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A B S T R A C T

The interplay between awareness diffusion and epidemic spreading has been an active topic of research in
recent years. Studies have shown that group interactions are an important consideration in contagion processes,
and that thus higher-order interactions should be introduced into epidemic modeling. Research has also shown
that individual responses to an unfolding epidemic are often strongly heterogeneous. We therefore present a
two-layer network model, where the diffusion of awareness unfolds over 2-simplicial complexes in one layer,
and the actual epidemic spreading unfolds over pairwise physical contacts in the other layer. The model takes
into account individual differences in the degree of acceptance of information and self-protection measures
once the epidemic is perceived. We use the micro Markov chain approach to determine the epidemic threshold
of the model, which agrees well with the results obtained by Monte Carlo simulations. We show that the
synergistic reinforcement due to 2-simplicial complexes in the virtual layer can restrain epidemic spreading
by facilitating awareness diffusion, and moreover, that individual heterogeneity in the physical layer can
increase the epidemic threshold and decrease the size of epidemic transmission. However, heterogeneity in
the perception can also have the opposite effect because it inhibits the diffusion of awareness. Our results
reveal the intricate interplay between awareness diffusion and epidemic spreading, and we hope they can
help determine effective control measures.
1. Introduction

The outbreak of infectious disease is a typical public health emer-
gency and also becomes one of the major public safety issues that
humans are facing in the 21st century [1–3], such as SARS, Ebola
and COVID-19, and then it is necessary to adopt effective prevention
and control strategies to avoid the global pandemic in the field of
public health. Thus, the research on epidemic dynamics has attracted
extensive interest from scholars [4–8]. Meanwhile, the rapid devel-
opment of complex network theory has provided a powerful tool for
studying the topological characteristics and dynamical properties of
complex systems [9–13], where the nodes represent entities in the
system and links denote the relationship between entities. Recently,
many systems are often represented as multiple layers of closely related

∗ Corresponding authors.
E-mail addresses: 495951084@qq.com (M. Feng), cyxia@tiangong.edu.cn (C. Xia), matjaz.perc@gmail.com (M. Perc).

networks [14–17]. Information related to epidemics spreads rapidly on
social networks during the outbreak of infectious diseases owing to
the rapid growth of information technology. Individuals will take some
precautions to protect themselves when they are aware of epidemics,
such as wearing masks and reducing the travel to avoid being infected,
which inhibits the spread of infectious diseases to some extent [18–21].
Among them, Funk et al. [22] firstly investigated the coupled aware-
ness and epidemic transmission model, and they found that awareness
diffusion reduces the size of an infectious disease, but does not have
influence on epidemic threshold. To be particularly mentioned, Granell
et al. [23] analyzed the interplay between the epidemics and related
information or awareness based on the framework of multiplex net-
works, and indicated that there exists a meta-critical point dictated by
960-0779/© 2023 Elsevier Ltd. All rights reserved.
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Fig. 1. The diagram of awareness-epidemic coupling spreading in two-layered networks. The top layer represents the virtual layer, which describes the diffusion of awareness.
Nodes are either aware (𝐴) or unaware (𝑈). Shaded parts in the upper figure are the 2-simplex formed by three nodes. The green shaded part has only one aware node, which
oes not satisfy the propagation condition of the 2-simplex, while the red shaded part has two aware nodes so that information can diffuse by both the action of the 1-simplex
nd the 2-simplex. The bottom layer represents the physical layer, which describes the epidemic propagation, where nodes are either infected (𝐼) or susceptible (𝑆). We assume

that the two-layered networks are not weighted or directed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
the awareness and its virtual topology, and also the epidemic incidence
is decreased from that point. After that, Guo et al. [24] presented
a spreading threshold model that controlled by local awareness in
two-layered networks, and their results demonstrated that the local
awareness rate leads to an abrupt shift on epidemic outbreak threshold
and affects the ultimate scale of epidemic spreading. Recently, Wang
et al. [25] further investigated the effects of positive and negative
disease prevention messages on outbreak threshold and the scale of in-
fection when competing for dissemination in networks, they discovered
that the epidemic outbreaks and spreading are more effectively curbed
by facilitating the diffusion of positive disease prevention messages.

However, the above studies are often based on the pairwise inter-
actions between nodes on complex networks. In fact, the effects of
group interactions are prevailing in many biological [26–28], social
systems [29–33] and ecology [34–36]. Higher-order network struc-
tures could better characterize these systems and encode the group
interaction that contain multiple components [37–39]. As an example,
Iacopini et al. [31] proposed a simplicial social infection model on
higher-order networks, in which contagion can occur through pairwise
and higher-order interactions, and it was found that simplicial struc-
ture induced a discontinuous transition and a bistable phenomenon
appeared where susceptible and infected states coexist. Landry and Re-
strepo [40] analyzed the dynamics of Susceptible–Infected–Susceptible
(SIS) models on heterogeneous hypergraphs by using a mean field
approach, further exploring how the hyperedge structure affects the
onset of epidemics as well as bistability and explosive transitions. Most
of the researches on higher-order networks have been performed in
single-layer network. Thus, it is necessary to consider synergistic rein-
forcement mechanisms of higher-order interactions in the two-layered
model that simplicial awareness and epidemics coupled spreading.

Furthermore, the behaviors of individuals in many studies are gener-
ally treated homogeneously [41,42]. In other words, it is assumed that
different individuals have the same acceptance to external information
and the same intensity of response to infectious disease. Obviously, this
assumption does not match the reality. Each independent individual
has distinct behaviors and ideologies in the real world, i.e., there are
differences among individuals. Therefore, individual heterogeneity has
become an important factor for many researchers to consider during the
epidemic modeling [43–46]. For example, Nie et al. [47] introduced
inhibitory strength to study the heterogeneous response of individuals
after becoming aware of the epidemic and investigated the difference
of interlayer degree relativity in completely relevant and irrelevant
2

networks, they discovered that the epidemic threshold was higher in
Fig. 2. Transition probability trees for 3 states (𝑈𝑆, 𝐴𝑆, 𝐴𝐼). The probability 𝑟𝑖
denotes that an individual will not acquire epidemic awareness from any neighbors.
𝛿 represents the probability that aware individuals forget the epidemic awareness.
The probabilities 𝑞𝑈𝑖 and 𝑞𝐴𝑖 denotes that individuals in 𝑈𝑆 and 𝐴𝑆 states have not
been infected, respectively. 𝜇 denotes the probability that individuals who are infected
reverts to the susceptible state.

the case of full correlation. Pan et al. [48] explored the influence
of three different forms of individual heterogeneity on the spread of
epidemics, their experimental outcomes proved that the heterogeneous
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Fig. 3. Comparison of the proportion of infected individuals (𝜌𝐼 ) and aware individuals
(𝜌𝐴) as a function of 𝛽 utilizing MMCA and MC simulation experiments. The blue
and red solid lines are 𝜌𝐴 and 𝜌𝐼 obtained from MMCA, respectively. The blue and
red circles are 𝜌𝐴 and 𝜌𝐼 acquired from MC, respectively. The parameters are set as
= 0.2, 𝜆𝛥 = 0.4, 𝜇 = 0.4, 𝛿 = 0.5, 𝛼 = 2 and 𝜂 = 2. All outcomes are averaged over 100

independent runs.

control parameters of the information layer can result in an abrupt
transition to outbreak threshold, but the heterogeneous parameters of
the epidemic layer and the response of individuals only influence the
epidemic threshold at higher stages.

Motivated further by the above works, we present a model of aware-
ness and epidemics coupled spreading that consider the heterogeneous
responses of individuals to explore the mutual interaction between
awareness and epidemics in multiplex networks. We construct the
virtual layer as a 2-simplicial complex network [31,49], where the
information related to the epidemic is diffused. Meanwhile, the phys-
ical layer characterizes the disease spreading within the population.
Then, we utilize microscopic Markov chain approach (MMCA) to an-
alyze the model and obtain the epidemic threshold through theoretical
derivation. By comparing the outcomes of theoretical analysis with
experiments obtained by Monte Carlo (MC) simulation, it is observed
that MMCA can well predict our model. Numerical simulation results
indicate that introducing 2-simplex into the virtual layer can enhance
the outbreak threshold and decrease the proportion of eventual infected
individuals by promoting the diffusion of awareness. Furthermore, the
individual heterogeneity also affects the epidemic transmission to some
extent.

The remainder of this article is organized as follows. We first de-
scribe the two-layered network model in Section 2. Then, in Section 3,
we utilize MMCA to analyze the model and deduce the theoretical
expression of outbreak threshold. The effects of various parameters on
awareness and epidemic processes are analyzed by extensive numerical
simulations in Section 4. Lastly, we summarize this paper and propose
several potential outlooks in Section 5.

2. Description of the coupling model

In our work, we construct a model of simplicial awareness and
epidemic spreading in two-layered multiplex networks. Meanwhile, we
investigate the heterogeneous responses of individuals when receiving
information and facing epidemics based on the difference of nodes
degree in the network. As Fig. 1 shows, the top layer (virtual layer)
illustrates the diffusion of awareness, and the bottom layer (physical
layer) denotes the epidemic transmission. In addition, the nodes in
the two-layered networks present one to one correspondence but the
3

topology of different layers is distinct.
We structure the virtual layer as a 2-simplicial complex network,
and the diffusion of awareness is described as a UAU (unaware–aware–
unaware) process. Each node in this layer can be in either aware (𝐴)
r unaware (𝑈) state. At each time step, unaware nodes can obtain
nformation related with the disease by two ways. One is to obtain
nformation by its aware neighbors with probability 𝜆 through pairwise
nteractions (i.e., 1-simplex infection) and another is acquired by the
emaining two nodes in the 2-simplex who are both in aware state
ith an additional probability 𝜆𝛥 through the synergistic reinforcement

mechanism (i.e., 2-simplex infection). Besides, aware nodes may lose
awareness related with the epidemic and revert to the unaware state
again with probability 𝛿.

Then, in the physical layer, we employ the classical SIS (susceptible–
infected–susceptible) epidemic model to express the epidemic propaga-
tion. At each time step, each node can be in one of two states: infected
(𝐼) or susceptible (𝑆). Susceptible nodes will be infected if they have
infectious neighbors and convert to the infected state with a probability
of 𝛽. Meanwhile, infected nodes may revert to the susceptible state with
a probability of 𝜇.

It is worth noting that there are coupling interactions between the
two propagation processes in the top and bottom layer networks. On
the one hand, individuals who are infected in the physical layer will
immediately acquire awareness related to the epidemic; on the other
hand, individuals possessing the epidemic awareness in the virtual layer
will adopt certain self-protective actions to reduce their probability of
being infected. In addition, previous studies [16–18] usually assumed
that the nodes in the virtual layer would be aware of the epidemic
and take same precautions after receiving information, but in reality,
individuals do not fully recognize and accept the information obtained
from the outside world due to the differences between individuals. The
degree of acceptance of information and self-protection measures will
also have certain differences when epidemics are prevalent. In the two-
layered networks, the degree of nodes can reflect the activity intensity
and social ability of individuals, the greater the degree of nodes, the
higher their attention to real information. Therefore, we consider a
heterogeneous model based on the difference of nodes degree. To this
end, we introduce the parameter 𝜔𝑖 to indicate the acceptance of
information by individual 𝑖 and 𝛾𝑖 to regulate the probability that aware
individual 𝑖 being infected.

Firstly, the nodes in the virtual layer differ in their acceptance of
the obtained information according to the node degree and the number
of 2-simplex they belong to, i.e., the probability of converting the
information into their own consciousness is different. Thus, we define
𝜔𝑖 as

𝜔𝑖 =

(

1 − 1
𝑘𝑖 + 𝑘𝛥𝑖

)𝛼

. (1)

In Eq. (1), 𝑘𝑖 and 𝑘𝛥𝑖 denote the node degree of individual i and the
number of 2-simplex which individual i belongs in the virtual layer,
respectively. Individuals with greater degrees are more likely to accept
information. And 𝛼 ≥ 0 regulates the individual heterogeneity in the
virtual layer. For an individual, the influence of degree becomes larger
with 𝛼 increases. The acceptance level of information has no effect on
individuals when 𝛼 = 0.

Secondly, the nodes in the physical layer adjust the probability of
individuals being infected according to different degrees. Individuals
with more neighbors will take stronger self-protection measures after
realizing the epidemic. Then, we define 𝛾𝑖 as

𝛾𝑖 = (𝑘′𝑖)
−𝜂 , (2)

where 𝑘′𝑖 represents the node degree of individual 𝑖 and 𝜂 ≥ 0 controls
the individual heterogeneity in the physical layer. As 𝜂 increases, the
restrain effect of awareness on epidemic transmission increases. When
𝜂 = 0, awareness diffusion has no impact on the spread of epidemics.
Thus, 𝛽𝐴𝑖 can be described as follows:

𝐴 𝑈 ′ −𝜂
𝛽𝑖 = 𝛾𝑖𝛽𝑖 = (𝑘𝑖) 𝛽, (3)
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Fig. 4. Impacts of 𝛼 and 𝜂 on the awareness diffusion and epidemic spreading. Panels (a) and (b) depict 𝜌𝐼 and 𝜌𝐴 as a function of 𝛽 for various values of 𝛼 when 𝜂 = 2,
respectively. Panels (c) and (d) picture 𝜌𝐼 and 𝜌𝐴 as a function of 𝛽 for various values of 𝜂 when 𝛼 = 2, respectively. Other parameters are set as 𝜆 = 0.2, 𝜆𝛥 = 0.4, 𝜇 = 0.4, 𝛿 = 0.5.

Fig. 5. The full phase diagrams (𝛽 −𝛼) and (𝛽 − 𝜂) of 𝜌𝐼 and 𝜌𝐴, respectively. Panels (a), (b), (e) and (f) are outcomes acquired by MMCA. Panels (c), (d), (g) and (h) are outcomes
acquired by MC. In panels (a), (b), (c) and (d), 𝜂 = 2. In panels (e), (f), (g) and (h), 𝛼 = 2. The remaining parameters are 𝜆 = 0.2, 𝜆𝛥 = 0.4, 𝜇 = 0.4, 𝛿 = 0.5. All outcomes are
averaged over 100 independent runs and each point in the upper diagram lies within a grid of 50 × 50.
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Fig. 6. Epidemic threshold (𝛽𝑐 ) is described as a function of 𝛼 and 𝜂. In panel (a), 𝛽𝑐 as a function of 𝛼 with various 𝜂. In panel (b), 𝛽𝑐 is illustrated as a function of 𝜂 with
various 𝛼. Other parameters are set as 𝜆 = 0.2, 𝜆𝛥 = 0.4, 𝜇 = 0.4, 𝛿 = 0.5.
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where 𝛽𝑈𝑖 and 𝛽𝐴𝑖 denote the probability that unaware and aware
individuals may be infected by their infected neighbors, respectively.

3. Theoretical analysis based on MMCA

We employ MMCA to analyze our model theoretically and deduce
an expression for outbreak threshold 𝛽𝑐 . According to the description
of our model, infected nodes will become aware automatically so that
the 𝑈𝐼 state is excluded. Thus, nodes may be in the following three
state: 𝑈𝑆, 𝐴𝑆 or 𝐴𝐼 . At time step 𝑡, the probabilities that individuals 𝑖
being in the above three states are denotes as 𝑝𝑈𝑆

𝑖 (𝑡), 𝑝𝐴𝑆𝑖 (𝑡), and 𝑝𝐴𝐼𝑖 (𝑡),
espectively. In addition, each individual must satisfy the normalization
ondition 𝑝𝐴𝐼𝑖 (𝑡) + 𝑝𝐴𝑆𝑖 (𝑡) + 𝑝𝑈𝑆

𝑖 (𝑡) = 1 at single time step 𝑡.
Matrices 𝐴 = (𝑎𝑖𝑗 )𝑁×𝑁 and 𝐵 = (𝑏𝑖𝑗 )𝑁×𝑁 are used to denote

adjacency matrices among nodes in the top and bottom networks,
respectively. At time step 𝑡, we define 𝑟1𝑖 (𝑡) and 𝑟2𝑖 (𝑡) to represent the
probabilities that individual 𝑖 cannot acquire awareness related to the
epidemic from any of 1-simplex neighbors and 2-simplex neighbors,
respectively. Then, the probability 𝑟𝑖(𝑡) that individual 𝑖 cannot acquire
awareness from any aware neighbors at time step 𝑡 can be calculated by
multiplying 𝑟1𝑖 (𝑡) and 𝑟2𝑖 (𝑡). The probabilities 𝑞𝑈𝑖 (𝑡) and 𝑞𝐴𝑖 (𝑡) denote that
𝑈𝑆 and 𝐴𝑆 state individuals 𝑖 have not been infected by any infective
neighbors, respectively. Therefore, 𝑞𝑈𝑖 (𝑡), 𝑞

𝐴
𝑖 (𝑡), 𝑟

1
𝑖 (𝑡), 𝑟

2
𝑖 (𝑡) and 𝑟𝑖(𝑡) are

expressed as the following equations:

𝑞𝑈𝑖 (𝑡) =
∏

𝑗

(

1 − 𝑏𝑖𝑗𝑝
𝐴𝐼
𝑗 (𝑡)𝛽𝑈

)

, (4)

𝑞𝐴𝑖 (𝑡) =
∏

𝑗

(

1 − 𝑏𝑖𝑗𝑝
𝐴𝐼
𝑗 (𝑡)𝛽𝐴

)

, (5)

𝑟1𝑖 (𝑡) =
∏

𝑗

(

1 − 𝑎𝑖𝑗𝑝
𝐴
𝑗 (𝑡)𝜆𝜔𝑖

)

, (6)

𝑟2𝑖 (𝑡) =
∏

𝑗,𝑟

(

1 − 𝑐𝑖𝑗𝑟𝑝
𝐴
𝑗 (𝑡)𝑝

𝐴
𝑗 (𝑡)𝜆𝛥𝜔𝑖

)

, (7)

𝑟𝑖(𝑡) = 𝑟1𝑖 (𝑡)𝑟
2
𝑖 (𝑡), (8)

where 𝑝𝐴𝑗 (𝑡) = 𝑝𝐴𝑆𝑗 (𝑡)+𝑝𝐴𝐼𝑗 (𝑡). In Eq. (7), 𝑐𝑖𝑗𝑟 is equal to 1 if nodes 𝑖, 𝑗 and
𝑟 compose a 2-simplex, otherwise 𝑐𝑖𝑗𝑟 is equal to 0. In accordance with
the above definitions, the transition probability trees of nodes are in
5

each state can be constructed as shown in Fig. 2, and the state transition
equations can be obtained by using MMCA as
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑝𝑈𝑆
𝑖 (𝑡 + 1) = 𝑝𝐴𝑆𝑖 (𝑡)𝛿𝑞𝑈𝑖 (𝑡) + 𝑝𝐴𝐼𝑖 (𝑡)𝛿𝜇 + 𝑝𝑈𝑆

𝑖 (𝑡)𝑟𝑖(𝑡)𝑞𝑈𝑖 (𝑡)

𝑝𝐴𝑆𝑖 (𝑡 + 1) = 𝑝𝐴𝑆𝑖 (𝑡)(1 − 𝛿)𝑞𝐴𝑖 (𝑡) + 𝑝𝐴𝐼𝑖 (𝑡)(1 − 𝛿)𝜇

+ 𝑝𝑈𝑆
𝑖 (𝑡)

(

1 − 𝑟𝑖(𝑡)
)

𝑞𝐴𝑖 (𝑡)

𝑝𝐴𝐼𝑖 (𝑡 + 1) = 𝑝𝐴𝑆𝑖 (𝑡)
[

𝛿
(

1 − 𝑞𝑈𝑖 (𝑡)
)

+ (1 − 𝛿)
(

1 − 𝑞𝐴𝑖 (𝑡)
)]

+ 𝑝𝑈𝑆
𝑖 (𝑡)𝑟𝑖(𝑡)

(

1 − 𝑞𝑈𝑖 (𝑡)
)

+ 𝑝𝐴𝐼𝑖 (𝑡)(1 − 𝜇)

+ 𝑝𝑈𝑆
𝑖 (𝑡)

(

1 − 𝑟𝑖(𝑡)
) (

1 − 𝑞𝐴𝑖 (𝑡)
)

.

(9)

When 𝑡 → ∞, the awareness diffusion and epidemic spreading in
he coupled model will reach steady states. Thus, we can derive the
quations as follows:

𝑝𝑈𝑆
𝑖 (𝑡 + 1) = 𝑝𝑈𝑆

𝑖 (𝑡) = 𝑝𝑈𝑆
𝑖

𝑝𝐴𝑆𝑖 (𝑡 + 1) = 𝑝𝐴𝑆𝑖 (𝑡) = 𝑝𝐴𝑆𝑖
𝑝𝐴𝐼𝑖 (𝑡 + 1) = 𝑝𝐴𝐼𝑖 (𝑡) = 𝑝𝐴𝐼𝑖 .

(10)

At the steady state, the percentage of infected individuals is tend
o 0 as 𝛽 nears 𝛽𝑐 , which denotes the critical point for the onset of
pidemics. So, we assume that 𝑝𝐴𝐼𝑖 = 𝜖𝑖 ≪ 1. By simplifying Eqs. (4)
nd (5), we can obtain the following approximations:

𝑞𝑈𝑖 ≈ 1 − 𝛽𝑈
∑

𝑗
𝑏𝑗𝑖𝜖𝑗

𝑞𝐴𝑖 ≈ 1 − 𝛽𝐴
∑

𝑗
𝑏𝑗𝑖𝜖𝑗 .

(11)

Then, substituting Eq. (11) into Eq. (9) and removing the higher-
rder terms, we can obtain equations as follows:

𝑝𝑈𝑆
𝑖 = 𝑝𝐴𝑆𝑖 𝛿 + 𝑝𝑈𝑆

𝑖 𝑟𝑖
𝑝𝐴𝑆𝑖 = 𝑝𝐴𝑆𝑖 (1 − 𝛿) + 𝑝𝑈𝑆

𝑖
(

1 − 𝑟𝑖
)

𝜇𝜖𝑖 =
(

𝑝𝐴𝑆𝑖 𝛽𝐴 + 𝑝𝑈𝑆
𝑖 𝛽𝑈

)
∑

𝑗 𝑏𝑗𝑖𝜖𝑗 .

(12)

Because 𝑝𝐴𝐼𝑖 is close to 0 near 𝛽𝑐 , we get 𝑝𝐴𝑖 = 𝑝𝐴𝑆𝑖 + 𝑝𝐴𝐼𝑖 ≈ 𝑝𝐴𝑆𝑖 ,
𝑝𝑈𝑆
𝑖 ≈ 1 − 𝑝𝐴𝑖 . Inserting these quantifies, the third equation in Eq. (12)

can be further simplified as
∑

𝑗

{

[

1 −
(

1 − 𝛾𝑖
)

𝑝A𝑖
]

𝑏𝑗𝑖 −
𝜇
𝛽
𝛿𝑗𝑖

}

𝜖𝑗 = 0, (13)

where 𝛿𝑖𝑗 is the element of the identity matrix. We set the elements
of the matrix 𝛷 to be 𝜑𝑖𝑗 =

[

1 −
(

1 − 𝛾𝑖
)

𝑝A𝑖
]

𝑏𝑖𝑗 whose maximum
eigenvalue is 𝛬𝑚𝑎𝑥(𝛷). Therefore, we are able to convert the solution
of Eq. (13) into an eigenvalue problem for the matrix 𝛷 and calculate
the epidemic threshold as

𝛽𝑐 =
𝜇

. (14)

𝛬max(𝛷)
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Fig. 7. Impacts of 𝜆, 𝜆𝛥, and 𝑘𝛥 on the spread of awareness and epidemics. Panels (a) and (b) plot 𝜌𝐼 and 𝜌𝐴 as a function of 𝛽 for various values of 𝜆 when 𝜆𝛥 = 0.4, respectively.
anels (c) and (d) display 𝜌𝐼 and 𝜌𝐴 as a function of 𝛽 for various value of 𝜆𝛥 when 𝜆 = 0.2, respectively. Panels (e) and (f) present 𝜌𝐼 and 𝜌𝐴 as a function of 𝛽 for various values
f 𝑘𝛥 when 𝜆 = 0.2 and 𝜆𝛥 = 0.4, respectively. Other parameters are set as 𝜇 = 0.4, 𝛿 = 0.5, 𝛼 = 2, 𝜂 = 2.
c
M

n
i
h
(

According to Eqs. (13) and (14), it is clear that the self-protective
easures of individuals (𝛾𝑖) and the diffusion of awareness (𝑝𝐴𝑖 ) both

ffect outbreak threshold 𝛽𝑐 . Besides, the topological structure of the
hysical layer and the recovery probability 𝜇 also have some influence
n the threshold.

. Numerical simulation

According to the state transition equations in Eq. (9), when the
nitial setting is given and the system reaches a steady state, we
6

an calculate the proportions of aware and infected individuals by
MCA iterative computations as 𝜌𝐴 =

∑

𝑖

(

𝑝𝐴𝑆𝑖 +𝑝𝐴𝐼𝑖
)

𝑁 and 𝜌𝐼 =
∑

𝑖
𝑝𝐴𝐼𝑖
𝑁 ,

respectively. For the Monte Carlo (MC) numerical simulations, 𝜌𝐴 =
(𝑁𝐴𝑆+𝑁𝐴𝐼 )

𝑁 and 𝜌𝐼 = 𝑁𝐴𝐼
𝑁 , where 𝑁𝐴𝑆 and 𝑁𝐴𝐼 are the total amount of

odes in 𝐴𝑆 and 𝐴𝐼 states, respectively. Considering that our model
s based on the differences of nodes degree to study the individuals
eterogeneity, and thus we structure a scale-free simplicial complex
SFSC) network in the virtual layer [31,49], and we set 𝑁 = 1000,
𝑚 = 1, 𝑘 = 8 and 𝑘 = 3. The physical layer constructed as a BA
1 𝛥
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Fig. 8. The full phase diagrams (𝛽−𝜆) and (𝛽−𝜆𝛥) of 𝜌𝐼 and 𝜌𝐴, respectively. Panels (a), (b), (e) and (f) are outcomes acquired by MMCA. Panels (c), (d), (g) and (h) are outcomes
acquired by MC. In panels (a), (b), (c) and (d), 𝜆𝛥 = 0.4. In panels (e), (f), (g) and (h), 𝜆 = 0.2. Other parameters are set as 𝜇 = 0.4, 𝛿 = 0.5, 𝛼 = 2 and 𝜂 = 2. All outcomes are
veraged over 100 independent runs and each point in the upper diagram lies within a grid of 50 × 50.
Fig. 9. Epidemic threshold (𝛽𝑐 ) as a function of 𝜆, 𝜆𝛥, and 𝑘𝛥 with various values of 𝛼. In panel (a), 𝜆𝛥 = 0.4. In panel (b), 𝜆 = 0.2. In panel (c), 𝜆 = 0.2, 𝜆𝛥 = 0.4. Other parameters
re set as 𝜇 = 0.4, 𝛿 = 0.5, 𝛼 = 2, 𝜂 = 2.
cale-free network, which 𝑁 = 1000, 𝑚 = 3. Moreover, we set the
reliminary proportion of infected nodes 𝜌𝐼 to be 0.1 at each simulation
xperiment.

First, we employ MC simulations to examine the accuracy of MMCA.
ig. 3 illustrates 𝜌𝐼 and 𝜌𝐴 acquired by MMCA and MC simulations as
function of 𝛽 at the state steady. In order to concretely quantify the

rrors between MMCA and MC simulations, we express the relative er-
ors of 𝜌𝐼 and 𝜌𝐴 as

(

|

|

|

𝜌𝐼MC − 𝜌𝐼MMCA
|

|

|

)

∕𝜌𝐼MC and
(

|

|

|

𝜌𝐴MC − 𝜌𝐴MMCA
|

|

|

)

∕𝜌𝐴MC,
respectively. Thus, the average relative errors of 𝜌𝐴 and 𝜌𝐼 in Fig. 3 can
be calculated to be about 0.8% and 1.7%, respectively, which verifies
that MMCA can well solve the coupled dynamics problem in this paper.

Next, we consider the impacts of heterogeneity control parameters 𝛼
and 𝜂 on the spread of awareness and epidemics in the coupled model.
Fig. 4 shows the changes in 𝜌𝐼 and 𝜌𝐴 when the values of 𝛼 and 𝜂 are
different. We observe that 𝜌𝐼 increases and 𝜌𝐴 decreases as 𝛼 becomes
larger for the same infection probability in Fig. 4(a) and 4(b). This
is because as the value of 𝛼 gets larger, the ability of individuals to
convert information into epidemic awareness decreases, thus reducing
the number of aware individuals and making it easier to spread the
epidemic. In Fig. 4(c), as the value of 𝜂 increases, the probability of
individuals being infected decrease so that 𝜌𝐼 decreases. For curves
where 𝜂 is greater than 0, the value of 𝛽 to make the propagation
tends to steady state gets larger, due to the inhibitory effect of the
upper layers on epidemic transmission. In Fig. 4(d), it can be observed
that 𝜌𝐴 decreases first and then increases when 𝜂 gets larger. The
7

turning point at which this phenomenon occurs is around 𝛽 ≈ 0.55. We
consider that the percentage of infected individuals increases rapidly
at the beginning of an epidemic outbreak, but due to the inhibitory
effects of awareness on the epidemic transmission, the growth of 𝜌𝐼

for 𝜂 > 0 is lower than 𝜂 = 0. Thus, there are relatively few nodes
acquire epidemic awareness through the infection. When 𝛽 > 0.55, the
proportion of infected individuals tends to saturate at 𝜂 = 0, while
it still shows an increasing trend when 𝜂 > 0, thus the proportion of
the aware individuals continues to rise and together with the effects
of aware individuals spreading disease information in the top layers,
results in the condition shown in Fig. 4(d). Moreover, when the value
of 𝜂 increases to a certain value, the effects of 𝜂 on 𝜌𝐼 and 𝜌𝐴 are no
longer apparent.

In order to explore the influences of 𝛼 and 𝜂 more fully, we draw
the full phase diagrams of 𝜌𝐼 and 𝜌𝐴 as shown in Fig. 5. The panels
(a), (b), (e) and (f) in Fig. 5 illustrate the outcomes acquired by
MMCA and panels (c), (d), (g) and (h) in Fig. 5 indicate the outcomes
obtained by MC simulations. The results also suggest that increasing the
heterogeneity control parameter 𝛼 in the virtual layer is not conducive
to awareness diffusion and leading to a rise in the proportion of infected
individuals. However, increasing the heterogeneity control parameter
𝜂 in the physical layer renders that individuals take stronger self-
protection measures to prevent epidemic, thus restraining the spread
of epidemic. Moreover, since 𝜂 acts directly on the epidemic layer, we
can observe a more pronounced effect of 𝜂 on 𝜌𝐼 than of 𝛼 on 𝜌𝐼 .

In Fig. 6, we further investigate the effects of 𝛼 and 𝜂 on the
epidemic threshold 𝛽 . From Fig. 6(a), it can be seen that when 𝜂 = 0,
𝑐
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the increase of 𝛼 does not affect the threshold since the diffusion of
awareness has no inhibitory effect on the epidemic. When 𝜂 > 0, the
ncrease of 𝛼 leads to a decrease of 𝛽𝑐 . Panels (a) and (b) in Fig. 6 show
hat the threshold can be increased to some extent when 𝜂 gets larger.
hus, it is feasible to restrain epidemic outbreaks by improving the

ndividual’s acceptance of information and enhancing self-protection
easures for aware individuals.

Then, the effects of parameters 𝜆, 𝜆𝛥, and 𝑘𝛥 relating to the UAU
rocess on the coupled dynamics are discussed in Fig. 7. Panels (a),
c) and (e) describe the impact of 𝜆, 𝜆𝛥 and 𝑘𝛥 on 𝜌𝐼 , meanwhile
anels (b), (d) and (f) picture the impact of 𝜆, 𝜆𝛥 and 𝑘𝛥 on 𝜌𝐴.
xperimental results show that these parameters have similar impacts
n awareness diffusion and epidemic transmission, i.e., when 𝜆, 𝜆𝛥
r 𝑘𝛥 gets larger, the ratio of infected individuals is reduced and the
iffusion of awareness is facilitated. This is mainly due to the fact that
he increase in these three parameters promotes the dissemination of
nformation among the population, and thus allowing more individuals
o become aware of epidemics and take some self-protection actions can
ffectively suppressing the spread of epidemics. From the outcomes of
𝛥 and 𝑘𝛥, considering the simplicial complex structure plays a great
ole in the coupled dynamics.

The awareness diffusion and epidemic spreading within a wide
ange of (𝛽 − 𝜆) and (𝛽 − 𝜆𝛥) are illustrated in Figs. 8. It is discovered
hat 𝜌𝐴 gradually increases with 𝜆 and 𝜆𝛥 get larger, and the impact
n 𝜌𝐴 is more obvious when 𝛽 is smaller. By comparing panels (a)
nd (e) in Fig. 8 with panel (e) in Fig. 5, it can be observed that 𝜂
as a stronger inhibition to 𝜌𝐼 when 𝛽 is larger. Therefore, increasing
ndividual self-protection measures by increasing 𝜂 is a more efficient
ethod to contain the epidemic when the transmission rate of the

pidemic is high.
Finally, we further analyze the impact of 𝜆, 𝜆𝛥, and 𝑘𝛥 on the

pidemic thresholds 𝛽𝑐 in Fig. 9. It can be found that 𝛽𝑐 increases with
, 𝜆𝛥, and 𝑘𝛥 for different values of 𝛼, which indicates that the threshold
an be raised by facilitating the information dissemination in the top
ayer network, and the outbreak of epidemics becomes more difficult
or the smaller values of 𝛼.

. Conclusions

In this paper, in order to investigate the interaction between the
pread of awareness and epidemics when considering the heteroge-
eous responses of individuals, we construct a coupled spreading model
ased on the difference of nodes degree in two-layered networks.
t the same time, in the virtual layer we consider the effect of 2-
implicial complex, i.e., awareness of epidemics can simultaneously
iffuse through pairwise and group interactions. Different from previ-
us studies, we take into account the differences between individuals
or the degree of acceptance of information and self-protection mea-
ures taken in the face of epidemics. We perform a theoretical analysis
f the current model by using MMCA and derive outbreak threshold.
hrough extensive simulation experiments, we test the accuracy of
heoretical analysis. The experimental outcomes indicate that the syn-
rgistic reinforcement effect of higher-order structures could promote
he spreading of awareness and make more individuals take certain
elf-protective actions to avoid the likelihood of being infected and
ence increase the epidemic threshold. Furthermore, the heterogeneous
ontrol parameters 𝛼 and 𝜂 also affect the diffusion dynamics of the
odel. As the suppression strength 𝜂 increases, the inhibitory effect

n epidemic becomes more pronounced. Our findings may contribute
o understanding the interrelation between the spreading of awareness
nd epidemics and offer great enlightenment for reality of epidemic
revention. In the future, on the one hand, considering the fact that
here is the temporal properties of topology or dynamical switching
f links in social interactions, we will further investigate the impact
f individuals heterogeneity on epidemic propagation in time-varying
etworks. On the other hand, the individual decision could be influ-
nced by many realistic factors, we will combine the evolutionary game
heory with the prevention and vaccination of epidemics for diseases of
accine available.
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