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A B S T R A C T

Recent advances in deep learning methods have enabled researchers to develop and apply algorithms
for the analysis and modeling of complex networks. These advances have sparked a surge of interest at
the interface between network science and machine learning. Despite this, the use of machine learning
methods to investigate criminal networks remains surprisingly scarce. Here, we explore the potential of graph
convolutional networks to learn patterns among networked criminals and to predict various properties of
criminal networks. Using empirical data from political corruption, criminal police intelligence, and criminal
financial networks, we develop a series of deep learning models based on the GraphSAGE framework that
are able to recover missing criminal partnerships, distinguish among types of associations, predict the amount
of money exchanged among criminal agents, and even anticipate partnerships and recidivism of criminals
during the growth dynamics of corruption networks, all with impressive accuracy. Our deep learning models
significantly outperform previous shallow learning approaches and produce high-quality embeddings for node
and edge properties. Moreover, these models inherit all the advantages of the GraphSAGE framework, including
the generalization to unseen nodes and scaling up to large graph structures.
1. Introduction

Machine learning methods have become increasingly prevalent in
scientific investigations across a broad range of disciplines, including
materials science [1,2], chemistry [3], physics [4], biology [5], and
sociology [6]. The recent proliferation of these techniques is tightly
related to the rapid growth in the amount of detailed information
about diverse systems, as well as the rapid development of artificial
intelligence approaches capable of handling the most varied types
of data. There is, in fact, a strong tendency in many scientific dis-
ciplines towards becoming more and more dependent on methods
that are capable of extracting useful knowledge from large-scale and
often heterogeneous datasets. Graphs and complex networks are prime
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examples of such data, and they have recently attracted the atten-
tion of researchers as one of the most compelling machine learning
paradigms [7,8]. Unlike time series or images, which are arranged
in arrays or grid structures, networks have more complex data struc-
tures, with nodes representing entities and edges indicating relation-
ships among them without any spatial association. This difference is
crucial because machine learning approaches that rely on spatial or
temporal relationships, such as convolutional [9] or recurrent neural
networks [10], are unsuitable for networks.

The primary challenge for the application of machine learning to
network data is thus to encode graph elements, such as edges and
nodes, into vector representations – a process known as graph repre-
sentation learning [11,12]. Early approaches to extract features from
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graphs focused on carefully-chosen combinations of network statis-
tics, such as centrality and clustering measures, but they soon proved
limited due to their lack of generalization. More recent approaches
are, however, much more flexible and can be grouped into two cate-
gories [7]: traditional graph embedding methods and graph neural net-
works. The first category includes representative embedding algorithms
such as DeepWalk [13] and node2vec [14], which use random walks
over the network to optimize the embedding vectors and make nodes
that tend to co-occur in these random walks close in the embedding
space. Graph neural networks [8], in turn, are perhaps the most recent
innovation in learning representations of graphs. These deep learning
models can generate custom representations based on the message-
passing framework (or the graph convolution operator), in which nodes
iteratively aggregate information from their local neighborhood to
output predictions in machine learning tasks in an end-to-end fashion.

Despite the widespread use of, and the many recent advances in
machine learning methods for graphs, applications involving criminal
networks are surprisingly scarce. This can likely be attributed to the
fact that the complex network framework has only recently entered
the toolbox of researchers working with crime data [15,16], although
it is already considered an ideal approach to investigating and under-
standing the intricate associations among criminals [15,17–20]. Indeed,
recent research has demonstrated that patterns exhibited by complex
networks related to criminal activities can tie criminal associations not
only with individual skills but also with the global structure of these
networks [21–33]. Similar to evidence at a crime scene, patterns among
networked criminals may serve as predictive features for identifying
missing links or properties of criminal associations, and they may even
provide indications for future criminal behavior.

However, whether this idea is productive or not remains little
explored, with one of the few exceptions being our recent work [34].
In that work, using data from political corruption, criminal police intel-
ligence, and criminal financial networks, we demonstrated that vector
representations of nodes and edges obtained from node2vec combined
with shallow statistical learning algorithms (logistic regression and 𝑘-
nearest neighbor) are effective in a series of predictive tasks related
to recovering missing criminal partnerships, distinguishing types of
associations, predicting the amount of money exchanged among crim-
inal agents, as well as anticipating partnerships during the growth of
criminal networks. Building on these same datasets, here, we further
improve the accuracy of predictive tasks on criminal networks using
deep learning models based on graph convolutional networks. Our
results show that these models produce much better embeddings, which
in turn yield significantly higher accuracies in most predictive tasks.
In particular, we find graph neural networks to improve accuracy by
approximately 30% in a task related to distinguishing among criminal,
non-criminal, and mixed relationships in a criminal intelligence net-
work (from 74% to 99%), and by approximately 20% in the accuracy
of predicting future partnerships in political corruption networks (from
75% to 90%). These deep learning models also improve the coefficient
of determination of the relation between the actual and predicted
amount of money exchanged among agents in a criminal financial
network by approximately 40% (from 0.64 to 0.90). Moreover, we
further demonstrate that graph neural networks can be used to predict
whether first-time offenders will become recidivist criminals with an
average accuracy of approximately 80%.

In what follows, we detail these results by first presenting our
datasets of criminal networks. We then describe our approach to frame
each machine learning problem, including the particular architecture
we employ for the graph convolutional networks, and report on the
performance of our models in comparison to previous results. Finally,
we conclude our article by offering a brief outlook on our findings
and some concluding remarks about the promising potential of deep
2

learning methods in the context of criminal networks.
2. Datasets

The empirical data used in our investigation is the same as that
reported in Ref. [34] and refer to four criminal networks. The first
two datasets of networks consist of individuals implicated in political
corruption scandals that occurred in Spain [33] and Brazil [24]. The
Spanish corruption network encompasses 437 thoroughly documented
cases of corruption that took place between 1989 and 2018, involving
2695 agents. Similarly, the Brazilian corruption network comprises 65
well-documented corruption scandals that took place between 1987
and 2014, involving 404 agents. In both corruption networks, each
node represents an agent engaged in a political scandal, while edges
connect pairs of agents who were involved at least once in the same cor-
ruption case. In addition to the final stages of these corruption networks
(when considering all scandals regardless of when they occurred), we
recreate each yearly stage of the growth process of these networks
produced by the discovery of scandals over the years. The third dataset
is a criminal intelligence network maintained by the Brazilian Federal
Police [23]. This network is created by using records of criminal
investigations conducted by the police such that each of the 23,666
individuals in this network is either a criminal or is suspected of illegal
activities related to federal crimes (drugs and arms trafficking, orga-
nized bank robbery, environmental crimes, crimes against elections and
financial systems, money laundering, among others). The connections
among these individuals indicate that they were involved in the same
police investigation or shared some personal relationships uncovered
during the investigations. Additionally, for the 8894 individuals be-
longing to the giant component of this network, the connections among
them are classified into three types: criminal (individuals solely related
for unlawful purposes), non-criminal (individuals associated for legal
purposes such as family or friendship ties), and mixed (individuals that
are simultaneously related for legal and illegal purposes such as family
members engaged in criminal activities). Finally, the fourth criminal
network used in our study refers to a money-laundering investigation
conducted by the Brazilian Federal Police from 2008 to 2014 [34]. In
this network, the 1126 nodes represent people or companies involved
in the money-laundering case, and the connections indicate the total
amount of money exchanged among them regardless of the cash flow
direction.

3. Results

We begin by presenting the essential ingredients that are shared
across all the deep learning models based on graph convolutional
networks we have used in our machine learning tasks. All our models
rely on the GraphSAGE framework [35] which, unlike the original
graph convolutional network proposal [36], is an inductive framework.
This means that models trained on a specific graph structure can be
directly applied to a graph with a different structure, as in the case
of previously unseen nodes. GraphSAGE also has the advantage of not
relying on the entire graph structure (i.e., the full-graph Laplacian) to
define the convolution operation, making this model scalable for large
graphs. Specifically, GraphSAGE samples a fixed number of neighbors
for each node up to a given number of hops, and then learns a function
that aggregates information from this sampled neighborhood and con-
catenates it with the node’s own information. If ℎ𝑘𝑢 is the information
vector of node 𝑢 after iteration 𝑘 with ℎ0𝑢 being the input node features,
we can formulate the GraphSAGE iterative process as

ℎ𝑘𝑢
= AGG𝑘

(

{ℎ𝑘−1𝑣 ,∀𝑣 ∈ 𝑢}
)

,

ℎ𝑘𝑢 = 𝜎
(

𝑊 𝑘 ⋅ CONCAT(ℎ𝑘𝑢 , ℎ
𝑘
𝑢

)
)

.
(1)

In these equations, 𝑢 represents the sampled neighborhood from node
𝑢, AGG𝑘 is the function used to aggregate the information vectors
sampled from 𝑢’s neighborhood into the vector ℎ𝑘 , 𝜎 is the rectified
𝑢
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linear unit (ReLU) activation function, CONCAT indicates the concate-
nation operation, and 𝑊 𝑘 is a weight matrix with learnable parameters.
q. (1) is iterated from 𝑘 = 1 to 𝑘 = 𝐾, with 𝐾 representing the
earch depth or the maximum number of hops. Each iteration 𝑘 is often

referred to as a convolutional layer of the model and one can view
the aggregated information ℎ𝑘𝑢 as neurons of a fully connected neural
etwork. We use the mean operator as the aggregation function in all
ur models due to its simplicity and performance in preliminary tests.
t is also worth mentioning that this choice is nearly equivalent to the
riginal graph convolutional network [36]. However, in addition to the
nductive advantage, the concatenation operation (which is not present
n the original graph convolutional network) represents a kind of skip
onnection between the GraphSAGE convolutional layers. This feature
s now common in several neural network architectures, and usually
acilitates the training process and improves the model’s generalization
nd accuracy [37].

After introducing the fundamental concepts of the GraphSAGE
ramework, our focus now turns to the task of recovering missing part-
erships in criminal networks. Specifically, we consider the final stages
f the Spanish and Brazilian corruption networks and the criminal
ntelligence network. To create our training sets, we randomly sample
fraction of the actual edges (𝑓train) from these networks and generate

n equivalent number of false connections. The remaining edges (𝑓test =
1 − 𝑓train) are combined with a sample of randomly generated false
connections of the same size to form the testing sets. Our objective is
thus to develop a model capable of accurately identifying true and false
connections within these testing sets. Fig. 1A illustrates the architecture
of our model. It begins by subjecting the feature vectors of two nodes
(A and B) to a two-layer GraphSAGE convolutional neural network.
Next, we concatenate the information vectors resulting from the graph
convolutions and feed them through two fully connected layers with
ReLU activation functions. The first graph convolution layer reduces
the dimension of input features to half its initial size, such that the
concatenated information from the two nodes has the same dimension
as the input features. Finally, we feed the information from the last fully
connected layer into a single-neuron layer with a sigmoid activation
function (corresponding to logistic regression), which outputs the final
classification – a prediction for whether nodes A and B are connected
or not. We initially use 80% of network edges for the training sets, and
to generate the input node features (ℎ0𝑢), we consider the embeddings
produced by node2vec [14] with 256 dimensions and other parameters
fixed to the default settings (walk length equals 5, number of walks per
node equals 10, and bias parameters set to 1) for the criminal networks
recreated using only edges in the training sets.

We use the Adam stochastic gradient descent method [38] with
a learning rate of 0.001 and employ the binary cross-entropy as the
loss function to optimize the model parameters. To mitigate the risk of
overfitting, we incorporate an early stopping regularization procedure
with a patience level of 100 epochs and include an L2 regularization
term in the loss function with a hyperparameter of 0.001. Fig. 1B shows
the accuracy (fraction of correctly classified edges) as a function of
the number of training epochs calculated from the training and testing
sets of the Spanish corruption network. The training score reaches
saturation around the maximum value after roughly 500 epochs, while
the testing score is slightly lower. The confusion matrix presented in
Fig. 1C further corroborates the efficacy of our model and demonstrates
its ability to accurately distinguish false and true connections within
the testing set. This robust discrimination power indicates that our
graph convolutional network produces embeddings for false and true
connections that are distinctly separated. To visualize these edge em-
beddings, we consider the layer’s output just before the classification
layer as edge embeddings and project these 256-dimensional vectors
into two dimensions using the uniform manifold approximation and
projection (UMAP) method [39,40]. Fig. 1D displays the projected
embeddings when considering the edges in the testing set of the Spanish
3

corruption network. True and false edges occupy distinct regions of
the UMAP plane with minimal overlapping, thereby explaining the
model’s excellent performance and the expressive capabilities of its
simple architecture.

We apply the same model used for the Spanish corruption net-
work to the Brazilian corruption and criminal intelligence networks
and obtain comparable good results. To summarize these findings, we
calculate the average accuracy in distinguishing false and true connec-
tions over twenty random instances of the train–test split procedure.
Fig. 1E presents these average scores for the three criminal networks.
Our models exhibit nearly perfect classification performance for both
corruption networks (99% for the Spanish and 98% for the Brazilian),
while the accuracy for the criminal intelligence network is 73%. We also
examine how the average scores depend on the fraction of edges in the
training sets. We vary the fraction of edges used to train the models
from 5% to 85% (in increments of 10%) and calculate the average
accuracy within the testing sets over twenty random instances of the
train–test split procedure. As shown in Fig. 1F, the accuracy of our
model improves with an increase in the number of training samples
for the three criminal networks, but with a distinct pattern among the
networks. The scores for corruption networks approach saturation after
considering about 60% of the data, while the accuracy for the criminal
intelligence network monotonically increases with the fraction of edges
in the training set. Furthermore, we verify how the dimension of the
input node features produced by node2vec affects the performance
of our models. To do so, we consider the 80%–20% train–test split
and vary the dimension of the input node features from 4 to 1024
with log-spaced increments (2𝑖 ∀𝑖 ∈ 2, 3,… , 10). We train the models
for each of these dimensions and calculate their average accuracies
over twenty random instances of the train–test split procedure, as
shown in Fig. 1G. Again, we find distinct behaviors for corruption and
criminal intelligence networks. While the scores of corruption networks
rapidly approach maximum values for embedding sizes around 256
and slightly decrease for larger embedding sizes, the accuracy for the
criminal intelligence network approximately linear increases up to an
embedding size equal to 256 and significantly decreases for larger
dimensions. These differences, combined with the smaller accuracy
obtained for the intelligence network, indicate that learning good
embeddings for this network is significantly challenging compared to
the case of corruption networks. Moreover, comparable to our previ-
ous work [34], the accuracies observed for the corruption networks
are slightly higher (99% vs. 98% and 98% vs. 96% for the Spanish
and Brazilian corruption networks, respectively), while performance
obtained with the criminal intelligence network is significantly worst
(73% vs. 87%). We also note that the learning curves of our deep-
learning models (Fig. 1F) are less steep than the ones obtained from our
previous shallow-learning approach. We believe this result reflects the
fact that deep learning models tend to be much more data-intensive to
train. Additionally, we remark that the criminal intelligence network
exhibits more complex and less redundant structures compared with
corruption networks that are formed by complete graphs connected by
the recidivism of agents [33]. This leads us to conjecture that exposing
our model to larger training samples related to the criminal intelligence
network, if they were available, would allow it to further improve its
performance.

Moving to our second application, we focus on the giant component
of the criminal intelligence network, for which we have information
about the nature of associations among agents. Our goal is now to
differentiate between criminal, mixed, and non-criminal relationships.
Fig. 2A displays the architecture of the model proposed for this task.
This model differs from the previous one only in the output layer,
which consists of three neurons, one for each type of association, with
softmax activation functions. For one instance of the 80%–20% train–
test split, we optimize the model parameters using the same strategy as
the previous task with the categorical cross-entropy as the loss function,
and input features generated from node2vec with 16 dimensions. The

training and testing scores as a function of the number of training
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Fig. 1. Recovering missing criminal partnerships with graph neural networks. (A) Schematic representation of the neural network architecture used for recovering a fraction of
edges randomly removed from criminal networks. Every node has a feature vector of a given size (the embedding size) that passes through a sequence of two graph convolution
(GraphSAGE with mean aggregator function) layers combined with rectified linear unit (ReLU) activation functions. The output of these convolution layers is a vector with half
the size of each node’s feature vector. These vectors are stacked together to represent a possible link between a pair of nodes (A and B in this example). This vector representation
for a possible edge is passed through two fully connected layers with the number of nodes equal to the embedding size. Finally, the edge classification (whether a true or a false
edge between nodes A and B) takes place in the output layer via a sigmoid activation function. (B) Example of training and testing scores (fraction of correct classifications) as a
function of the number of epochs used during the training stage. (C) Example of confusion matrix obtained when applying the trained model to the test set (rows indicate actual
labels). (D) Visualization of typical edge embeddings generated by our model where the different colors indicate true (purple) and false (orange) connections. We have considered
the output of the second layer of the fully connected layers as the final embedding for a possible edge and used the uniform manifold approximation and projection (UMAP)
technique to represent these vectors in a two-dimensional space. Results in panels (B-D) refer to one realization of the training procedure using the final stage of the Spanish
corruption network and an embedding size with 256 dimensions. The training set comprises 80% of the true network edges (randomly sampled) and the same number of false links
randomly generated, while the test set (which is never used during the training stage) is composed of the 20% remainder of the true network edges and the same number of false
links randomly generated. (E) Average model accuracy over the test set (with 20% of edges) calculated from twenty independent realizations of the training process (embedding
size with 256 dimensions) for the Spanish corruption, Brazilian corruption, and Brazilian criminal intelligence networks (the tiny error bars represent 95% confidence intervals).
(F) Average model accuracy over the test sets as a function of the fraction of edges in the training sets for each criminal network and embedding size with 256 dimensions. (G)
Average model accuracy over the test sets (with 20% of edges) as a function of the embedding size for each criminal network. In the two previous panels, markers represent the
average accuracy estimated from twenty independent realizations of the training process while the shaded regions stand for 95% confidence intervals. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
epochs are presented in Fig. 2B. We observe that these scores saturate
after about 2000 epochs at approximately 98% accuracy. Despite the
imbalanced edge classes (54% criminal, 22% mixed, and 24% non-
criminal), we do not use any strategy to balance the class distribution
in the training set. Still, as shown by the confusion matrix of Fig. 2C,
our model is nearly equally effective in distinguishing among the three
types of relationships. In this particular instance of the train–test split,
the model has only misclassified 3% of criminal and mixed relation-
ships. Compared to our previous shallow learning approach based on
the 𝑘-nearest neighbors classifier [34], which yielded an overall accu-
racy of approximately 74%, the current deep learning model represents
a significant improvement. This improvement is particularly impressive
4

for discriminating mixed relationships, for which the previous approach
exhibited an accuracy of only 55%. Once again, this high performance
can be directly attributed to the quality of edge embeddings produced
by the model. To visualize these embeddings in the test set, we consider
the output of the last layer before the classification layer and use the
UMAP to project these 16-dimensional vectors into a plane, as shown
in Fig. 2D. These results confirm the high quality of the embedding
produced and show that only a small portion of mixed and criminal
edges overlap in this two-dimensional projection.

We further verify how the performance of our model changes with
the number of training samples. We vary the fraction of edges in the
training sets from 5% to 85% in increments of 10%, and calculate
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Fig. 2. Predicting the type of relationship among agents in criminal networks with graph neural networks. (A) Schematic representation of the neural network architecture used
for determining the type of relationship among agents in the Brazilian criminal intelligence network. This architecture is similar to the one used for recovering missing links. The
only difference is in the last layer, which is now composed of three nodes with softmax activation functions. These output nodes represent the three possible types of relationships:
criminal, mixed, and non-criminal. (B) Example of training and testing scores (fraction of correct classifications) as a function of the number of training epochs. (C) Example of
confusion matrix obtained when applying the trained model to the test set of network edges (rows indicate actual labels). (D) Visualization of typical edge embeddings generated
by our model where the different colors indicate the three types of relationships (red: criminal, blue: mixed, and green: non-criminal). This visualization is obtained by considering
the output of the second layer of the fully connected layers as the embedding for edges in the test set and by mapping these vectors into a two-dimensional space with the uniform
manifold approximation and projection (UMAP) technique. Results in panels (B-D) are from one realization of the training procedure, initial embedding size with 16 dimensions,
and a training set comprising 80% of the network edges (randomly sampled and stratified by the three classes). The 20% remainder of the network edges are used as the test set.
(E) Average model accuracy over the test set as a function of the fraction of edges in training sets and embedding size with 16 dimensions. (G) Average model accuracy over
the test set (with 20% of edges) as a function of the embedding size. In the two previous panels, markers represent the average accuracy estimated from twenty independent
realizations of the training process while the shaded regions stand for 95% confidence intervals. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
the average accuracy within the testing sets over twenty random in-
stances of the train–test split procedure. The learning curve of our
model is depicted in Fig. 2E, where we observe that the accuracy
saturates after considering about half of the network edges in the
training sets. This behavior also differs from what was observed in our
previous shallow learning approach [34], which exhibited a monoton-
ically increasing accuracy with the fraction of edges in the training
sets. Additionally, we investigate the role of the embedding size used
with the node2vec algorithm for producing the input node features.
Specifically, we consider the 80%–20% train–test split again, vary the
embedding size of node2vec from 4 to 1024 with log-spaced increments
(2𝑖 ∀𝑖 ∈ 2, 3,… , 10), and calculate the average accuracy in the testing
sets over twenty random instances of the train–test split procedure for
each embedding size. These scores are presented in Fig. 2F, where
5

even small embedding sizes yield high accuracies. However, the max-
imum accuracy occurs when generating input node features with 16
dimensions.

For our third task, we examine the criminal financial network
associated with a money-laundering investigation. Our objective is to
predict the logarithm of the total money exchanged among agents in
this network. To accomplish this, we employ the same architecture as
in our previous models but modify the output layer to consist of a single
neuron with a linear activation function, representing linear regression.
The architecture of our model is depicted in Fig. 3A. Moreover, we
follow the same optimization procedure as before and first consider
one instance of the 80%–20% train–test split. The input features are
generated using node2vec with 32 dimensions, and we train our model
using the mean squared error (also known as the squared L2 norm)
as the loss function. Fig. 3B shows the coefficient of determination
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Fig. 3. Predicting the amount of money exchanged among agents in a criminal financial network with graph neural networks. (A) Schematic representation of the neural network
architecture used for predicting the total amount of money exchanged between pairs of agents in a criminal financial network. This architecture is similar to the ones used for
recovering missing links and predicting the type of relationship. The only difference is in the last layer, where a linear activation function is used for outputting the expected
amount of money exchanged between a pair of nodes. (B) Example of training and testing scores (coefficient of determination 𝑅2 between the actual and predicted values on
base-10 logarithmic scale) as a function of the number of epochs used during the training stage. (C) Example of relationship between the true and predicted base-10 logarithm
values of the amount of money exchanged among agents in the test set of the criminal financial network (the continuous line is the 1:1 relationship). (D) Visualization of typical
edge embeddings generated by our model where the color code indicates the actual values for the amounts of money. This visualization is obtained by considering the output of
the second layer of the fully connected layers as the embedding for edges in the test set and by mapping these vectors into a two-dimensional space with the uniform manifold
approximation and projection (UMAP) technique. Results in panels (B-D) are from one realization of the training procedure, initial embedding size with 32 dimensions, and a
training set comprising 80% of the network edges (randomly sampled). The 20% remainder of the network edges are used as the test set. (E) Average model 𝑅2 score over the
test set as a function of the fraction of edges in training sets and embedding size with 32 dimensions. (G) Average model 𝑅2 score over the test set (with 20% of edges) as a
function of the embedding size. In the two previous panels, markers represent the average 𝑅2 score estimated from twenty independent realizations of the training process while
the shaded regions stand for 95% confidence intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(𝑅2 score) of the association between true and predicted values in the
training and testing sets as a function of the number of training epochs,
which saturates at approximately 0.85 after around 2000 training
epochs. Fig. 3C displays the relationship between the true and predicted
values estimated for the testing set using the trained model. Notably,
the model’s performance is significantly superior to that obtained from
our previous shallow learning approach based on a 𝑘-nearest neighbors
classifier [34], which yielded an 𝑅2 score of approximately 0.64. We
also apply the UMAP algorithm to the output of the last layer before the
regression layer to visualize the embeddings generated by the model.
Fig. 3D shows this visualization, where we use a color map that refers to
the logarithm of the total amount of money of the corresponding edges
to color each data point. We observe that as we move radially away
from the center of the UMAP projection, the values associated with the
edges tend to decrease, illustrating the high quality of the embeddings
produced by our model.

To assess the reliability of the trained model, we investigate the
dependence of the 𝑅2 score with the fraction of edges used during
6

the training stage. Fig. 3E shows the learning curve of our model
estimated from testing sets with input features obtained from node2vec
with 32 dimensions. Each data point represents the average value of
the 𝑅2 score computed from twenty random instances of the train–
test split procedure, with shaded regions indicating 95% confidence
intervals. The results show that the 𝑅2 score approaches saturation
after including approximately half of the edges in the training sets.
Additionally, we investigate the impact of the embedding size used
with node2vec for generating input features on the 𝑅2 score. Fig. 3F
shows the average value of the 𝑅2 score calculated from testing sets
over twenty random instances of the 80%–20% train–test split as a
function of the embedding size. As depicted in this figure, we note
that embedding sizes ranging from 8 to 64 dimensions yield similarly
accurate predictions for the logarithm of the total money exchanged
among agents in the criminal financial network. Embedding sizes below
8 result in considerably lower 𝑅2 scores, while embedding sizes above
64 dimensions only produce slightly lower scores.
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Fig. 4. Predicting future partnerships among known agents in corruption networks. (A) Schematic representation of the neural network architecture used to determine future links
among agents in corruption networks. This architecture is the same one used for recovering missing links and comprises a block of two graph convolution layers, followed by
a concatenation of node embeddings, which are then forwarded into a block of fully connected layers whose output node is responsible for the edge classification. (B) Example
of training and testing scores (fraction of correct classifications) as a function of the number of epochs used during the training stage. (C) Example of confusion matrix obtained
when applying the trained model to the test set (rows indicate actual labels). (D) Visualization of typical edge embeddings generated by our model where the different colors
indicate true (purple) and false (orange) connections. We have considered the second layer of the fully connected layers as the final embedding for a possible edge and used the
uniform manifold approximation and projection (UMAP) technique to represent these vectors in a two-dimensional space. Results in panels (B-D) represent one realization of the
training procedure using the Spanish corruption network with scandals that occurred up to the year 2014 and an embedding size with 256 dimensions. The training set comprises
all network edges that occurred up to the year 2014 and the same number of false links randomly generated. The test set includes edges among known nodes (those emerging
before 2014) that will arise in the network’s future (edges occurring after 2014) and the same number of randomly generated false links that do not appear in the network’s future.
(E-F) Average model accuracy over the test sets when considering different years of the Spanish and Brazilian corruption networks as well as different embedding sizes. Each cell
in these matrix representations indicates the average accuracy (represented by a color code where gray cells indicate nonsignificant accuracies) over the test set estimated from
twenty independent realizations of the training process for a given threshold year (columns) and a given embedding size (rows). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Our fourth task tackles the more challenging problem of predicting
future criminal partnerships in corruption networks. We focus on the
two corruption networks because for them we have information on
their growth over the years, wherein new nodes and edges are added
with the discovery of new corruption scandals. Assuming that 𝐺𝑦 rep-
resents one of these networks after incorporating all scandals up to the
year 𝑦, we consider all network edges and a random sample of the same
size of false connections as the training set. Next, we extract all future
connections among nodes already present in 𝐺𝑦 and a random sample
of false future connections of the same size to generate the testing set.
Our goal is to train a model capable of distinguishing between true
and false future criminal partnerships in corruption networks. To do
7

so, we consider the same model architecture used to recover missing
relationships in our first task, as shown in Fig. 4A. We optimize the
model parameters with the same procedures used before and use the
binary cross-entropy as the loss function. However, because the set of
true and false future connections is smaller than the data used in our
previous tasks (hundreds versus thousands of samples), we intensify
the regularization procedures by setting the patience level to 10 epochs
and the L2 regularization hyperparameter to 0.002 in order to avoid
overfitting.

Initially, we consider the Spanish corruption network with all scan-
dals occurring up to the year 𝑦 = 2014. We further use node2vec with
256 dimensions to generate the input features of all nodes. Fig. 4B
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shows the evolution of the train and test scores (accuracy) with the
number of training epochs, where we observe the scores trend towards
high accuracy levels. We also estimate the confusion matrix by applying
the trained model to the test set. The results of Fig. 4C show that
the model correctly identifies all true future criminal partnerships and
misclassifies 7% of false future criminal partnerships as true ones. This
pattern is however not consistent across different realizations of the
train–test split procedure nor across different years. Overall, we find
that trained models are equally good at discriminating between true
and false future connections. Once again the good performance of our
model can be attributed to the good quality of edge embeddings it
produces. Fig. 4D visualizes these embeddings obtained from the testing
sets after applying the UMAP algorithm to the output of the last layer
before the classification layer. Similarly to the previous classification
tasks, the embeddings for true and false future connections tend to
occupy distinct regions of the UMAP projection.

To systematically investigate the performance of our model over
the evolution of the two corruption networks, we consider all network
stages between the years 2000 and 2015 of the Spanish network and
between 2000 and 2013 for the Brazilian network. For each of these
stages, we replicate the processes previously used for the year 2014
of the Spanish network. To produce the input features, we vary the
node2vec embedding size from 4 to 1024 in steps logarithmically
spaced (2𝑖 ∀𝑖 ∈ 2, 3,… , 10). For each pair of year and embedding
size, we generate twenty instances of the random sampling strategy
for generating false connections. We then train the model using the
same settings employed for the Spanish network in the year 2014 and
calculate the average accuracy from testing sets for each embedding
size and year of the two corruption networks. These results are depicted
in a matrix plot form in Fig. 4E and F for the Spanish and Brazilian
corruption networks, respectively. Each cell corresponds to the average
accuracy for a given value of network year (fixed for each column of
the matrix) and embedding size (fixed for each line of the matrix). The
color code is such that nonsignificant accuracy levels are indicated by
gray cells.

We observe that embedding sizes lower than 16 dimensions yield
models with accuracy levels close to the threshold of significance, or
even nonsignificant in particular years. On the other extreme, very
large embedding sizes also tend to produce less than optimal accuracies,
especially for the Brazilian corruption network. Intermediate embed-
ding sizes (256 dimensions for the Spanish and 64 for the Brazilian
network) yield the highest accuracies. These optimal accuracies are
significantly higher than those obtained from our previous shallow
learning approach based on logistic regressions [34]. That approach
yielded an average accuracy across the years of approximately 80%
for the Spanish network (versus 90% of the current approach) and
approximately 65% for the Brazilian network (versus 80% of the cur-
rent approach). We further note that the accuracies pass to a minimum
between 2009 and 2012 for the Spanish network and between 2005
and 2009 for the Brazilian network. This behavior was also observed
with the shallow learning approach [34] and reflects a percolation-
like transition these networks undergo during those time periods [33].
These transitions are characterized by the coalescence of large network
components, as well as by the inclusion of several new scandals. For
the Spanish network, the accuracy returns to a similarly high level, but
the Brazilian network behaves differently and remains at significantly
lower accuracy levels after the transition. While it is challenging to
precisely formulate an explanation for this difference, these results
suggest that partnerships among agents in the Brazilian corruption
network are more random compared to the Spanish case.

Thus far, we have focused on predictive tasks related to edge
features. In a final task, we shift our attention to predicting a node
property. Specifically, we address the problem of identifying future
recidivist agents in corruption networks, which are agents involved in
8

more than one corruption scandal. Prior research has established that
the recidivist rate in a model of corruption networks is a critical pa-
rameter for the network structure [33]. Recidivist rates that fall below a
given critical value lead to excessively fragmented corruption networks,
while rates exceeding this critical value result in overly connected
networks [33]. Intriguingly, real corruption networks operate in close
proximity to this critical point [33]. In addition to its significance for
network structure, the identification of potential recidivist agents can
be of great interest to police intelligence operations. To properly for-
mulate this problem and produce the training sets, we consider all past
recidivist and non-recidivist agents present in the giant components of
the two corruption networks 𝐺𝑦, after including all scandals up to a
specified year 𝑦. In turn, our testing sets are generated by considering
all agents belonging to the giant component of 𝐺𝑦 that will become
recidivists in the network’s future and a random sample of the same size
of agents who will not become recidivists (agents in this sample are ex-
cluded from the training sets). In contrast to the previous tasks, where
input features from two nodes are simultaneously used, the model
architecture we use for identifying recidivist agents only employs the
input features for a single node. This architecture is depicted in Fig. 5A.
First, the feature vector of a given node (A) is subjected to a two-layer
GraphSAGE convolutional neural network. In this network, the first
layer reduces the dimension of the input features to half of its initial
size. The outcome of these graph convolutions is then passed through
two fully connected layers with ReLU activation functions. Finally, the
information from the last fully connected layer is fed into a single-
neuron layer with a sigmoid activation function, corresponding to
logistic regression. This layer outputs the node classification, predicting
whether the node is a recidivist or not.

To illustrate the training process, we consider the giant component
of the Brazilian corruption network with scandals up to 2011, which
is also illustrated in Fig. 5A. In this figure, gray nodes represent non-
recidivist agents, orange nodes indicate past recidivists, and purple
nodes represent agents that will become recidivists in the future of the
network. We optimize the model parameters using the binary cross-
entropy as the loss function, along with an L2 regularization term
with a hyperparameter set to 0.001. To mitigate the risk of overfitting,
we further adopt an early stopping regularization procedure with a
patience level of 5 epochs. Moreover, we use node2vec with 256
dimensions to generate input features for all nodes. Fig. 5B presents
the accuracy in the training and testing sets, while Fig. 5C reports the
confusion matrix estimated from the testing set. The accuracy in the
training set quickly approaches the maximum value, while the testing
score plateaus at a lower level, around 88%. The confusion matrix
shows that the model correctly identifies all non-recidivist agents, but
misclassifies one-fourth of recidivist agents as non-recidivists. As in the
previous tasks, we consider the output of the last layer before the clas-
sification layer as the node embedding and apply the UMAP algorithm
to project these vectors into a two-dimensional space. Fig. 5D displays
this projection estimated from the testing set. We observe that non-
recidivist and future recidivist agents tend to occupy distinct regions
of the UMAP plane. However, the boundary between the two classes is
significantly fuzzier than those we have observed in our previous classi-
fication tasks. This not-so-clear separation between non-recidivist and
future recidivist agents translates into the misclassifications observed
in Fig. 5C.

To extend this analysis to the different years of the Brazilian and
Spanish corruption networks, we first calculate the evolution of the
number of future and past recidivist agents in their giant components.
The results of Fig. 5E show that having a nonnegligible number of
past recidivist agents in both networks takes some time. Specifically,
the number of past recidivists surpasses that of future recidivists after
2009 for the Spanish network and after 2008 for the Brazilian network.
Therefore, in order to ensure sufficient training samples, we limit our
attention to the giant components from the years 2010 and 2009 for

the Spanish and Brazilian networks, respectively. For each stage of the
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Fig. 5. Predicting future recidivist agents in corruption networks. (A) Schematic representation of the neural network architecture used to determine whether an agent will become
a recidivist in the network’s future (that is, whether a criminal will be involved again in future corruption scandals). This architecture is similar to the ones used in classification
tasks at the edge level, but instead of concatenating node representations for creating edge representations, we directly forward the output of graph convolution layers to the
two fully connected layers. The node classification occurs in the output layer via a sigmoid activation function. (B) Example of training and testing scores (fraction of correct
classifications) as a function of the number of epochs used during the training stage. (C) Example of confusion matrix obtained when applying the trained model to the test set
of network nodes (rows indicate actual labels). (D) Visualization of typical node embeddings generated by our model where the different colors indicate whether nodes are future
recidivists (purple) or not (gray). This visualization is obtained by considering the output of the second layer of the fully connected layers as the embedding for nodes in the
test set and by mapping these vectors into a two-dimensional space with the uniform manifold approximation and projection (UMAP) technique. Results in panels (B-D) represent
one realization of the training procedure using the giant component of the Brazilian corruption network with scandals that occurred up to 2011 and an embedding size with 256
dimensions. The training set comprises all nodes that emerged up to the year 2011 and labels indicating whether or not these nodes are recidivist agents. The test set comprises
nodes that will become recidivist agents in the network’s future (after 2011) and the same number of randomly sampled nodes that will not become recidivists. (E) Number of
future and past recidivist agents in the giant component of the Spanish and Brazilian corruption networks as a function of time. (F) Average model accuracy over the test sets
when considering different years of the Spanish and Brazilian corruption networks as well as different embedding sizes. Each cell in these matrix representations indicates the
average accuracy (represented by a color code where gray cells indicate nonsignificant accuracies) over the test set estimated from twenty independent realizations of the training
process for a given threshold year (columns) and a given embedding size (rows). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
networks from these years, we optimize the model parameter for dif-
ferent embedding sizes in the node2vec algorithm (2𝑖 ∀𝑖 ∈ 2, 3,… , 10),
which we use to generate the input node features. Furthermore, we
replicate the training processes in twenty random instances to calculate
the average accuracy of the model in the testing sets. The resulting
scores are presented in the matrix plots of Fig. 5F for both the Spanish
and Brazilian networks. We observe that the fractions of correct classifi-
cations are almost always lower than 70% for embedding sizes smaller
than 128 dimensions, with some cases not reaching the significance
level of 50%. Only higher embedding sizes produce scores above 80%.
9

Additionally, we verify that the misclassification of future recidivists as
non-recidivist agents reported in Fig. 5C is not an incidental feature of
the Brazilian network in 2011, but instead, it is a pattern we observe in
all years of both networks. In other words, our model exhibits a trend of
systematically not identifying some future recidivist agents. We believe
this failure indicates that the recidivism of criminal agents cannot be
solely attributed to the topological properties of corruption networks.
In our case, we only have information about the structure of these
criminal networks. However, it would be an intriguing possibility for
future research to investigate whether additional information, such as



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 172 (2023) 113579H.V. Ribeiro et al.

o
p
(
f
S
o
o
(
i
i
t
l
n
a
g
m
a
n
u
s

the political parties or geographic locations of individuals involved in
corruption scandals, would result in higher scores, or if it would reveal
that recidivism in criminal networks has an intrinsic non-deterministic
nature.

4. Discussion

We have presented a series of applications of graph neural networks
for predictive tasks related to various properties of criminal networks.
By using data from two corruption networks and one criminal in-
telligence network, we have demonstrated that a simple architecture
consisting of two GraphSAGE convolutional layers, followed by two
fully connected layers and a final output layer, can accurately recover
missing criminal partnerships in a static setting where some edges are
randomly removed. A very similar model has also proven effective in
distinguishing among criminal, mixed, and non-criminal associations
between individuals in the giant component of a criminal intelligence
network. In addition to achieving good results with classification and
link prediction tasks, we have shown that our models can be easily
adapted to regression tasks that seek to determine the total amount
of money exchanged among agents in a criminal financial network.
In this case, our models have also produced high-quality predictions.
Beyond being useful in static settings, our models based on GraphSAGE
convolutional networks also exhibit predictive power for anticipating
dynamic properties of edges and nodes during the growth dynamics
of corruption networks. We have demonstrated that these models can
predict future partnerships among known agents in corruption net-
works with significant accuracy. Additionally, our models proved useful
in identifying future recidivist agents in corruption networks, again
with significant accuracy. In all predictive tasks, we have verified that
the quality of our predictions is directly attributed to the quality of
the node and edge embeddings produced by our models. Specifically,
using a dimension reduction technique, we have shown that the vector
representations produced by our models for different classes related
to edge and node properties and the existence or absence of links
between nodes tend to occupy distinct regions of the embedding space.
Similarly, in the case of the regression task related to the total amount
of money exchanged among agents in a criminal financial network, we
have found the embeddings produced by our models to consistently
reflect the predicted property.

With the exception of the task of predicting future recidivist agents
in corruption networks, for which we have no comparative work to
discuss, and missing links in a criminal intelligence network, we have
demonstrated that all of our deep learning models significantly out-
perform our previous shallow learning approach based on node2vec,
logistic, and 𝑘-nearest neighbor models [34]. Specifically, we have
bserved an improvement of approximately 30% in the accuracy of
redicting the type of relationships in a criminal intelligence network
from 74% to 99%), of about 20% in the accuracy of anticipating
uture partnerships in corruption networks (from 80% to 90% in the
panish network and from 65% to 80% in the Brazilian network), and
f approximately 40% in the regression task of predicting the amount
f money exchanged among agents in a criminal financial network
adjusted 𝑅2 from 0.64 to 0.90). Furthermore, our models naturally
nherit all the computational advantages of the GraphSAGE framework,
ncluding its inductive and expressive capabilities, as well as the ability
o scale to large graph structures. The inductive property is particu-
arly interesting for practical applications in scenarios where criminal
etworks are growing, as it allows the trained model to be directly
pplied to previously unseen nodes. Although the use of node2vec to
enerate the input features of each node limits this property in our
odels, we believe that one can restore this capability by directly

ggregating input features in the neighborhood of previously unseen
odes and attributing these aggregated vectors as the input features to
nseen nodes. Moreover, these models can be easily adapted to consider
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impler topological properties as input features, which can be promptly
evaluated for previously unseen nodes, or even more interestingly, to
include other node features not directly related to the network. Simple
examples include demographic information about criminal agents, such
as age, location, and gender, but could also scale to more complex
features such as text embeddings of the available criminal files or other
textual information related to police investigations.

In conclusion, our work showcases the immense potential of deep
learning models in exploring, predicting, and even forecasting proper-
ties of criminal networks. The models developed here not only provide
significant improvements over previous approaches but may also in-
spire further research in this area. With the increasing complexity
of criminal activities, the applications of such models could aid law
enforcement agencies in their investigations, and in doing so provide
valuable insights and guidance.
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