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Self-sustained oscillatory dynamics is a motion along a stable limit cycle in the phase space, and it

arises in a wide variety of mechanical, electrical, and biological systems. Typically, oscillations are

due to a balance between energy dissipation and generation. Their stability depends on the

properties of the attractor, in particular, its dissipative characteristics, which in turn determine the

flexibility of a given dynamical system. In a network of oscillators, the coupling additionally

contributes to the dissipation, and hence affects the robustness of the oscillatory solution. Here, we

therefore investigate how a heterogeneous network structure affects the dissipation rate of

individual oscillators. First, we show that in a network of diffusively coupled oscillators, the

dissipation is a linearly decreasing function of the node degree, and we demonstrate this

numerically by calculating the average divergence of coupled Hopf oscillators. Subsequently, we

use recordings of intracellular calcium dynamics in pancreatic beta cells in mouse acute tissue

slices and the corresponding functional connectivity networks for an experimental verification of

the presented theory. We use methods of nonlinear time series analysis to reconstruct the phase

space and calculate the sum of Lyapunov exponents. Our analysis reveals a clear tendency of cells

with a higher degree, that is, more interconnected cells, having more negative values of

divergence, thus confirming our theoretical predictions. We discuss these findings in the context of

energetic aspects of signaling in beta cells and potential risks for pathological changes in the tissue.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926673]

Self-sustained oscillators are models of naturally oscillat-

ing objects, and as such they embrace many concepts in

physics, biology, and engineering. Stable dissipative oscil-

latory dynamics results from the flow of energy or matter

through a nonlinear system. If the energy is supplied to

the system at a rate at which it is dissipated, ordered, and

stable, self-organized oscillations may occur. In general,

the stability and robustness of such a dynamical state

depend on the dissipative properties of individual oscilla-

tors, which in turn determine the important dynamical

features, such as synchronization and entraining capabil-

ity. However, in ensembles of interconnected oscillators,

the coupling itself can also significantly affect both

robustness and dissipation. Motivated by the fact that

many real-life systems are composed of coupled dissipa-

tive elements that exhibit complex connectivity patterns,

in the present study, we therefore analyze the impact of a

heterogeneous network structure on the dissipation rates

of oscillators. To this effect, we first examine theoretically

and numerically the relationship between node degree

and average dissipation of oscillators and show that for

networks of diffusively coupled oscillators this relation is

linear. Next, we validate this result experimentally by

measuring the activity of coupled beta cells within intact

mouse pancreatic tissue by means of confocal imaging.

On the basis of the measured cellular signals, we extract

the intercellular functional connectivity patterns and cal-

culate the average dissipation of individual cells. Our

results reveal a clear tendency of cells in the network

with a higher node degree having higher dissipation

rates, which corroborates and in fact confirms our theo-

retical predictions. Moreover, our findings point out that

the intercellular communication quite noticeably contrib-

utes to the energy needs of beta cells, which encompasses

important aspects of structural and functional perform-

ance of beta cell networks in health and disease.

I. INTRODUCTION

Self-sustained oscillators are models of natural and

man-made oscillating objects, and these models are essen-

tially nonlinear. In such systems, the flow of energy through
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the system gives rise to ordered self-organized oscillations

that are stable against perturbations. Stable oscillatory dy-

namics results from the balance between energy supply and

the rate of its dissipation.1 Sustained oscillations of the limit

cycle type can therefore be viewed as temporal dissipative

structures. One of the most striking examples of sustained

oscillations are biological rhythms, which manifest them-

selves widely across temporal and structural scales in living

organisms and are crucial to normal function, such that a

loss of this capacity leads to dysfunction and disease.1,2 For

instance, rhythmicity is the basic modus operandi in the neu-

ral, cardiovascular, and hormonal system. At the end of the

day, rhythmic changes typically affect many different organ

systems within an individual and even in populations of

organisms, but their basis is usually oscillations in parameter

values of various intra- and intercellular signals. In insulin-

producing beta cells in pancreatic islets of Langerhans, oscil-

latory glycolytic degradation of glucose results in oscilla-

tions of intracellular NAD(P)H and ATP, leading to a

rhythmic activity of ATP-dependent ion channels.3,4 According

to the consensus model, this results in electrical depolarizations,

periodic influx of calcium ions due to increased permeability of

voltage-dependent calcium channels, and repolarization due to

activation of calcium-dependent potassium channels (and possi-

bly other channels).5,6 Finally, the calcium-dependent secretion

of the hormone insulin occurs in an oscillatory manner.7,8 The

ongoing oscillatory activity is made possible by a constant

supply of energy in the form of ATP, which fuels the energy-

dependent processes of maintaining ion concentrations, synthe-

sizing the hormone, and recycling the granules at the plasma

membrane, to name only a few.9,10 The aforementioned oscilla-

tions are observed across a population of electrically and

metabolically coupled beta cells, and this enables that concen-

trations of insulin in the plasma oscillate, which in turn is cru-

cial for normal glucose sensitivity.11–14 Loss of normal plasma

insulin oscillations is a hallmark of diabetes mellitus, a major

public health problem, and a deeper understanding of the mech-

anistic substrate for the oscillatory behavior is of great practical

importance.

Biological oscillators, especially signal transduction

pathways, have to be highly flexible in order to be able to

precisely adopt their functioning to external signals.15,16 It

has been shown that the flexibility of cellular oscillators

depends on the attractive properties of the trajectories in

phase space. The strength of attraction is in general defined

by the sum of Lyapunov exponents and directly corresponds

to the contraction of phase space volume and, hence, to dissi-

pation.17 Previous studies have pointed out that less dissipa-

tive systems can be better synchronized with external

periodic inputs,16 exhibit wider entraining ranges,17 have

better coupling abilities,18 and are less robust to fluctua-

tions,19 whereby particular emphasis has also been given to

local attractive properties of attractors.18,20–22 Noteworthy,

Wang et al.23 have shown that the robustness of biochemical

oscillatory systems with respect to stochastic fluctuations

can rigorously be described by means of a probabilistic

description of the phase space behavior. In particular, cellu-

lar dynamics can be decomposed into the gradient of poten-

tial landscape and the divergent free curl flux field, which

provides valuable insights into dissipation costs and stability

of oscillatory systems.23,24 Recently, Menck et al.25 provided

a novel theoretical approach for the quantification of the

stability of nonlinear systems that is based on the basin

stability, which relies on the volume of a state’s basin

of attraction. Their approach exceeds the traditional

linearization-based methods and is therefore suitable for

studies of high-dimensional nonlinear systems subjected to

non-small perturbations. Furthermore, the relationship

between dissipation and flexibility seems to be of special im-

portance for biological systems, since in view of low free

energy consumption, dissipation should be minimized.26 In

the view of that, Torrealdea et al. derived energy functions

of a neuron model in order to study the dissipation and bal-

ance of energy by cooperative behavior of neurons, which is

of particular importance for the understanding of efficient

neuronal information processing and coding.27,28

In biological systems, coupling between biological

oscillators is a hallmark property reflecting their function.

Examples of coupled biological oscillators range from pul-

sating fireflies at the ecological level29 to the pacemaker cells

of the sinoatrial node in the heart,30 the network of neurons

in circadian pacemakers controlling the sleep-wake

cycle,15,17,31,32 and insulin secreting cells of the pan-

creas11,33,34 at the tissue level. Despite their need for the

right level of flexibility, biological oscillators must be robust

to resist environmental perturbations in order to fulfil their

biological function. Circadian clocks must sustain daily

oscillations with a given period, yet allowing for entrainment

to environmental cues.35 Relaxation rate upon perturbation

(i.e., the rigidity of the synchronized network) is critically

determined by coupling between oscillators.17 An elegant

study by Abraham et al.15 showed that coupling makes oscil-

lators more rigid, that is, they relax faster in response to

perturbation, whereas decoupling of neurons within supra-

chiasmatic nucleus facilitated the entraining capability of

the tissue, producing weaker oscillators. Most commonly,

biological tissues do not share uniform properties; rather

they exhibit complexity in the topology of intercellular com-

munications pathways, with noticeable heterogeneity in the

number of connections between individual cells. A heteroge-

neous network structure, however, implies a non-trivial

impact on dynamic properties and rigidity of individual

oscillators.36–38 To address these issues more thoroughly, we

investigate in the present paper the relationship between top-

ological features of a network and dissipation characteristics

of oscillators by means of theoretical, numerical, and experi-

mental approaches.

II. DISSIPATION AND FLEXIBILITY OF COUPLED
OSCILLATORS

Let there be N diffusively coupled oscillators. The dy-

namics of the i-th oscillator can in general be written as the

time derivative of the L-dimensional vector of dynamical

variables17,37

_zi ¼ FðziÞ þ e
XN

j¼1

dijðzj � ziÞ; (1)
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where e defines the coupling strength and dij the binary cou-

pling matrix. The average dissipation of the i-th oscillator

can be assessed by the time-averaged divergence37

hdivii ¼
XL

l¼1

@ _zi;l

@zi;l

* +
¼

XL

l¼1

@F zi;lð Þ
@zi;l

� eki

 !* +
; (2)

where h…i signifies the average over the whole attractor in

the phase space and ki is the degree (number of connections

of the i-th node). Divergence directly reflects the level of dis-

sipation in a given dynamical system, which in turn attrib-

utes to robustness of the oscillator. Highly robust oscillatory

systems are characterised by a more negative divergence of

the corresponding attractor, whereas less negative values of

the divergence characterise more flexible systems.39 The first

term in the sum in Eq. (2) refers to the so-called intrinsic dis-

sipation, whereas the second term reflects the coupling-

induced dissipation.37 According to Eq. (2), the robustness

of an oscillator depends on the coupling and/or its role in the

network, whereby these effects are more pronounced in

intrinsically flexible oscillatory systems. Importantly, the av-

erage dissipation can alternatively also be calculated as the

sum of Lyapunov exponents:40

hdivii ¼
XL

l¼1

kðlÞi; (3)

where kðlÞi signifies the l-th Lyaponov exponent of the i-th
oscillator and the sum runs over all dimensions of the phase

space.

III. COMPUTATIONAL RESULTS

The dynamics of the i-th node in the network will be

governed by the paradigmatic Hopf oscillator17,41,42

_xi ¼ cðA� r2
i Þxi � xiyi þ eRN

j¼1dijðxj � xiÞ; (4)

_yi ¼ cðA� r2
i Þyi þ xixi þ eRN

j¼1dijðyj � yiÞ: (5)

In Eqs. (4) and (5), _xi and _yi are time derivatives of the dy-

namical variables xi and yi, A is the square of the limit cycle

radius, ri is the distance from the origin of phase space to the

attractor, xi is the angular velocity of the i-th oscillator, e is

the coupling strength, and dij is the ij-th element of the con-

nectivity matrix. The parameter c defines the relaxation rate

towards the limit cycle and directly reflects the flexibility of

an individual Hopf oscillator.17 In our calculation, we set

e ¼ 0:4, c ¼ 2:0, and A ¼ 1:0. We additionally introduce

some variability of oscillators by randomly distributing the

angular frequencies, which are assumed to follow a normal

distribution with a mean value x0 ¼ 2p and a relative stand-

ard deviation 0:05x0.

For the modelling of the interaction topology, we

make use of the modulated Barab�asi-Albert model in

Euclidean space.43 In addition to the original preferential

attachment mechanism,44 the model encompasses weighting

of probabilities for connections with physical length. The

network growth starts with n0 points randomly distributed

on a unit square with n ¼ 2 < n0 connections among them.

In every time step, new one node is introduced with ran-

domly chosen coordinates. The new node establishes m
connections with its predecessors i with an attachment

probability

Pi � kiI
a
i ; (6)

where ki and Ii are the degree and the distance to the i-th
predecessor, respectively. Parameter a in Eq. (6) is the

modulation factor that restricts the length of connections

and thereby impacts the topology. In order to study the os-

cillatory dynamics on different network structures, we use

in our calculations three different values of a. For a ¼ 0,

the attachment solely depends on node degrees, which

results in the generation of a scale-free network with domi-

nating long-range connections (Fig. 1(a)). To additionally

include the impact of spatial embedding, we use in the sec-

ond case a ¼ �3:0, so that an intermediate heterogeneous

network with long- and short-range interactions is con-

structed (Fig. 1(b)). Finally, for a ¼ �10, the Euclidean dis-

tance is the key agent that determinates the preferential

attachment procedure. Accordingly, a rather homogeneous

network is generated with mostly adjacent nodes being

connected.

Let us now populate the three generated networks pre-

sented in Figs. 1(a)–1(c) with Hopf oscillators, whereby the

network structure determinates the coupling matrix dij. To

quantify the dissipation rate of a particular oscillator in the

network, we derived its Jacobian matrix Ji

Ji ¼
cðA� ri

2Þ � 2cx2
i � eki �xi � 2cxiyi

�xi � 2cxiyi cðA� ri
2Þ � 2cy2

i � eki

 !
:

(7)

The divergence of the phase space equals the trace of the

Jacobian matrix TrðJiÞ ¼ 2cðA� 2r2
i Þ � 2eki. Accordingly,

the average divergence for the Hopf oscillator can be

expressed as

hdivii ¼ h2cðA� 2r2
i Þ � 2ekii: (8)

For the numerical calculation of the average divergence, we

evolve the system and calculate at each integration step the

current divergence value. The average is then based on the

calculations over 100 periods. It should be noted that simi-

lar concepts of stability analysis have already been success-

fully applied, for example, to study the synchronization

behavior of Hopf oscillators in star-like networks42 and the

occurrence of oscillation death in networks with repulsive

coupling.45

Despite the intrinsic symmetry of the attractor, the

divergence may vary with time due to perturbations of the

limit cycle provoked by the influence of neighboring oscilla-

tors. Results showing the relationship between average

divergence and the corresponding node degree for all three

networks are shown in Fig. 1. In particular, in Figs.

1(a)–1(c), the colors of nodes signify the average divergence

of individual oscillators hdivii. Evidently, oscillators
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governing the dynamics of nodes with higher degrees have a

more negative average divergence, that is, higher dissipation

rates. To quantify this visual assessment, we present in

Figs. 1(d)–1(f) individual divergences hdivii as a function of

the corresponding node degree ki. An obvious linearly

decreasing trend can be observed for all three networks.

Next, we compare the numerical results with theoretical

predictions. By assuming that the oscillators are in a periodic

steady-state, we set ri ¼ A ¼ 1. Accordingly, the relation

between average divergence and node degree (see Eq. (8))

can be expressed as

hdivii ¼ �2c� 2eki: (9)

The first term in Eq. (9) refers to the oscillator’s intrinsic

divergence, whereas the second term signifies the impact of

coupling.37 The resulting linear relationship between dissipa-

tion rates of the i-th oscillator and its node degree is shown

in Figs. 1(d)–1(f) with a grey line, whereby the parameter

values used in our numerical calculation have been consid-

ered (c ¼ 2:0 and e ¼ 0:4). A good agreement between theo-

retical and numerical results can be observed, except that the

numerically calculated values a bit higher. Namely, diffusive

coupling provokes a slight decrease in amplitude,17,46 which

implies a less negative divergence. Moreover, deviations

from the linear trend are detected, which is predominately

ascribed to interactions between heterogeneous oscillators in

a heterogeneous network, which results in perturbations of

limit cycles. In our calculations, we use N ¼ 100 oscillators.

It should be noted that the results are more or less independ-

ent on choice of the systems size, except for very large

ensembles of oscillators, where the connectivities of the

most connected oscillators could result in a collapse of their

phase spaces, that is, in oscillation death.47

IV. EXPERIMENTAL RESULTS

Recent advances in the field of modern complex network

theory have provided novel methodological concepts that ena-

ble the investigation of interactions within diverse complex

systems, such as stock markets,48 climate models,49,50 and

various scales of living organisms.51–54 Recently, these techni-

ques have also been successfully applied for studying collec-

tive dynamics of cell populations within intact tissues.34,55,56

In this paper, we make use of this methodology in order to

study the interplay between the intercellular network structure

between pancreatic beta cells and the corresponding character-

istics of intracellular Ca2þ signals. For this purpose, we

employed functional multicellular calcium imaging (fMCI) of

fluorescently labelled acute mouse pancreas tissue slices to re-

cord calcium signals, as described previously.33,34 The fMCI

enables the assessment of Ca2þ dynamics in a large number

of cells simultaneously, with a high spatiotemporal resolution

and over extended periods of time.

The recorded time series were subject to Huang-Hilbert

type empirical model decomposition (EEMD)57 in order to

retrieve baseline trends and artefacts, such as bleaching of

the fluorescent dye and noise, as described previously.56 A

typical raw signal and the corresponding filtered signal of

the temporal evolution of [Ca2þ]i in a beta cell after stimula-

tion with glucose is shown in Fig. 2(a). Both time series

were rescaled to the unit interval. It can be observed that the

beta cells stimulated with glucose exhibit a well-pronounced

oscillatory activity of [Ca2þ]i.

FIG. 1. Characteristic network structures generated with the modulated preferential attachment mechanism for a ¼ 0 (a), a ¼ �3 (b), and a ¼ �10 (c). The

number of nodes is N ¼ 100. Colors of the nodes signify the average divergence of individual oscillators divi, as indicated by the color bars. In panels (d)–(f),

the average divergence as a function of the node degree for the corresponding network structures is shown. The black dots denote the numerically calculated

values, whereas the grey lines represent the theoretical prediction given in Eq. (9): hdivii ¼ �0:8ki � 4.
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To quantify the dynamics of the purified time traces, we

use the methodology of nonlinear time series analysis.58 We

reconstruct the phase space of c0iðtÞ in accordance with the

embedding theorem.59,60 This theorem states that for a large

enough embedding dimension m, the delay vectors ziðtÞ pro-

duce a phase space, which has equal properties as the phase

space, formed by the actual variables of the system. The

delay vector has the form

ziðtÞ ¼ ½c0iðtÞ; c0iðtþ sÞ; c0iðtþ 2sÞ; :::; c0iðtþ ðm� 1ÞsÞ�:
(10)

Elements in the delay vector represent the decomposed time

traces at discrete times t, tþ s, tþ 2s,…, tþ ðm� 1Þs, here

s is the embedding delay. To make a proper reconstruction,

we have to determine the parameters m and s. The estimation

of the embedding delay is based on the mutual information

method. With it, we can measure the amount of information

we have about the state c0iðtþ sÞ presuming we know c0iðtÞ.
Following Fraser and Swinney,61 the first minimum of mu-

tual information is used as the optimal embedding delay.

The estimation of the embedding dimension m is based on

the false nearest neighbor method,62 which relies on the

assumption that the system folds and unfolds with no sudden

irregularities. Neighboring points in reconstructed phase

space will thus stay close during forward integration, and

true neighbors cannot grow further apart than dCTH, where

CTH is a given constant and d is the initial separation

between two neighboring points. If, on the other hand, a

neighbor does not fulfil this criterion, then it is marked as a

false nearest neighbor. The minimization of false nearest

neighbors is realized with a sufficiently large m. The two-

dimensional projections of the reconstructed phase space for

a given decomposed time series are shown in Fig. 2(b). To

study more thoroughly the dynamics of the given time traces,

we estimate the Lyapunov exponents kðlÞi, where the index i
corresponds to the i-th decomposed time series and l to the

l-th Lyapunov exponent. Similarly to eigenvalues, the

Lyapunov exponents are an invariant feature of a given sys-

tem and quantify the average local degrees of the attractor’s

expansion and contraction.63 Knowing all of the Lyapunov

exponents of a given time trace thus enables us to compute

its divergence by summarizing all m Lyapunov exponents.

For the calculation of the Lyapunov spectrum, we made use

of the radial basis functions for the approximation of the

flow in the phase space,64,65 thereby receiving an estimation

of the average divergence of individual cells.

Next, we construct functional networks on the basis of

pairwise correlations between [Ca2þ]i signals of individual

cells.34 Briefly, the correlation matrix R with the ij-th ele-

ment being the correlation coefficient Rij between the i-th
and j-th trace was calculated from the decomposed temporal

traces. Functional connections among beta cells are estab-

lished among those cell pairs, whose correlation coefficient

exceeds a threshold value Rth. The value of Rth determined in

such a way, that at least 50% of the variation in system, can

be explained with a linear relationship among a cell pair (we

use Rth¼ 0.72).

To quantify the degree of dissipation of individual beta

cells and link it with network characteristics, we color-

coded individual nodes in the functional network shown in

Fig. 3(a). It can be observed that highly connected nodes ex-

hibit higher dissipation rates, which is well in agreement

with our theoretical predictions (see Eq. (2)) and numerical

results (Fig. 1). For a more precise description of this obser-

vation, we present in Fig. 3(b) the average dissipation of

individual cells as a function of their degrees. To ensure a

better statistical accuracy, we performed this calculation for

four different functional networks being composed of alto-

gether 118 cells. Since absolute values of average diver-

gence varied between different slices, we normalized hdivii
between �1 and 0. Analogously, we normalized the degree

of each cell to the maximal node degree kmax in the respec-

tive islet. In this manner, we obliterated the effect of some-

what different network sizes and maximal degrees and were

thus able to compare trends in all networks. Nevertheless,

the results presented in Fig. 3(b) clearly demonstrate that in

all four functional networks, cells with higher degrees, that

is, with more functional connections, exhibit higher levels

of dissipation (R2¼ 0.56 for all data combined). The rela-

tionship is not as close as for the theoretical and numerical

predictions. There are at least two very important possible

reasons for this. First, the experimentally recorded traces are

inherently noisy, with the signal-to-noise ratio being differ-

ent for different islets and individual cells within a single

islet. This necessarily leads to inaccuracies in determining

the dissipation rates and probably accounts for a part of dis-

persion. On the other hand, in many aspects of their func-

tioning, beta cells are intrinsically very heterogeneous, and

this heterogeneity is only partially reduced following

FIG. 2. (a) An excerpt of the fMCI

time series capturing the beta cell

[Ca2þ]i dynamics provoked by 12 mM

glucose in a typical cell. The grey line

shows the original recording c0ðtÞ and

the black line shows the corresponding

EEMD processed signal cðtÞ. (b) Two-

dimensional projections of the recon-

structed phase space for s ¼ 0:21 s and

m ¼ 5.
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coupling.56,66–68 Thus, it is reasonable to assume that beta

cells with the same number of connections will show some

level of heterogeneity in their dissipation rates. To sum up,

intercellular coupling leads to a lower average divergence,

as indicated in our theoretical predictions.

V. DISCUSSION

Coupling is known to affect the limit cycle behavior and

dynamical characteristics of individual oscillatory elements.

It has been shown that coupling makes an oscillator more

rigid15,17,36,37 and can even lead to a collapse of the phase

space, that is, oscillation death.47 In the present study, we sys-

tematically analyzed the distribution of dissipation rates of

individual oscillators forming a heterogeneous network struc-

ture. Our theoretical and experimental results showed that

highly connected oscillators in the networks have the highest

rates of dissipation. The theoretical results of our mathemati-

cal model indicate that dissipation depends on the number of

neighbors and the conductance of the coupling channels, that

is, coupling strength. In particular, stronger coupling contrib-

utes to a higher dissipation rate of an oscillator. Furthermore,

from practical point of view, the observed well-pronounced

relationship between node degree and the dissipation rates

suggests that the divergence of the oscillators can provide

additional insights for the reconstruction of the topology of

the underlying network of oscillatory elements.

Our findings are in agreement with previous studies of

Abraham et al.15 who showed that coupling makes an oscil-

lator more rigid, and on this basis they succeeded to explain

the regulation of the entrainment range of circadian clocks

by modifying the strength of coupling in the suprachiasmatic

nucleus in the hypothalamus. From a physiological point of

view, stronger coupling means larger ionic currents and a

greater degree of energy consumption, which is also consist-

ent with a greater dissipation. Thus, regulation by coupling

might represent an important regulatory mechanism in bio-

logical systems. It should be noted, however, that this kind

of regulation is only possible if the individual oscillators are

inherently flexible in the first place. For an efficient

regulation by coupling, the intrinsic dissipation needs to be

comparable with the increase in dissipation caused by cou-

pling. If, namely, the intrinsic dissipation of an oscillator is

very large from the outset, that is, much larger than the dissi-

pation shift caused by coupling, then the coupling-induced

increase in the dissipation will have a very small effect on

the dissipation of the oscillator, and no effective regulation

by coupling is possible. On the other hand, if the oscillators

are flexible with relatively small intrinsic dissipation rates,

then the dissipation will be highly influenced by coupling;

and the variety in dissipation rates of the coupled oscillators

will be ensured, and hence an effective regulation by cou-

pling is possible.

Our experimental results show that the divergence of

cellular oscillators, that is, beta cells in slices of mouse pan-

creatic tissues, considerably depends on coupling (Fig. 3(b)).

The coupling has obviously a strong enough effect to deter-

mine the flexibility of the cellular oscillators, which implies

that beta cells are inherently flexible and that their intrinsic

dissipation must be low enough, as to permit changes upon

coupling. This in turn also indicates that the energy required

for the intercellular communication is not negligible in com-

parison with the energetic needs of intracellular signaliza-

tion. This flexibility of beta cells might play an important

role in regulation of insulin secretion in islets of Langerhans.

However, this kind of regulation in general is not trivial, and

the question arises how flexible cellular oscillators are able

to efficiently communicate in cellular networks and provide

correlated collective responses in tissues, such as insulin

secretion in islets of Langerhans, for example. In our previ-

ous studies,36,37 we showed that flexible oscillators charac-

terized by low dissipation rates synchronize best in the so-

called broad-scale small-world networks—a topological fea-

ture that is very common in a variety of biological sys-

tems.32,52,69 Most importantly, we have also found these

topological characteristics for the networks of pancreatic

beta cells.34 Taken together, we might conclude that there is

strong evidence that beta cells in islets of Langerhans operate

as flexible cellular oscillators being interconnected in small-

world network topologies, which provides an efficient and

FIG. 3. (a) Functional network architecture of beta cells in a single islet of Langerhans. Each circle represents the physical position of a cell inside the islet.

Cells whose correlation exceeds Rth ¼ 0:72 are considered to be connected. Colors of circles denote the average divergence calculated as the sum of Lyapunov

exponents scaled to the unit interval hdiviinorm, as indicated by the color bar. (b) The average normalized divergence hdiviinorm as a function of normalized

node degree ki=kmax for four different functional networks, as indicated by different symbols and colors. The dotted lines with the corresponding color denote

the linearly decreasing trend for individual networks and the black solid line signifies the mutual trend for all data (R2¼ 0.29, 0.53, 0.68, and 0.73 for the indi-

vidual networks, R2¼ 0.56 for all data combined).
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robust system for coordinated collective activity. Moreover,

since the flexible oscillators have lower dissipation rates and

hence lower energy consumption and since in broad-scale

small world-networks, there are a large number of cells with

few connections and a smaller number of cells with many

connections, this type of organization might provide the opti-

mal efficiency not only by communication capabilities but

also in terms of energy consumption.

The most interconnected cells, the so-called hubs, have

the largest dissipation rates and hence the higher rates of

energy consumption. This high energy-turnover of the hubs

might have important physiological consequences. The hubs

in the functional network overlap with the most connected

cells in the anatomic network of the tissue,70 and these

highly connected cells might be strongly affected in patho-

physiological conditions. It is known, for instance, that in the

compensated phase of type 2 diabetes mellitus, the activity

of beta cells increases to supply for the increased demand of

insulin.71 It is thus reasonable to speculate that in type 2 dia-

betes mellitus, the energetic demand in beta cells increases

and that this might mostly affect the hubs, which operate at a

higher basal level of energy consumption. Consequently,

during the progress of the disease, the network of beta cells

would gradually change and this would affect its function.

We might expect that the disappearance of hubs would mani-

fest itself as a reduced complexity of the network topology

of beta cells, changing gradually from a heterogeneous and

efficient small-world topology to a more regular one.

However, the decrease in beta cell mass during this progress

would be relatively low, since the number of hubs in a net-

work is lower than the number of less well-connected cells.

Indeed, it has been shown that in T2D patients with less than

5 years of disease duration, the number of beta cells is

reduced by 24%, and it has been suggested that this decrease

is unlikely to be able to cause overt diabetes in the absence

of concomitant beta cell dysfunction.72 Although our line of

reasoning is only a hypothesis that needs a rigorous experi-

mental validation, it opens a new perspective in understand-

ing of diabetes and it might lead to important clinical

applications in the future.
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