, both in 𝜃𝑙1 ,0, and 𝜃ℎ,0 dimensions. Also, this figure shows
where the leaf has the same IC with the constant leaf ((a) 𝜃𝑙1 ,0 = 𝜃𝑙2 ,0 = 0
and (b) 𝜃𝑙1 ,0 = 𝜃𝑙2 ,0 = 𝜋∕2 lines), the network continuously synchronizes
regardless of the hub IC. In 𝜃𝑙1 ,0 = 𝜃𝑙2 ,0 − 𝜋, the system has an abrupt
transition to synchrony (explosive synchronization).

The corresponding critical coupling strength is plotted in Fig. 7.
The measure’s variation is small. The red color shows the minimum
value (𝜆𝑐 ≈ 0.327), and the green color displays the maximum value
(𝜆𝑐 ≈ 0.467). This measure has a smaller interval with larger values
than Fig. 6. However, the pattern of Figs. 6 and 7 is similar. Moreover,
as discussed in Fig. 6, changing the second leaf IC shifts the patterns in
both ICs of the leaf and the hub dimensions.

In another test, a grid of 1000 × 1000 initial points is chosen
in 𝜃𝑙1 ,0 − 𝜃𝑙2 ,0 plane. In this case, the hub has a constant IC. Fig. 8
shows 𝛥𝑅𝑚 where the hub IC is (a) 𝜃ℎ,0 = 0 and (b) 𝜃ℎ,0 = 𝜋∕2.
The corresponding coupling strength of Fig. 8 is shown in Fig. 9. In
both Figs. 8 and 9, the red and green colors show the minimum and
maximum values of the measures, which are the same as Figs. 6 and 7.

As both the leaves are only connected to the hub, Fig. 8 is symmetric
around the identity line where the leaves have the same IC. If one
considers the continuation of the image, the figure has other lines of
symmetry as 𝜃𝑙2 ,0 = 𝜃𝑙1 ,0 + 2𝑘𝜋 in 𝑘 ∈ Z. Also, comparing Fig. 8(a)
and (b) shows that changing the hub IC moves the image toward
the 𝜃𝑙1 ,0 and 𝜃𝑙2 ,0 -axis, just like the effect of the leaf IC in Fig. 6.
The corresponding critical coupling strength also shows shifts in both
directions when 𝜃ℎ,0 changes.

4. Conclusions

In this paper, the effect of initial conditions on the synchronization
transition of the simplest network configuration of Kuramoto oscillators
was investigated. The analysis of the order parameter in the leaf-hub
(𝜃𝑙1 ,0 − 𝜃ℎ,0) plane showed that this measure has a vertical periodic
pattern. In some of these vertical regions, the order parameter smoothly
increased, which indicates a continuous transition. However, there
were some regions that suddenly become narrower as the coupling
strength increased, which instead is a mark of explosive synchroniza-
tion. Moreover, the maximum jump in the order parameter evolution
was considered as a measure to determine the transition type in the
planes of leaf-hub (𝜃𝑙1 ,0−𝜃ℎ,0) and leaf-leaf (𝜃𝑙1 ,0−𝜃𝑙2 ,0) initial condition
sets. The results showed that this measure has a periodic pattern and
some large values, which represent explosive synchronization. Also, the
critical coupling strength was considered as another measure. It was
shown that this measure is considerably dependent on the ICs. In the
𝜃𝑙1 ,0 − 𝜃ℎ,0 plane, both 𝛥𝑅𝑚 and 𝜆𝑐 had a vertical pattern. Also, the
diagonal pattern of the two measures in 𝜃𝑙1 ,0 − 𝜃𝑙2 ,0 plane showed that
these two ICs have the same effect.
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Fig. 5. The order parameter in the 𝜃𝑙1 ,0 − 𝜃ℎ,0 plane for different values of the coupling strength, 𝜆, while the other leaf’s IC is 𝜃𝑙2 ,0 = 0 in System (4). The coupling strength i
taken to be equal to (a) 𝜆 = 0, (b) 𝜆 = 0.348, (c) 𝜆 = 0.364, (d) 𝜆 = 0.428, (e) 𝜆 = 0.468, and (f) 𝜆 = 0.512. The red and green colors show the minimum and maximum values of the
measure, respectively. These figures show that the light green regions in 𝜆 = 0 become darker as the coupling strength increases, while the red regions become narrower suddenly
and eventually disappear. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. The maximum jump in the order parameter, 𝛥𝑅𝑚, in the 𝜃𝑙1 ,0 − 𝜃ℎ,0 plane; the other leaf’s IC is (a) 𝜃𝑙2 ,0 = 0 and (b) 𝜃𝑙2 ,0 = 𝜋∕2. The red and green colors show the minimum
and maximum values of the measure, respectively. The figure shows that 𝛥𝑅𝑚 has a periodic pattern on the ICs surface. Comparing panels (a) and (b) shows that changing 𝜃𝑙2 ,0
shifts the pattern in both dimensions 𝜃𝑙1 ,0, and 𝜃ℎ,0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. The critical coupling strength, 𝜆𝑐 , in the 𝜃𝑙1 ,0 − 𝜃ℎ,0 plane; the other leaf’s IC is (a) 𝜃𝑙2 ,0 = 0 and (b) 𝜃𝑙2 ,0 = 𝜋∕2. The red and green colors show the measure’s minimum
(𝜆𝑐 ≈ 0.327) and maximum (𝜆𝑐 ≈ 0.467) values, respectively. The patterns of this figure and those of Fig. 6 are similar. Once again, comparison of panels (a) and (b) reveals that
changing 𝜃𝑙2 ,0 shifts the pattern in both dimensions 𝜃𝑙1 ,0, and 𝜃ℎ,0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 8. The maximum jump in the order parameter, 𝛥𝑅𝑚, where the hub’s IC is (a) 𝜃ℎ,0 = 0 and (b) 𝜃ℎ,0 = 𝜋∕2; The red and green colors show the minimum and maximum values
of the measure, respectively. The figure shows that 𝛥𝑅𝑚 has a periodic and symmetric pattern on the ICs surface. Changing 𝜃ℎ,0 shifts the pattern in both dimensions 𝜃𝑙1 ,0, and
𝜃𝑙2 ,0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The critical coupling strength, 𝜆𝑐 , in the 𝜃𝑙1 ,0 − 𝜃𝑙2 ,0 plane; the hub’s IC is (a) 𝜃ℎ,0 = 0 and (b) 𝜃ℎ,0 = 𝜋∕2. The red and green colors show the measure’s minimum and
maximum values, respectively. The patterns of this figure and those of Fig. 8 are similar. Also, the hub’s IC can shift the pattern in both horizontal and vertical axes. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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