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Abstract

In the paper different types of bursting Ca2þ oscillations are presented. We analyse bursting behaviour in four recent

mathematical models for Ca2þ oscillations in non-excitable cells. Separately, regular, quasi-periodic, and chaotic

bursting Ca2þ oscillations are classified into several subtypes. The classification is based on the dynamics of separated

fast and slow subsystems, the so-called fast–slow burster analysis. For regular bursting Ca2þ oscillations two types of

bursting are specified: Point–Point and Point–Cycle bursting. In particular, the slow passage effect, important for the

Hopf–Hopf and SubHopf–SubHopf bursting subtypes, is explained by local divergence calculated for the fast sub-

system. Quasi-periodic bursting Ca2þ oscillations can be found in only one of the four studied mathematical models and

appear via a homoclinic bifurcation with a homoclinic torus structure. For chaotic bursting Ca2þ oscillations, we found

that bursting patterns resulting from the period doubling root to chaos considerably differ from those appearing via

intermittency and have to be treated separately. The analysis and classification of different types of bursting Ca2þ

oscillations provides better insight into mechanisms of complex intra- and intercellular Ca2þ signalling. This improves

our understanding of several important biological phenomena in cellular signalling like complex frequency–amplitude

signal encoding and synchronisation of intercellular signal transduction between coupled cells in tissue.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Bursting refers to the phenomenon in which a variable of a dynamical system alternates between a silent and an

active phase. During the silent phase, the variable remains quiescent, whereas the active phase is characterized by rapid

oscillations. During the last three decades, many experimental [1–9] as well as theoretical studies [10–19] of different

bursting patterns have been published. Bursting was first reported for the electrical activity of the neuron R15 [1,2].

Afterwards, bursting was found to be the primary mode of electrical behaviour in many other neuron types, like for

example thalamic neurons [4–6], AB neurons [7] and dopaminergic neurons of the mammalian midbrain [9]. Bursting

oscillations have also been observed in pancreatic b-cells [3,8]. It was found that the type of bursting plays a vital role in

determining the excitability and hence neuro-computational properties of neurons [17,19].

Recently, the role of bursting oscillations for intracellular Ca2þ signalling has become of interest. The importance of

cytosolic calcium is well established in a large variety of cell types. In excitable as well as in non-excitable cells a sig-

nificant part of signal transduction from receptors at the cell membrane to enzymes, controlling the complex behaviour

of the biological systems, is performed by the oscillatory changing of free cytosolic calcium concentration. These os-

cillations regulate many cellular processes from egg fertilization to cell death [20]. The mechanisms of these oscillations

have been intensely investigated both from experimental and theoretical point of view (for review see [21,22]).
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Bursting oscillations of free cytosolic calcium were found experimentally in excitable (cf. [23]) as well as in non-

excitable cells [24–27]. Trying to explain the mechanism of bursting Ca2þ oscillations, several mathematical models for

complex Ca2þ oscillations in excitable [23] as well as in non-excitable cells [28–31] were proposed. Here, we focus on the

models that describe bursting Ca2þ oscillations in non-excitable cells [28–31]. The first model, describing bursting Ca2þ

oscillations in non-excitable cells, was proposed by Shen and Larter [28]. The functioning of the model bases on two

main mechanisms, i.e. the calcium-induced calcium release (CICR) [32] and the inositol trisphosphate crosscoupling

(ICC) [33,34]. There are three variables in the model: free Ca2þ concentration in the cytosol (Cacyt), free Ca2þ con-

centration in the endoplasmic reticulum (ER) (Caer), and the inositol trisphosphate concentration in the cytosol (IP3)
(for equations see Model 1 in Appendix A). Another CICR based model with the same set of model variables as in the

previous model [28] was proposed by Borghans et al. [29], however, with focusing on the effect of cytosolic calcium on

the degradation of inositol trisphosphate (for equations see Model 2 in Appendix A). Another modelling approach

represent models proposed by Marhl et al. [30] and Kummer et al. [31]. In the model by Marhl et al. [30], the important

role of mitochondria [35] and cytosolic Ca2þ binding proteins [36,37] is taken into account. The three main variables

that describe the dynamics of the model system are: free Ca2þ concentration in the cytosol (Cacyt), free Ca2þ concen-

tration in the ER (Caer), and the free Ca2þ concentration in the mitochondria (Cam) (for equations see Model 3 in

Appendix A). The model proposed by Kummer et al. [31] incorporates the feedback inhibition on the initial agonist

receptor complex by Ca2þ and activated phospholipase C (PLC), as well as receptor type-dependent self-enhanced

behaviour of the activated Ga subunit. Consequently, the three main variables are: the concentration of the active Ga

subunit (Ga), the concentration of the active PLC (PLC) and the free Ca2þ concentration in the cytosol (Cacyt) (for
equations see Model 4 in Appendix A).

Although the models for bursting Ca2þ oscillations in non-excitable cells were present for several years, different

types of bursting Ca2þ oscillations appearing in these models were studied only moderately [29,38–41]. Several bursting

patterns, including simple duplets, entangled regular as well as chaotic bursting Ca2þ oscillations were found. Addi-

tionally, the occurrence of birhythmicity [39] as well as trirhythmicity and intermittency for chaotic bursting Ca2þ

oscillations [40] was examined. However, a mathematical classification of different types of bursting was made only for

the model proposed by Kummer et al. [31,41]. In the present paper, we provide a comparative mathematical classifi-

cation of bursting types for all four recently proposed mathematical models [28–31] that account for complex intra-

cellular calcium oscillations in non-excitable cells. The models are not described in details, however, for each model the

basic model frame with the complete set of model equations and parameter values is given in Appendix A. For the

classification of bursting Ca2þ oscillations, we use the scheme proposed by Izhikevich [17]. First, in the following section

methods for bursting analysis are presented. In Section 3 bursting Ca2þ oscillations are mathematically analysed and

classified. The classification is carried out separately for regular, quasi-periodic, and chaotic bursting Ca2þ oscillations.

The biological importance of our results is discussed in terms of information encoding, signal flexibility and coupling

properties of the cells.

2. Methods

2.1. Fast–Slow burster analysis

The mathematical analysis of bursting Ca2þ oscillations was carried out by the method proposed by Rinzel [42]. By

this method, the system is separated into a ‘‘fast’’ and a ‘‘slow’’ subsystem. Therefore, we address to it as the Fast–Slow

burster analysis. Each variable that changes significantly over the duration of each bursting spike is a part of the ‘‘fast’’

subsystem whereas the variables that significantly change only over the duration of the whole bursting phase represent

the ‘‘slow’’ subsystem. We determine the type of bursting by the bifurcation analysis of the ‘‘fast’’ subsystem where the

‘‘slow’’ variables are used as bifurcation parameters.

2.2. Bifurcation analysis and numerical integration

The bifurcation analysis and the numerical integration of model equations was carried out with the numerical

continuation software AUTO97 [43] and XPPAUT [44].

2.3. Analysis of quasi-periodicity and chaos

Quasi-periodicity and chaotic behaviour are determined by Lyapunov exponents, which were calculated with the

algorithm proposed by Wolf et al. [45]. The results about the type of oscillations were verified by the Fourier analysis.
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We examined the characteristics of quasi-periodic bursting Ca2þ oscillations in the phase space only; whereas for

chaotic Ca2þ oscillations also the transition to chaos was studied by bifurcation diagrams and return maps.

3. Results

We analyse bursting Ca2þ oscillations for four mathematical models [28–31] in which these complex Ca2þ oscilla-

tions can be found. Separately, we treat regular, quasi-periodic and chaotic bursting Ca2þ oscillations. Regular bursting

Ca2þ oscillations are classified according to the scheme proposed by Izhikevich [17] into two main categories: Point–

Point and Point–Cycle bursting. Each of these categories can be further classified in dependence on two bifurcations,

which influence the transition from silent to active phase and vice versa. For example, if the active phase of bursting

oscillations starts with a fold bifurcation and ends with a supercritical Hopf bifurcation, this type of bursting oscillation

is called Fold–Hopf bursting. Moreover, this type of bursting oscillation can be further specified as Fold–SubHopf

bursting, for example, in case of a subcritical Hopf bifurcation. In many cases, in addition to the two bifurcations

responsible for the onset and termination of the active bursting phase there are also other bifurcations present.

Therefore, the classification of bursting oscillations can have further subtypes according to these additional bifurcations

(for review see [17]). Besides regular bursting Ca2þ oscillations, we also study quasi-periodic and chaotic bursting Ca2þ

oscillations. These non-regular bursters can have the same origin as regular bursters e.g.: Point–Point or Point–Cycle

basis. However, in addition to this classification also different roots to chaos have to be considered, since they con-

tribute to qualitatively different bursting patterns. For chaotic bursting Ca2þ oscillations, we analyse two types of

transition to chaos, i.e. period doubling and intermittency.

3.1. Regular periodic bursting

3.1.1. Point–Point bursting

Bursting Ca2þ oscillations of the Point–Point type are very common in the models for cytosolic Ca2þ oscillations

[28–30]. The characteristics of the Point–Point bursting can be demonstrated by the fast–slow burster analysis (see

Section 2). As results of this analysis, the bifurcation diagrams of slow subsystems are shown together with trajectories

of the complete system. The main characteristic of the Point–Point bursting is that the silent as well as the active phase

of bursting is associated to a steady state in the fast subsystem. This means that the fast subsystem does not have a limit

cycle attractor for any value of the slow variable. The bursting pattern evolves due to oscillations around stable and/or

unstable foci of the fast subsystem. The Point–Point bursting oscillations can be further specified with regard to the two

main bifurcations, causing the transition from silent to active phase and vice versa. For Point–Point bursting Ca2þ

oscillations, we found Fold–Fold and SubHopf–SubHopf type of bursting.

3.1.1.1. Point–Point bursting of Fold–Fold type. In Fig. 1a and b two examples of the Fold–Fold type of Point–Point

bursting are presented, which we found in models proposed by Shen and Larter [28] and Marhl et al. [30,46] (see Model

1 and the simplified Model 3 in Appendix A, respectively). By comparing Fig. 1a and b we see that in both cases the

active phase of bursting starts and ends with a fold bifurcation (denoted by an up-triangle). We gain better under-

standing of the bursting pattern if we follow the trajectories depicted in Fig. 1a and b in the anti-clockwise direction

starting at the lower stable steady state branch (marked by an arrow). As time progresses, the lower stable steady state

branch loses stability via fold bifurcation, which sends the trajectory to the upper stable steady state branch, resulting in

the first spike of Cacyt. The same scenario repeats for the upper stable steady state branch, with the difference that before

the trajectory reaches the lower steady state branch it makes an additional return to the upper steady state. This results

in a second spike of Cacyt. Finally, the attraction of the lower stable steady state closes the trajectory and the silent phase

of bursting starts again.

3.1.1.2. Point–Point bursting of SubHopf–SubHopf type. The second example of Point–Point bursting is SubHopf–

SubHopf bursting [17], which can be found in the model proposed by Borghans et al. [29] (see Model 2 in Appendix A).

The main characteristic of this type of bursting is that the active phase of bursting starts and ends with a subcritical

Hopf bifurcation (denoted by a circle in Fig. 2). To explain the pattern of SubHopf–SubHopf bursting, we start to

follow the trajectory in the anti-clockwise direction at the upper unstable steady state branch (marked by an arrow in

Fig. 2). As time progresses the trajectory slowly diverges from the upper unstable branch and starts to unfold to the

lower stable branch, thereby starting the bursting pattern. The trajectory passes the lower stable branch very quickly

(lower arc of the trajectory) and starts to wrap towards the upper stable branch. The large amplitude of Cacyt is damped

due to high attractive stable foci on the upper stable branch and the trajectory settles near to the branch rather quickly.
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Fig. 1. Bifurcation diagram of the fast subsystem (only Cacyt is depicted), whereas the slow variable (Caer) is used as the bifurcation

parameter. Solid (dashed) lines represent stable (unstable) steady states. Up-triangles denote fold bifurcations. The thick solid line

represents the 2D projection of the trajectory in the whole phase space. (a) Results for the mathematical model proposed by Shen and

Larter [28] (see Model 1 in Appendix A, r ¼ 0:60). (b) Results for the mathematical model proposed by Marhl et al. [30] (see the

simplified Model 3 in Appendix A, kch ¼ 600 s�1).

Fig. 2. Bifurcation diagram of the fast subsystem (only Cacyt is depicted), whereas the slow variable (Caer) is used as the bifurcation

parameter. Solid (dashed) lines represent stable (unstable) steady states. Doted lines represent unstable periodic solutions. Circle

(square) represents the subcritical Hopf (saddle homoclinic orbit) bifurcation. The thick solid line represents the 2D projection of the

trajectory in the whole phase space. Numbers added to the bifurcation diagram represent the divergence of the fast subsystem at

different points. Results are calculated for the mathematical model proposed by Borghans et al. [29] (see Model 2 in Appendix A,

r ¼ 1:13).
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By passing the subcritical Hopf bifurcation the loop completes and the silent phase of bursting starts again as shown in

Fig. 2. The square denotes the saddle homoclinic orbit bifurcation, which arises when the fold bifurcation of the lower

stable steady state branch coincidences with the lower unstable periodic branch originating from the subcritical Hopf

bifurcation. The saddle homoclinic orbit bifurcation does not influence the shape of the bursting pattern, but is nev-

ertheless important, since it prevents the unstable periodic branch to turn stable. Therefore, this bursting is of the

Point–Point and not of the Point–Cycle type.

In Fig. 2 the important phenomenon of the so-called slow passage effect [12,13,17,47,48] can be well observed. This

phenomenon enables the SubHopf–SubHopf bursting and can be explained as follows: Just before passing the sub-

critical Hopf bifurcation (see Fig. 2) in the anti-clockwise direction, the system is close to the rest state (silent phase of

bursting). When the trajectory slowly passes through the bifurcation point, it remains close to the rest state despite the

fact that the steady state had turned unstable (dashed line in Fig. 2). After a while, the trajectory diverges from

the unstable foci and starts to unfold towards the lower stable steady state. The trajectory persists in close proximity of

the unstable branch due to the slow passage effect, which can be well explained by the divergence of the lower stable and

upper unstable steady state branch. The values of divergence express the attractive/repelling properties of the steady

states. Some characteristic values of the divergence, important for the behaviour of the trajectory, are added to the

bifurcation diagram in Fig. 2. The divergence of the upper unstable steady state is just slightly above zero for an ex-

tensive amount of time after the trajectory passes the subcritical Hopf bifurcation, where the divergence in 2D fast

subsystem is exactly zero. Hence, the unstable branch is weakly repellent in a large parameter range of the bifurcation

diagram. Therefore, the trajectory stays close to the unstable branch despite the fact that it is unstable. When the

divergence reaches a large enough positive value, the trajectory starts to unfold from the unstable branch considerably.

Moreover, the divergence of the lower steady state is much more negative at this stage as it is directly below the

subcritical Hopf bifurcation, which additionally contributes to the ending of the silent phase.

3.1.2. Point–Cycle bursting

The Point–Cycle bursting can also be well studied by the fast–slow burster analysis (see Section 2). The characteristic

of the Point–Cycle bursting is that active and silent phases of bursting depend on a stable steady state (Point) as well as

on a stable limit cycle (Cycle) in phase space of the fast subsystem. We give three examples of planar (the fast subsystem

is two-dimensional) Point–Cycle bursters, i.e.: Fold–Hopf bursting via Fold–Fold hysteresis loop, Hopf–Hopf bursting,

and SubHopf–SubHopf bursting, which can be found in models proposed by Marhl et al. [30], and Kummer et al. [31].

3.1.2.1. Point–Cycle bursting of Fold–Hopf type via Fold–Fold hysteresis loop. The first example of Point–Cycle bursting

is the Fold–Hopf bursting via Fold–Fold hysteresis loop, which appears in the mathematical model for Ca2þ oscilla-

tions proposed by Kummer et al. [31] (see Model 4 in Appendix A). This type of bursting has already been analysed

previously by Brusch et al. [41]. The behaviour of the Fold–Hopf bursting via Fold–Fold hysteresis loop, shown in Fig.

3, can be explained by use of the fast–slow burster analysis. We start to follow the trajectory in the anti-clockwise

direction at the silent phase of bursting (marked by an arrow in Fig. 3). The silent phase of bursting ends with a fold

bifurcation (denoted by an up-triangle). The active phase of fast oscillations with decreasing amplitude begins when the

Fig. 3. Bifurcation diagram of the fast subsystem (only Cacyt is depicted), whereas the slow variable (PLC) is used as the bifurcation

parameter. Solid (dashed) lines represent stable (unstable) steady states. Dash-doted lines represent stable periodic solutions. Up-

triangles denote the two fold bifurcations. Circle represents the supercritical Hopf bifurcation. The thick solid line represents the 2D

projection of the trajectory in the whole phase space. Results are calculated for the mathematical model proposed by Kummer et al.

[31] (see Model 4 in Appendix A, k2 ¼ 2:8).
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trajectory moves upwards to the branch of unstable foci with corresponding stable limit cycles. The amplitudes of

bursting oscillations become even smaller by approaching to the supercritical Hopf bifurcation (denoted by a circle in

Fig. 3). The transition to the silent phase of bursting starts again, when the trajectory passes the supercritical Hopf

bifurcation. However, this transition does not happen abruptly since the eigen values of the stable foci in addition to

their negative real parts also have imaginary parts. Consequently, the trajectory settles down to the stable foci branch in

form of damped oscillations, which slightly prolongs the active phase of bursting. Finally, after passing the second fold

bifurcation (denoted by an up-triangle) the trajectory moves downward to the stable branch again and herewith

completes one period of bursting.

3.1.2.2. Point–Cycle bursting of Hopf–Hopf type. Another example of Point–Cycle bursting is the Hopf–Hopf bursting,

which can be found in the model proposed by Marhl et al. [30] (see the simplified Model 3 in Appendix A). The Hopf–

Hopf bursting is studied by the fast–slow burster analysis (Fig. 4). Like in the previous cases, we start to explain the

system behaviour at the silent phase of bursting (marked by an arrow in the anti-clockwise direction). As time pro-

gresses the trajectory passes the supercritical Hopf bifurcation (denoted by a circle in Fig. 4). Thereby the stable steady

state branch turns unstable and after a while, the trajectory starts to unfold towards the stable periodic branches

originating from the supercritical Hopf bifurcation. This starts the active phase of bursting. Note that like in the

previously discussed SubHopf–SubHopf type of Point–Point bursting here the slow passage effect is present as well.

Due to the slow passage effect the trajectory remains close to the rest state even after passing the bifurcation point. This

behaviour can be well explained by calculating the attracting/repelling properties of steady states and limit cycles in

the fast 2D subsystem. To this purpose, the values of divergence are added to the bifurcation diagram (see Fig. 4). The

divergence of the unstable foci is just slightly above zero for an extensive amount of time after the trajectory passes the

supercritical Hopf bifurcation. Hence, the unstable branch is weakly repellent and the trajectory stays near it. In ad-

dition, close to the supercritical Hopf bifurcation the trajectory is only weekly attracted by the stable periodic states

since their divergence is just slightly negative. When the trajectory moves further along the unstable branch, it becomes

increasingly repellent (divergence increases) and the stable periodic branches become more and more attractive (di-

vergence decreases). Both effects result in forcing the trajectory to unfold to the stable limit cycle. However, the tra-

jectory does not stay in the stable periodic regime for a longer time but makes a rather rapid turn to the stable steady

state on the other side of the Hopf bifurcation. Oscillations around the stable branch are damped due to attractive

stable foci (the divergence is negative). Herewith, the silent phase of bursting starts again as shown in Fig. 4.

3.1.2.3. Point–Cycle bursting of SubHopf–SubHopf type. The last example of Point–Cycle bursting is the SubHopf–

SubHopf bursting, which can be found in the model proposed by Marhl et al. [30] (see Model 3 in Appendix A). The

name SubHopf–SubHopf bursting has already been used for a type of a Point–Point burster in Section 3.1.1. However,

in case of the Point–Cycle bursting type the fast subsystem has a limit cycle instead of the second point attractor. The

bifurcation diagram for the SubHopf–SubHopf type of Point–Cycle bursting (Fig. 5) differs considerably from the

previously analysed SubHopf–SubHopf type of Point–Point bursting (Fig. 2, Section 3.1.1). The most important dif-

Fig. 4. Bifurcation diagram of the fast subsystem (only Cacyt is depicted), whereas the slow variable (Cam) is used as the bifurcation

parameter. Solid (dashed) lines represent stable (unstable) steady states. Dash-doted lines represent stable periodic solutions. Circle

represents the supercritical Hopf bifurcation. The thick solid line represents the 2D projection of the trajectory in the whole phase

space. Numbers added to the bifurcation diagram represent the divergence of the fast subsystem at different points. Results are cal-

culated for the mathematical model proposed by Marhl et al. [30] (see the simplified Model 3 in Appendix A, kch ¼ 4332 s�1).
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ference is that here in case of the Point–Cycle bursting we do not have the saddle homoclinic orbit bifurcation anymore.

Therefore, the unstable periodic branches originating form the subcritical Hopf bifurcation change their stability via a

fold limit cycle bifurcation (denoted by an up-triangle in Fig. 5). The arising stable periodic branches are of key im-

portance for the Point–Cycle bursting, whereas the fold limit cycle bifurcation itself does not influence the bursting

pattern directly.

The SubHopf–SubHopf type of Point–Cycle bursting can be explained by the fast–slow burster analysis (Fig. 5). We

start at the silent phase of bursting (marked by an arrow in the anti-clockwise direction). When the trajectory passes the

subcritical Hopf bifurcation, (denoted by a circle in Fig. 5) the stable steady state branch loses its stability and turns

unstable. Therefore, the trajectory slowly starts to unfold from the unstable steady states to stable periodic attractors.

However, it takes a considerable time before the trajectory reaches the stable limit cycle. This indicates that the slow

passage effect is present. The trajectory stays close to the rest state even after passing the subcritical Hopf bifurcation.

The divergence of the fast 2D subsystem gives a deeper insight into this phenomenon. Calculated values of the di-

vergence are added to the bifurcation diagram (see Fig. 5). We see that after the trajectory passes the subcritical Hopf

bifurcation the unstable steady state branch is weakly repellent (the positive value of divergence is close to zero).

Therefore, the trajectory stays near the unstable periodic branch for a considerable amount of time and consequently

the transition to the stable limit cycle is delayed. As time progresses the unstable periodic branch gets increasingly

repellent (divergence increases), which speeds up the transition to the stable limit cycle. This is accompanied by the

increasing attractive properties of limit cycles (divergence decreases), which additionally contributes to the ending of

the silent phase. The stable periodic regime is abandoned by the rapid turn to the stable steady state on the other side of

the subcritical Hopf bifurcation. Oscillations around the stable branch are damped due to attractive stable foci (the

divergence is negative). The silent phase of bursting starts again.

3.2. Quasi-periodic bursting

Quasi-periodicity is a rather rare phenomenon in the mathematical models for calcium oscillations. Only in the

model proposed by Borghans et al. [29], a relatively narrow window of quasi-periodic behaviour can be found. We

prove the quasi-periodic behaviour by calculating the first and the second Lyapunov exponent [45], which are both zero

in this case.

Quasi-periodic Ca2þ oscillations in the model [29] (see Model 2 in Appendix A) are analysed by the fast–slow burster

analysis (see Fig. 6). The bifurcation diagram in Fig. 6 is very similar to that obtained in Fig. 2, which was carried out

for the same mathematical model [29]. The main difference between the two diagrams is the existence of stable periodic

branches in Fig. 6, which evolve by changing the stability of the unstable periodic branches that originate from the

subcritical Hopf bifurcation. The two stable periodic branches lose their stability via the second fold limit cycle bi-

furcation, resulting in a new pair of unstable periodic branches, from which the lower one collides with the fold

Fig. 5. Bifurcation diagram of the fast subsystem (only Cacyt is depicted), whereas the slow variable (Cam) is used as the bifurcation

parameter. Solid (dashed) lines represent stable (unstable) steady states. Dash-doted (doted) lines represent stable (unstable) periodic

solutions. Circle (up-triangle) represents the subcritical Hopf (fold limit cycle) bifurcation. The thick solid line represents the 2D

projection of the trajectory in the whole phase space. Numbers added to the bifurcation diagram represent the divergence of the fast

subsystem at different points. Results are calculated for the mathematical model proposed by Marhl et al. [30] (see Model 3 in Ap-

pendix A, kch ¼ 3500 s�1).
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bifurcation of the lower stable steady state branch (see insert in Fig. 6). Herewith, a homoclinic bifurcation (denoted by

a square) with a homoclinic torus structure comes into existence. From this ascertainment, we may conclude that the

torus attractor appears via fold limit cycle bifurcation with a homoclinic torus structure [17].

For better understanding of the complex bursting behaviour in Fig. 6 we start to follow the trajectory in the

clockwise direction starting at high amplitude oscillations on the right side of the torus (marked by a pair of arrows). As

time progresses the trajectory is drawn towards the stable steady state, which results in oscillations of even smaller

amplitudes. When the subcritical Hopf bifurcation is exceeded, the former stable steady state becomes unstable and the

trajectory starts to unfold to the stable periodic branch. However, the trajectory never reaches the stable periodic

branch since it always passes on the other side of the fold limit cycle bifurcation (denoted with an up-triangle), where it

is again caught by the attraction of the upper steady states. They are the only stable attractors in that region of the

phase space. This procedure repeats again and again, nevertheless with the small but crucial difference, that the tra-

jectory diverts away from the stable periodic branches upwards at always-different moments (see Fig. 6). Consequently,

the trajectory never closes in on itself and the torus attractor evolves.

3.3. Chaotic bursting

All four examined mathematical models exhibit chaotic behaviour in a more or less wide range of the oscillatory

regime. We proved the chaotic behaviour by calculating the largest Lyapunov exponent (see Section 2). For a more

detailed analysis of parameter values and regions in which chaos occurs in a particular model, we refer the reader to

articles in which the mathematical models were originally published [28–31].

Chaotic bursting oscillations can be classified in the same way as regular bursting oscillations e.g.: Point–Point or

Point–Cycle bursting. That means, that we can obtain the same bifurcation diagrams with the fast–slow burster analysis

as we did for the regular periodic oscillations. Nevertheless, we cannot use this analysis to explain the complex irregular

bursting patterns because the fast subsystem fails to reflect the chaotic behaviour, since it is only two-dimensional.

Therefore, we classify different chaotic bursting patterns accordingly to the transition type from regular to chaotic

behaviour. We distinguish two different roots to chaos i.e. period doubling and intermittency, which reflect two different

bursting behaviours.

3.3.1. Period doubling

The period doubling root is a common transition to chaos and is present in all four examined models [28–31]. As an

example, we show the bifurcation diagram of the mathematical model proposed by Shen and Larter [28] in Fig. 7a. The

period doubling root to chaos can be explained as follows: A stable periodic branch turns unstable and additionally

splits into two new stable periodic branches which again split into two new stable periodic branches and so on (see Fig.

7a), thereby creating the vast multitude of frequency as well as amplitude windows which characterize chaotic be-

haviour. Fig. 7b shows a typical time course of chaotic bursting, which appears through a sequence of period doubling

Fig. 6. Bifurcation diagram of the fast subsystem (only Cacyt is depicted), whereas the slow variable (Caer) is used as the bifurcation

parameter. Solid (dashed) lines represent stable (unstable) steady states. Dash-doted (doted) lines represent stable (unstable) periodic

solutions. Circle (up-triangle) represents the subcritical Hopf (fold limit cycle) bifurcation. Square denotes the homoclinic bifurcation

with a homoclinic torus structure. The thick solid line represents the 2D projection of the trajectory in the whole phase space. Results

are calculated for the mathematical model proposed by Borghans et al. [29] (see Model 2 in Appendix A, r ¼ 0:99).
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bifurcations. The time course of Cacyt in Fig. 7b is calculated for r ¼ 0:6258 in the model proposed by Shen and Larter

[28]. It clearly reflects the high diversity of frequencies as well as amplitudes, which is a consequence of the period

doubling root to chaos. This can also be seen in the return map, which is presented in Fig. 7c. In this figure, the

successive maxima of Caer are plotted against their predecessors. If these maxima are plotted for a very long time series,

a continuous curve is obtained, which is a strong evidence for deterministic chaos [49].

3.3.2. Intermittency

The intermittent root to chaos is not very common and slightly more entangled than the period doubling root. We

found the intermittent root to chaos in the models proposed by Shen and Larter [28] and Marhl et al. [30]. The bi-

furcation diagram presented in Fig. 8a was calculated for the mathematical model proposed by Marhl et al. [30]. It

shows the characteristic intermittent transition from simple regular oscillations to chaotic behaviour. For kch ¼ 2850 s�1

the time course of intermittent chaotic bursting is presented in Fig. 8b. Note that the amplitudes of the main Cacyt spikes
remain nearly constant all the time. The corresponding return map to the time course of Fig. 8b is shown in Fig. 8c. In

the return map, the successive maxima of Cam are plotted against their predecessors. Like in the Fig. 7c an almost

continuous curve is obtained, which represents strong evidence of deterministic chaos. Nevertheless, there is an im-

portant difference between Figs. 7c and 8c, which contributes to distinct corresponding bursting patterns shown in Figs.

7b and 8b, respectively. The insert in Fig. 8c shows that points of the return map in Fig. 8c come very close to the

bisector line. Points that form the bisector line represent cycles of constant amplitudes, since there each maximum has

the same amplitude as its predecessor. Consequently, the cycles of the trajectory, which are represented by points near

the bisector line, maintain a very similar form (see Fig. 8b). Complex behaviour evolves because the trajectory leaves the

points near the bisector line intermittently, that is at always-different moments, which makes the long time behaviour

chaotic [40].

Fig. 7. Analysis of the chaotic Ca2þ bursting for the mathematical model proposed by Shen and Larter [28] (see Model 1 in Appendix

A). (a) Bifurcation diagram Cacyt versus r. (b) Time course of Cacyt for r ¼ 0:6258. (c) Return map of Caer.
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4. Discussion

In the paper, bursting Ca2þ oscillations in non-excitable cells are studied for four recently proposed mathematical

models [28–31]. Separately, we analyse regular, quasi-periodic and chaotic Ca2þ bursting oscillations. The main

bursting types are further classified into several subtypes. Results indicate that regular Point–Point bursting is very

common in mathematical models for intracellular Ca2þ oscillations. Fold–Fold subtype of Point–Point bursting was

found in the models proposed by Shen and Larter [28] and Marhl et al. [30], whereas SubHopf–SubHopf subtype of

Point–Point bursting was found in the model proposed by Borghans et al. [29]. Furthermore, we also found three

different types of regular Point–Cycle bursting. Fold–Hopf via Fold–Fold hysteresis loop subtype of Point–Cycle

bursting was found in the model proposed by Kummer et al. [31]. Additionally, we identified Hopf–Hopf and Sub-

Hopf–SubHopf subtype of Point–Cycle bursting in the model proposed by Marhl et al. [30]. However, the Cycle–Cycle

type of bursting cannot be found in the models describing intracellular Ca2þ oscillations in non-excitable cells. This type

of bursting is well known for the Hodgin–Huxley-like models, which describe electrical excitations in nerve cells [50–52].

The main characteristic of the Cycle–Cycle bursting, expressed in terms of fast–slow burster analysis, is that the active

bursting phase corresponds to a limit cycle in the fast subsystem and the silent phase is linked to another limit cycle with

a small amplitude (subthreshold) oscillation.

Furthermore, besides the regular bursting patterns we also found more entangled bursting behaviour of quasi-pe-

riodic and chaotic type. Quasi-periodicity was found in the mathematical model proposed by Borghans et al. [29]. Our

results show that the torus attractor appears via fold limit cycle bifurcation with a homoclinic torus structure. Chaotic

bursting was identified in all four examined mathematical models [28–31]. We distinguish two types of chaotic bursting

according to the transition root from regular to complex chaotic behaviour. The period doubling root to chaos was

found in all examined models, whereas intermittency was found in the models proposed by Shen and Larter [28] and

Marhl et al. [30]. In the latter model the intermittent root to chaos was already described earlier by Haberichter et al.

[40].

Fig. 8. Analysis of the chaotic regime for the mathematical model proposed by Marhl et al. [30] (see Model 3 in Appendix A).

(a) Bifurcation diagram of Cacyt versus kch. (b) Time course of Cacyt for kch ¼ 2850 s�1. (c) Return map of Cam.
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The biological importance of bursting oscillations is well established. Bursting behaviour was found to be the

primary mode of information processing and signal transduction in many biological systems, like for example in dif-

ferent neuron types, pancreatic b-cells and hepatocytes [1–9,24–27]. It has been shown that biologically relevant in-

formation of Ca2þ oscillations is primarily frequency encoded [46,53–58]. However, some studies also emphasize the

importance of amplitude encoding [59,60]. From this point of view, it is important to analyse different bursting types of

Ca2þ oscillations, since different types of bursting behaviour could reflect different encoding of biologically relevant

information.

Another important biological aspect of studying different bursting types is that this could further improve our

understanding of intercellular Ca2þ signalling, in particular, cell coupling and the phenomenon of synchronisation. In

some other systems, it has been shown that bursters incorporating the slow passage effect can synchronize almost

instantaneously [17,18,61]. This is of important biological meaning, since fast and reliable cell synchronisation in signal

transduction is crucial for flawless functioning of living organisms. From the mathematical point of view, the very fast

synchronization of bursters expressing slow passage effect can be well explained. The slow passage phase represents the

most flexible part of the trajectory and it can be therefore shortened significantly by weak input from other bursters.

This property provides a powerful mechanism for instantaneous synchronization of bursters even when they have

essentially different interburst frequencies. From Figs. 2, 4 and 5 it can be well observed that the trajectory spends

approximately half of the quiescent time near the unstable foci branch. During this time, the system is ready to fire in

response to the very first pulse coming from the neighbouring burster. As the result, instantaneous synchronization

occurs in a very short time. Usually, the synchronization occurs already after the first spike [18,61]. Our preliminary

results on this topic, concerning intracellular Ca2þ oscillations, confirm this completely. However, the influence of

different types of bursting Ca2þ oscillations on the synchronisation properties of the system should be further studied

and will be presented in more detail in a separate paper.

Complex bursting patterns also seem to be of special biological importance. Chaos is present in several biological

systems like in cardiac rhythms, for example [62]. In particular, the intermittent chaotical behaviour seems to be of

special advantage in biological systems. Intuitively, the high biological importance of intermittency can be well ex-

plained. Intermittency incorporates a quasi-order rhythm, which is predominantly present in a biological system [63], as

well as irregularities, which could also play a role in real life. Some studies suggest that this irregular chaotic behaviour

is important, because it assures high sensitivity and flexibility of biological systems [64,65]. However, this cannot be

generalised. In our previous studies, for example, we showed that regular periodic oscillators can also be highly sensitive

and flexible in response to external perturbations [66]. Therefore, further studies will be necessary to determine more

precisely the biological role of different types of complex Ca2þ oscillations.

Appendix A

In Appendix A differential equations for all four examined mathematical models [28–31] are presented as well as the

parameter values for which all calculations were made.

A.1. Model 1

The mathematical model proposed by Shen and Larter [28] is described by the following differential equations:

dCacyt
dt

¼ Jch þ Jleak � Jpump þ Jin � Jout; ðA:1Þ

dCaer
dt

¼ Jpump � Jch � Jleak; ðA:2Þ

dIP3
dt

¼ Jþ � J�; ðA:3Þ

where

Jch ¼ kch
IP 4

3

IP 4
3 þ K4

1

� �
K4Cacyt

ðCacyt þ K4ÞðCacyt þ K5Þ

� �3

Caer; ðA:4Þ

Jleak ¼ kleakCaer; ðA:5Þ
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Jpump ¼ kpump

Ca2cyt
Ca2cyt þ K2

2

; ðA:6Þ

Jin ¼ kin1 � r þ kin2; ðA:7Þ

Jout ¼ koutCacyt; ðA:8Þ

Jþ ¼ kþ � r Cacyt
Cacyt þ K3

; ðA:9Þ

J� ¼ k� � IP3: ðA:10Þ

Parameters for which all calculations are made if not otherwise stated: kch ¼ 3000:0 lMs�1, kleak ¼ 1:0 s�1, kpump ¼ 50:0
lMs�1, kin1 ¼ 4:0 lMs�1, kin2 ¼ 1:0 lMs�1, kout ¼ 10:0 s�1, kþ ¼ 4:0 lMs�1, k� ¼ 2:0 lMs�1, K1 ¼ K2 ¼ 0:2 lM,

K3 ¼ 1:0 lM, K4 ¼ K5 ¼ 0:69 lM, r ¼ 0:2345–0:6859.

A.2. Model 2

The mathematical model proposed by Borghans et al. [29] is described by the following differential equations:

dCacyt
dt

¼ Jin þ Jleak � Jpump þ Jer � Jout; ðA:11Þ

dCaer
dt

¼ Jpump � Jer � Jleak; ðA:12Þ

dIP3
dt

¼ JA � JD � JC ; ðA:13Þ

where

Jin ¼ kin1 � r þ kin2; ðA:14Þ

Jleak ¼ r � kleak
IP 4

3

IP 4
3 þ K4

a

� Ca2er
Ca2er þ K2

y

�
Ca4cyt

Ca4cyt þ K4
z

; ðA:15Þ

Jpump ¼ kpump

Ca2cyt
Ca2cyt þ K2

2

; ðA:16Þ

Jout ¼ koutCacyt; ðA:17Þ

Jer ¼ kf Caer; ðA:18Þ

JA ¼ r � kp; ðA:19Þ

JD ¼ kd
IP 2

3

IP 2
3 þ K2

p

�
Ca4cyt

Ca4cyt þ K4
d

; ðA:20Þ

JC ¼ e � IP3: ðA:21Þ

Parameters for which all calculations are made if not otherwise stated: kleak ¼ 19:5 lMmin�1, kpump ¼ 6:5 lMmin�1,

kin1 ¼ 1:0 lMmin�1, kin2 ¼ 2:0 lMmin�1, kp ¼ 2:5 lMmin�1, kd ¼ 80 lMmin�1, kf ¼ 1:0 min�1, kout ¼ 10 min�1,

K2 ¼ 0:1 lM, Ka ¼ 0:4 lM, Ky ¼ 0:2 lM, Kz ¼ 0:3 lM, Kp ¼ 1:0 lM, Kd ¼ 0:4 lM, e ¼ 0:1, r ¼ 0:7981–1:196.

A.3. Model 3

The mathematical model proposed by Marhl et al. [30] is described by the following differential equations:

dCacyt
dt

¼ Jch � Jpump þ Jleak þ Jout � Jin þ JCa Pr � JPr; ðA:22Þ

dCaer
dt

¼ ber

qer

ðJpump � Jch � JleakÞ; ðA:23Þ
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dCam
dt

¼ bm

qm
ðJin � JoutÞ; ðA:24Þ

where

Jch ¼ kch
Ca2cyt

Ca2cyt þ K2
1

ðCaer � CacytÞ; ðA:25Þ

Jpump ¼ kpumpCacyt; ðA:26Þ

Jleak ¼ kleakðCaer � CacytÞ; ðA:27Þ

JPr ¼ kþCacytPr; ðA:28Þ

JCa Pr ¼ k�CaPr; ðA:29Þ

Jin ¼ kin
Ca8cyt

Ca8cyt þ K8
2

; ðA:30Þ

Jout ¼ km
Ca2cyt

Ca2cyt þ K2
1

 
þ kmit

!
Cam; ðA:31Þ

Prtot ¼ Pr þ CaPr; ðA:32Þ

Catot ¼ Cacyt þ
qer

ber

Caer þ
qm

bm
Cam þ CaPr; ðA:33Þ

Parameters for which all calculations are made if not otherwise stated: kleak ¼ 0:05 s�1, kpump ¼ 20:0 s�1, kin ¼ 300

lMs�1, km ¼ 125 s�1, kmit ¼ 0:00625 s�1, kþ ¼ 0:1 lMs�1 (Fig. 5 kþ ¼ 0:09 lMs�1), k� ¼ 0:01 s�1, K1 ¼ 5:0 lM,

K2 ¼ 0:8 lM, Catot ¼ 90 lM, Prtot ¼ 120 lM, qer ¼ 0:01, ber ¼ 0:0025, qm ¼ 0:01, bm ¼ 0:0025, kch ¼ 473:8–4473:4 s�1.

A.3.1. Simplified Model 3

The mathematical model proposed by Marhl et al. [30] can be simplified [46], by changing the equation (A.31) to:

Jout ¼ koutCam; ðA:34Þ

where kout ¼ 0:50625 s�1.

A.4. Model 4

The mathematical model proposed by Kummer et al. [31] is described by the following differential equations:

dCacyt
dt

¼ k10Ga � k11
Cacyt

Cacyt þ K12

; ðA:35Þ

dGa

dt
¼ k1 þ k2Ga � k3PLC

Ga

Ga þ K4

� k5Cacyt
Ga

Ga þ K6

; ðA:36Þ

dPLC

dt
¼ k7Ga � k8

PLC
PLC þ K9

: ðA:37Þ

Parameters for which all calculations are made if not otherwise stated: k1 ¼ 0:212, k3 ¼ 1:52, k5 ¼ 4:88, k7 ¼ 1:24,
k8 ¼ 32:24, k10 ¼ 13:58, k11 ¼ 153, K4 ¼ 0:19, K6 ¼ 1:18, K9 ¼ 29:09, K12 ¼ 0:16, k2 ¼ 1:316–2:999.
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