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Pro-social punishment and exclusion are common means to elevate the level of cooperation among
unrelated individuals. Indeed, it is worth pointing out that the combined use of these two strategies is
quite common across human societies. However, it is still not known how a combined strategy where
punishment and exclusion are switched can promote cooperation from the theoretical perspective. In
this paper, we thus propose two different switching strategies, namely, peer switching that is based on
peer punishment and peer exclusion, and pool switching that is based on pool punishment and pool
exclusion. Individuals adopting the switching strategy will punish defectors when their numbers are
below a threshold and exclude them otherwise. We study how the two switching strategies influence
the evolutionary dynamics in the public goods game. We show that an intermediate value of the
threshold leads to a stable coexistence of cooperators, defectors, and players adopting the switching
strategy in a well-mixed population, and this regardless of whether the pool-based or the peer-based
switching strategy is introduced. Moreover, we show that the pure exclusion strategy alone is able
to evoke a limit cycle attractor in the evolutionary dynamics, such that cooperation can coexist with
other strategies. Published by AIP Publishing. https://doi.org/10.1063/1.5051422

Large-scale cooperation among unrelated individuals dis-
tinguishes humans markedly from other animals, and it
is indeed crucial for our evolutionary success. Coopera-
tion is remarkable because it is costly for the individual
that cooperates, but it is beneficial for the society as a
whole. As such, to cooperate is in contradiction with the
Darwinistic principle of maximizing personal fitness, and
it is therefore challenged by defection. Individuals are thus
torn between what is best for them and what is best for the
society—the blueprint of a social dilemma. The theoretical
framework for studying this fascinating aspect of our biol-
ogy is evolutionary game theory, with the most commonly
used games being the prisoner’s dilemma and the public
goods game. The latter two games describe the essence
of the problem succinctly for pairwise and group inter-
actions, respectively. The resolution of social dilemmas
toward the pro-social outcome has received ample atten-
tion in the recent past. In our paper, we extend the scope of
the classic public goods game with cooperators and defec-
tors to account for a new third type of strategy, namely, the
switching strategy that either punishes or excludes defec-
tors depending on their numbers. Our research reveals
fascinatingly different evolutionary dynamics, including
the stable coexistence of three strategies and limit cycles,
which enables cooperators to survive where otherwise they
would perish. These results have important implications
for the better understanding of cooperation, and we also
hope they will be inspiring for economic experiments in
the future.
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I. INTRODUCTION

The emergence of altruistic behavior among unrelated
individuals has been a puzzling phenomenon, since such
behavior is usually costly to perform but benefits others.1–12

A number of game theoretic researches over the past
decades have provided numerous answers to this ques-
tion, such as indirect reciprocity, reputation, reward, and
punishment.13–18,20,21 Among them, scholars pay more atten-
tion to the role of pro-social punishment played in promoting
public cooperation.19,22–24 Theoretical and experimental stud-
ies have indicated that pro-social punishment can reduce the
expected payoff of self-interested individuals since they need
to pay an extra fine.25–27 However, such action is also costly;
it results in the second-order free-riders dilemma, in which
individuals may prefer to benefit from punishment but do not
contribute the related costs.28–35

Social exclusion has recently drawn more attention since
it can perform better than costly punishment for maintain-
ing cooperation.36–41 It is thought that social exclusion is
still an advantageous strategy even facing with a large num-
ber of free-riders, due to the fact that excluding defectors
from sharing benefit can decrease the number of beneficiaries.
Recently, such exclusion strategy has been studied from an
evolutionary perspective by Sasaki and Uchida.36 The results
show that social exclusion strategy can overcome two difficul-
ties of costly punishment: first, rare punishers cannot defeat
a large area of free-riders; second, punishers will be elim-
inated by natural selection in the presence of second-order
free-riders. Subsequently, Liu et al.40 studied the competi-
tion between pro-social exclusion and punishment in finite
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populations and claimed that social exclusion can always do
better than punishment.

It is worth pointing out that in most previous stud-
ies, the evolution of these two incentive strategies has been
explored in a manner in which the two strategies work
independently.36,40 But in the realistic world, what is pretty
widespread is the combined use of these sanctioning strate-
gies. It is still unclear how such a combined strategy can
promote cooperation from the theoretical perspective. Con-
sidering the different roles of pro-social punishment and
exclusion played in raising cooperation, it is interesting to
investigate how to jointly use the two strategies for the pro-
motion of cooperation. Notice that a specific example in
the realistic world is the problem of environmental pollution
control. If the number of enterprises discharging pollutants
illegally exceeds a given threshold, the Environmental Pro-
tection Agency (EPA) will force these enterprises to suspend
operations. Otherwise, the EPA will impose fines on them.42,43

In this paper, we thereby propose a switching strategy
with which individuals can either punish or exclude free-rider
in the public goods game (PGG) depending on the number of
defectors in the group. Specifically, if the number of defec-
tors in the group is above a certain threshold, individuals
who contribute to the monitoring organization will behave
as excluders; otherwise, they act as punishers. We consider
these assumptions and then construct a model based on the
one in our previous work.44 Furthermore, in our model, we
further consider that strategy-switching individuals need to
pay a monitoring cost, which is ignored in Ref. 44, but it is
more reasonable for real-world systems. This is because that
monitoring the whole population and knowing the number of
free-riders in the population require a certain monitoring cost.
We find that a middle threshold can make the system con-
verge to a stable coexistence state of cooperators, defectors,
and strategy switching players no matter whether pool-based
switching strategy or peer-based switching strategy is used. In
addition, we prove that when pure exclusion strategy is con-
sidered into public goods games, the population system can
exhibit a limit cycle where cooperative strategy can coexist
with other types of strategies.

II. MODEL AND METHOD

A. Public goods game

We consider an infinite well-mixed of individuals who
play the public goods game. In a group of N individuals, each
player has the opportunity to cooperate by contributing to the
common pool with a cost c to itself, or act as defectors by con-
tributing nothing. Then, the sum of all contributions in each
group is multiplied by an enhancement factor r (1 < r < N)
and equally distributed among all the N individuals. Thus,
if all individuals choose to cooperate, the group can yield
the maximum benefit rc − c for each player. If all choose to
defect, the group can get nothing.

B. Switching strategy of pro-social punishment and
exclusion

We introduce a switching strategy to depict the combined
use of pro-social punishment and exclusion. Different forms

of punishment strategies can be chosen based on whether
the number of defectors in the group exceeds the tolerance
threshold. Concretely, if the number of free-riders in the group
exceeds a given threshold T , those players with the switch-
ing strategy will exclude free-riders, otherwise punish them.
Thus, the levels of tolerance threshold are determined by the
number of defectors in the group, namely, T = 0, . . . , N . In
particular, T = 0 means that all free-riders will be excluded
from sharing public goods once there exist strategy-switching
players, while T = N means that all defectors will be pun-
ished. Here, we introduce two switching strategies, namely,
peer-based switching and pool-based switching. It is nec-
essary to point out that regardless of peer-based switching
strategy or pool-based switching strategy, strategy switching
individuals need to bear a monitoring cost τ for detecting
the number of defectors in the group before they exclude or
punish free-riders.

1. Peer-based switching strategy

Here, we consider peer-based switching strategists who
not only contribute to the common pool but also monitor the
number of free-riders in the group. If the level of defection
exceeds a certain level in the group, they become exclud-
ers who prevent defectors collecting benefit from the public
goods sharing at a cost cE on every defector in the group,
otherwise they change to be punishers who impose a fine β

on each free-rider at a cost γ for themselves.45 Then, the
payoffs of pure cooperators (C), pure defectors (D), and peer-
based switching strategists (IE) obtained from the group can
be, respectively, given by

πC =
⎧⎨
⎩

rc − c, if NIE �= 0 and ND ≥ T ;

rc(NC + NIE + 1)

N
− c, otherwise,

(1)

πD =
⎧⎨
⎩

0, if NIE �= 0 and ND ≥ T ;

rc(NC + NIE )

N
− NIEβ, otherwise,

(2)

πIE =
⎧⎨
⎩

rc − c − NDcE − τ , if ND ≥ T ;

rc(NC + NIE + 1)

N
− c − NDγ − τ , otherwise,

(3)

where NC, ND, and NIE denote the numbers of cooperators,
defectors, and peer-based switching strategists among the
other N − 1 players, respectively.

2. Pool-based switching strategy

Different from peer-based switching strategy, pool-based
switching strategists resort to the institution of monitoring
which can choose to exclude defectors or punish them by
giving a corresponding fine B. The costs of exclusion and pun-
ishment are δ and G, respectively. Accordingly, the payoffs
of cooperators, defectors, and pool-based switching strategists
(IF) obtained from the group can be, respectively, written as
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follows:

πC =
⎧⎨
⎩

rc − c, if NIF �= 0 and ND ≥ T ;

rc(NC + NIF + 1)

N
− c, otherwise,

(4)

πD =
⎧⎨
⎩

0, if NIF �= 0 and ND ≥ T ;

rc(NC + NIF )

N
− NIF B, otherwise,

(5)

πIF =
⎧⎨
⎩

rc − c − δ − τ , if ND ≥ T ;

rc(NC + NIF + 1)

N
− c − G − τ , otherwise,

(6)

where NC, ND, and NIF denote the numbers of cooperators,
defectors, and pool-based switching strategists among the
N − 1 players, respectively.

C. Replicator dynamics

In a well-mixed population, the fraction of C, D, and
I(IE or IF) players can be denoted by x, y, and z, respectively.
Thus, x, y, z ≥ 0 and x + y + z = 1. Consequently, the strat-
egy evolution can be studied by using replicator equations46–52

⎧⎪⎪⎨
⎪⎪⎩

ẋ = x(PC − P̄),

ẏ = y(PD − P̄),

ż = z(PI − P̄),

(7)

where PC, PD, and PI represent the expected payoffs of C, D,
and I, respectively, and P̄ = xPC + yPD + zPI represents the

average payoff of the whole population. And we have

Pi =
N−1∑

NC=0

N−NC−1∑
ND=0

(
N − 1

NC

)(
N − NC − 1

ND

)

xNC yNDzN−NC−ND−1πi, (8)

where i = C, D, or I.
To better characterize the evolutionary dynamics of the

population for different switching thresholds, we present our
results regarding the switching threshold in the form of bifur-
cation diagrams in Sec. III. In addition, we provide detailed
theoretical analysis when the switching threshold is set to N or
0. Unless otherwise specified, theoretical analyses in special
conditions are presented in Appendixes A–D, respectively.

III. RESULTS

A. Evolutionary dynamics in the population with
peer-based switching strategy

We first present the results of evolutionary dynamics in
the population with peer-based switching strategy for different
values of T , as shown in Fig. 1. Clearly, if level of toler-
ance is strong enough (T = N), players will opt for defection
(more detailed theoretical analysis is shown in Appendix A 1).
Besides, an unstable equilibrium point can appear on edge
IED [see Figs. 1(a) and 1(b)]. It needs to stress that a spe-
cific stable point appears on the edge IED when we decrease
threshold value slightly [see Fig. 1(b)]. For an intermediate
threshold (T = 3), a new dynamical characteristic appears,
that is, an interior stable equilibrium point displays the sim-
plex S3. With decreasing T , the interior stable point moves
along a straight line approximately parallel to the edge CD
[see Figs. 1(c)–1(e)]. If T decreases still further to T = 0,
peer-based switching strategist will always use the exclu-
sion action. Interestingly, defectors will be excluded by peer

FIG. 1. Effects of peer-based switching strategy on cooperation for different switching thresholds T . The triangles represent the state space S3 = {(x, y, z) :
x, y, z ≥ 0, and x + y + z = 1}, where x, y, and z are the frequencies of C, D, and IE , respectively. Filled circles represent stable fixed points, whereas open circles
represent unstable fixed points. The threshold values are (a) T = 5, (b) T = 4, (c) T = 3, (d) T = 2, (e) T = 1, and (f) T = 0, respectively. Other parameters:
N = 5, r = 3, c = 1, β = γ = 0.4, τ = 0.1, and cE = 0.4.
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FIG. 2. Time evolution of the fractions of three strategies C (black dash line), D (red dot line), and IE (blue solid line) for different switching threshold values T .
Initial conditions: (x, y, z) = (0.1, 0.8, 0.1). Parameters: N = 5, r = 3, c = 1, β = γ = 0.4, τ = 0.1, and cE = 0.4. The threshold values are (a) T = 5, (b) T = 4,
(c) T = 3, (d) T = 2, (e) T = 1, and (f) T = 0, respectively.

excluders, defectors dominate cooperators, and cooperators
invade peer excluders, forming a heteroclinic cycle on the
boundary of simplex S3. In order to judge the stability of this
heteroclinic cycle, we calculate the eigenvalues of the Jaco-
bian matrix of the three vertex equilibrium points as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ−
IE

= −(rc − c − τ), λ+
IE

= τ ,

λ−
C = −τ , λ+

C = c − rc

N
,

λ−
D = rc

N
− c, λ+

D = rc − c − τ − (N − 1)cE.

(9)

Then, we define that λIE = − λ−
IE

λ+
IE

, λC = − λ−
C

λ+
C

, and λD =

− λ−
D

λ+
D

, and we have λ = λIEλCλD = rc−c−τ
rc−c−τ−(N−1)cE

> 1.

Thus, the heteroclinic cycle is asymptotically stable53 (see
Appendix B 3 for theoretical analysis). Besides, a stable
limit cycle exists in the interior of the simplex S3 (see
Appendix B 4 for theoretical analysis). Frequencies of three
strategies oscillate, but the interior equilibrium point is unsta-
ble [see Fig. 1(f), and more detailed theoretical analysis is
presented in Appendix B 2].

In order to shed light on the details behind the results pre-
sented in Fig. 1, we depict the frequency of the mentioned
three strategies as a function of time for different switch-
ing thresholds in Fig. 2. It can be observed that although
pure defectors can always occupy the highest proportion
of the population for T ≥ 2, the evolutionary advantage
of defectors is weakened gradually with decreasing T

[see Figs. 2(a)–2(d)]. However, it is worth noting that when
T = 1, pure cooperators have higher fitness than defectors
[see Fig. 2(e)]. In particular, a periodic oscillation occurs
when peer exclusion is performed [see Fig. 2(f)], which is
corresponding to the stable limit cycle shown in Fig. 1(f).

B. Evolutionary dynamics in the population with
pool-based switching strategy

We next illustrate how the introduction of pool-based
switching strategy influences the cooperation level for dif-
ferent T , as shown in Fig. 3. When T = N , pool-based
switching strategists will always act as pool punishers. In
this case, no interior equilibrium point appears in the sim-
plex S3 since PIF < PC, while an unstable equilibrium point
exists on edge IFD with z = N(c+δ+τ)−rc

N(N−1)B (for further details,
see Appendix C 1). The system only has one stable point D,
which means that defectors will dominate the whole popu-
lation. However, this phase portraits will be changed when
we reduce the tolerance threshold T . When T = 4, an inte-
rior stable equilibrium point is present in the simplex S3; thus,
cooperators, defectors, and pool-based switching strategists
can coexist steadily in the population [see Fig. 3(b)]. Fur-
thermore, with decreasing T , the interior stable equilibrium
point moves toward full cooperation state [see Fig. 3(b)–3(e)].
As a special case of pool-based switching strategy, T = 0
means that pool-based switching strategists will always act as
pool excluders. The unique stable coexistent equilibrium point
changes to a center surrounding by periodic closed orbits.
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FIG. 3. Effects of pool-based switching strategy on cooperation for different switching threshold T . Parameters: N = 5, r = 3, c = 1, B = 0.4, G = δ = 0.4,
and τ = 0.1. The threshold values are (a) T = 5, (b) T = 4, (c) T = 3, (d) T = 2, (e) T = 1, and (f) T = 0, respectively.

The reason is that pool excluders invade defectors, cooper-
ators invade pool excluders, and defectors invade cooperators
[see Fig. 3(f)]. To analyze the dynamics in the interior of S3,
we introduce a new variable ε = x

x+y , which represents the
fraction of cooperators among members who do not contribute
to the exclusion pool. This yields

ε̇ = −ε(1 − ε)(PD − PC).

By substituting x = ε(1 − z) and P̄ = x(PC − PD) +
(1 − z)(PD − PF) + PF into ż = z(PF − P̄), we have ż =
z[x(PD − PC) − (1 − z)(PD − PF)]. Thus, we have

⎧⎪⎨
⎪⎩

ε̇ = −ε(1 − ε)

[
(1 − z)N−1 rc(N − 1)

N
− rc + c

]
,

ż = z(1 − z)[rc − c − δ − τ − ε(rc − c)].

IF

IF IF

IF
IF

IF

FIG. 4. Time evolution of the fractions of three strategies C (black dash line), D (red dot line), and IF (blue solid line) for different switching threshold values T .
Initial conditions: (x, y, z) = (0.1, 0.8, 0.1). Parameters: N = 5, r = 3, c = 1, B = 0.4, G = δ = 0.4, τ = 0.1, and cE = 0.4. The threshold values are (a) T = 5,
(b) T = 4, (c) T = 3, (d) T = 2, (e) T = 1, and (f) T = 0, respectively.
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Through detailed theoretical analysis, we can prove that
the system is a conservative Hamiltonian system (see
Appendix D 3 for details).

To further explain the results presented in Fig. 3, we
continue by showing the time evolution of the frequencies
of these three strategies for different values of T in Fig. 4.
When T = N , defection strategy can be dominant, which is
irrelevant to the initial state [see Fig. 4(a)]. Furthermore, by
decreasing the tolerance level, however, we can observe the
fraction of cooperators increases [see Figs. 4(b)–4(e)]. Of par-
ticular note is that pure cooperation strategy can become the
most advantageous strategy when T is set to an intermediate
value, e.g., T = 2. As T is decreased further, the advantage of
cooperators is further enhanced [see Figs. 4(d) and 4(e)]. Par-
ticularly, for T = 0, the frequencies of C, D, and IF display
periodic oscillations, which correspond to the limit cycle in
Fig. 3(f).

IV. DISCUSSION

Thus far, many previous theoretical works have revealed
that pro-social punishment and exclusion strategies can both
maintain sufficiently high levels of public cooperation no mat-
ter whether these two strategies are implemented separately
or jointly.36,38,40 However, few studies have thus far consid-
ered the combined use of these two strategies despite it is
particularly common in our real society. In this paper, we
have introduced the switching strategy with which individu-
als can either punish or exclude free-riders in the public goods
game (PGG), depending on the number of defectors in the
group. Based on the evolutionary game theoretical models,
we have studied the evolutionary dynamics in the well-mixed
population with two different switching forms, by focusing
particularly on the role of switching threshold played in the
evolutionary dynamics of cooperation.

We have shown that a stable coexistence state among
cooperators, defectors, and peer-based switching strategists
can appear when an intermediate switching threshold is used.
In addition, the reduction of switching threshold can enhance
the level of public cooperation. It is necessary to point out that
the special cases in our model (T = N and T = 0 correspond
to peer punishment and peer exclusion, respectively) have
been investigated in a recent work,36 which demonstrated that
social exclusion strategy can not only avert free-riders, but
also prevent second-order free-riders from invading, which
solves the two substantial difficulties of peer punishment.
Interestingly, we find that the introduction of an observation
cost will completely change the evolutionary results of these
two strategies in our model. Concretely, the coexistence of
cooperators and peer punishers will disappear, and defection
becomes a global stability strategy [see Fig. 1(a)]. Or, the
periodic oscillations among the three strategies replace the
coexistence of cooperators and peer excluders [see Fig. 1(f)].
Although similar shapes of oscillations have been presented
in previous works54,55 where oscillations are caused by the
feedback between players’ payoffs and their local interac-
tion topology or the cyclic dominance of the three species,
the mechanisms for the oscillations between our work and
the two studies mentioned above are different. In our work,

we investigate the evolutionary dynamics among cooperators,
defectors, and switching strategists in an infinite population.
The oscillation is caused by the mutual restriction among
these three strategists, that is, defectors will be excluded by
peer excluders, defectors defeat cooperators, and cooperators
invade peer excluders.

We have also investigated the evolutionary dynamics of
pool-based switching strategy and revealed that in addition to
the two special cases (T = 0 and T = N correspond to the
case of pool exclusion and pool punishment, respectively)
mentioned above, the intermediate switching threshold val-
ues can guarantee the stable coexistence state of cooperators,
defectors, and pool-based switching strategists. It needs to be
pointed out that the result is still valid even though the cost
of exclusion exceeds four times than given in Fig. 3. Fur-
thermore, the decrease of threshold value will weaken the
advantage of defectors in evolution. Particularly, if switching
threshold is zero, the result shows that there can be isolated
periodic orbits, and hence, cooperators, defectors, and pool
excluders can coexist by forming limit cycles [see Fig. 3(f)].

Finally, we have to note that the switching strategy pro-
posed in this work can better induce the stable coexistence
state for cooperation compared with pure punishment or pure
exclusion strategies. Besides, such switching strategy can
flexibly manage public goods in different environments, such
as punishing exiguous free-riders in favorable surroundings
or excluding massive free-riders in extremely unfavorable
environments. Thus, the presently discussed strategy offers
a simple, but still effective, way on how we can better pro-
mote the stable coexistence of different strategies including
cooperation.

APPENDIX A: EVOLUTIONARY DYNAMICS IN THE
POPULATION WITH PEER-BASED SWITCHING
STRATEGY FOR T = N

1. Peer punishment

We first study the replicator dynamics for defectors (D),
cooperators (C), and peer punishers (W). This corresponds to
the special case for peer-based switching strategy with T = N .
We denote by x, y, and z the frequencies of C, D, and W,
respectively. Thus, x, y, z ≥ 0 and x + y + z = 1. The evolu-
tionary fate of the population can be modeled by the replicator
equations, given as

⎧⎪⎪⎨
⎪⎪⎩

ẋ = x(PC − P̄),

ẏ = y(PD − P̄),

ż = z(PW − P̄),

(A1)

where PC, PD, and PW denote the expected payoffs of these
three strategies and P̄ = xPC + yPD + zPW describes the
average payoff of the entire population.

Accordingly, the expected payoffs of these three strate-
gies can be, respectively, given by

PC = rc

N
(N − 1)(x + z) + rc

N
− c,

PD = rc

N
(N − 1)(x + z) − (N − 1)zβ,
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PW = rc

N
(N − 1)(x + z) + rc

N
− c − (N − 1)yγ − τ .

Since PW < PC, there is no interior fixed point. Then, we
investigate the dynamics on each edge of the simplex S3.
On the edge C-D, we have z = 0, resulting in ẏ = y(1 − y)
(PD − PC) = y(1 − y)(c − rc

N ) > 0. Thus, the direction of the
dynamics goes from C to D. On the edge D-W, since x = 0
and y + z = 1, we have ż = z(1 − z)(PW − PD). Here, we
assume that 0 < c + τ − rc

N + (N − 1)γ < (N − 1)(γ + β);

thus, solving PW = PD results in z = c+(N−1)γ+τ− rc
N

(N−1)(β+γ )
, which

means that there exists a boundary fixed point on the edge
D-W. On the edge C-W, since y = 0 and x + z = 1, we have
ẋ = x(1 − x)(PC − PW ) = x(1 − x)τ > 0; thus, the direction
of the dynamics goes from W to C.

Therefore, there are four equilibria, namely, three ver-
tex fixed points [(x, y, z) = (0, 0, 1), (1, 0, 0), and (0, 1, 0)] and

the boundary fixed point
[
(x, y, z) =

(
0, 1 − c+(N−1)γ+τ− rc

N
(N−1)(β+γ )

,
c+(N−1)γ+τ− rc

N
(N−1)(β+γ )

)]
in the simplex S3.

2. The stabilities of equilibria

Here, we define

f (x, y) = x[(1 − x)(PC − PW ) − y(PD − PW )],

g(x, y) = y[(1 − y)(PD − PW ) − x(PC − PW )].

Then, the Jacobian matrix of the equation system is

J =

⎡
⎢⎣

∂f (x, y)

∂x

∂f (x, y)

∂y
∂g(x, y)

∂x

∂g(x, y)

∂y

⎤
⎥⎦ , (A2)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f (x, y)

∂x
= [(1 − x)(PC − PW ) − y(PD − PW )]

+ x

[
−(PC − PW ) + (1 − x)

∂

∂x
(PC − PW )

−y
∂

∂x
(PD − PW )

]
,

∂f (x, y)

∂y
= x

[
(1 − x)

∂

∂y
(PC − PW ) − (PD − PW )

−y
∂

∂y
(PD − PW )

]
,

∂g(x, y)

∂x
= y

[
(1 − y)

∂

∂x
(PD − PW ) − (PC − PW )

−x
∂

∂x
(PC − PW )

]
,

∂g(x, y)

∂y
= [(1 − y)(PD − PW ) − x(PC − PW )]

+ y

[
−(PD − PW ) + (1 − y)

∂

∂y
(PD − PW )

−x
∂

∂y
(PC − PW )

]
.

(A3)

Then, we have the following conclusion.

Theorem 1. For 1 < r < N, only the fixed point (0, 1, 0) is

stable, and the other equilibria (0, 0, 1), (1, 0, 0), and
(

0, 1 −
c+(N−1)γ+τ− rc

N
(N−1)(β+γ )

,
c+(N−1)γ+τ− rc

N
(N−1)(β+γ )

)
are unstable.

Proof. (1) For (x, y, z) = (0, 0, 1), the Jacobian is

J =
[
τ 0
0 c + τ − rc

N − (N − 1)β

]
, (A4)

thus the fixed point is unstable since τ > 0.
(2) For (x, y, z) = (1, 0, 0), the Jacobian is

J =
[−τ −(c + τ − rc

N )

0 c − rc
N

]
, (A5)

thus the fixed point is unstable since 1 − r
N > 0.

(3) For (x, y, z) = (0, 1, 0), the Jacobian is

J =
[

rc
N − c 0

−τ − (N − 1)γ rc
N − c − τ − (N − 1)γ

]
, (A6)

thus the fixed point is stable since rc
N − c < 0.

(4) For (x, y, z) =
(
0, 1 − c+(N−1)γ+τ− rc

N
(N−1)(β+γ )

,
c+(N−1)γ+τ− rc

N
(N−1)(β+γ)

)
,

the Jacobian is

J =
[

a11 0
a21 a22

]
, (A7)

where a11 = (N − 1)yγ + τ , a21 = y(1 − y)β(N − 1) −
(N − 1)y2γ − τy, and a22 = y(1 − y)(N − 1)(β + γ ), thus
the fixed point is unstable since y(1 − y)(N − 1)(β + γ ) > 0
and (N − 1)yγ + τ > 0. �

APPENDIX B: EVOLUTIONARY DYNAMICS IN THE
POPULATION WITH PEER-BASED SWITCHING
STRATEGY FOR T = 0

1. Peer exclusion

We now consider another special case for peer-based
switching strategy with T = 0. Thus, the replicator equations
are written as ⎧⎪⎪⎨

⎪⎪⎩

ẋ = x(PC − P̄),

ẏ = y(PD − P̄),

ż = z(PE − P̄),

(B1)

where P̄ = xPC + yPD + zPE represents the average payoff of
the entire population.

We assume that exclusion never fails. In this condition,
we can formalize the expected payoffs as follows:

PC = rc − c − (1 − z)N−1 rc(N − 1)y

N(1 − z)
, (B2)

PD = (1 − z)N−1 rc(N − 1)x

N(1 − z)
, (B3)

PE = rc − c − (N − 1)ycE − τ . (B4)
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Remark 1. Because of z = 1 − x − y, the system (B1)
becomes{

ẋ = x[(1 − x)(PC − PE) − y(PD − PE)],

ẏ = y[(1 − y)(PD − PE) − x(PC − PE)],
(B5)

where

PC − PE = (N − 1)ycE + τ − (1 − z)N−1 rc(N − 1)y

N(1 − z)
,

PD − PE = (1 − z)N−1 rc(N − 1)x

N(1 − z)

− rc + c + (N − 1)ycE + τ .

Theorem 2. For [ N(r−1)

r(N−1)
]

1
N−1 (N − 1)cE < rc − c − τ < min

{(N − 1)cE, [ N(r − 1)

r(N − 1)
]

1
N − 1 (N−1)cE + rc − c

[ N(r − 1)
r(N − 1)

]
1

N − 1
− (N − 1)cE},

the system (B5) has five fixed points, namely, (x, y, z) =
(0, 0, 1), (1, 0, 0), (0, 1, 0), (0, rc−c−τ

(N−1)cE
, 1 − rc−c−τ

(N−1)cE
),

and ([ N(r−1)

r(N−1)
]

1
N−1 − τ

(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

, τ
(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

,

1 − [ N(r−1)

r(N−1)
]

1
N−1 ).

Proof. By solving system equations (B5), we can eas-
ily know that there are three vertex fixed points, namely,
(0, 0, 1), (0, 1, 0), and (1, 0, 0). Then, solving PC = PD

results in z = 1 − [ N(r−1)

r(N−1)
]

1
N−1 . When (r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
− (N − 1)

cE > τ , solving PC = PE leads to y = τ
(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

.

Thus, there exists an interior fixed point ([ N(r−1)

r(N−1)
]

1
N−1 −

τ
(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

, τ
(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

, 1 − [ N(r−1)

r(N−1)
]

1
N−1 ) in

the simplex S3.
Then, we study the dynamics on each edge of simplex

S3. On the edge E-D, y + z = 1 results in ż = z(1 − z)(PE −
PD) = z(1 − z)[rc − c − τ − (N − 1)ycE]; thus, there is an
equilibrium y = rc−c−τ

(N−1)cE
for 0 < rc − c − τ < (N − 1)cE;

otherwise, E can perform better than D. On the edge C-E, we
have x + z = 1 and ẋ = x(1 − x)(PC − PE) = x(1 − x)τ > 0;
thus, the direction of the dynamics goes from E to C. On the
edge C-D, D can defeat C, as presented in Appendix A 1. �

2. The stabilities of equilibria

Theorem 3. In the conditions of Theorem 2, only the
fixed point (0, 1, 0) is stable, and the other equilibria

(0, 0, 1), (1, 0, 0), (0, rc−c−τ
(N−1)cE

, 1 − rc−c−τ
(N−1)cE

), and ([ N(r−1)

r(N−1)
]

1
N−1

− τ
(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

, τ
(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

, 1 − [ N(r−1)

r(N−1)
]

1
N−1 )

are unstable.

Proof. We also use the Jacobian matrix of the system to
study the stability of equilibria.

(1) For (x, y, z) = (0, 0, 1), the Jacobian is

J =
[
τ 0
0 −(rc − c − τ)

]
, (B6)

thus the fixed point is unstable since τ > 0.
(2) For (x, y, z) = (1, 0, 0), the Jacobian is

J =
⎡
⎣−τ −(c + τ − rc

N
)

0 c − rc

N

⎤
⎦ , (B7)

thus the fixed point is a unstable since 1 − r
N > 0.

(3) For (x, y, z) = (0, 1, 0), the Jacobian is

J =
[ rc

N
− c 0

a21 rc − c − τ − (N − 1)cE

]
, (B8)

where a21 = −[ rc
N − rc + (N − 1)cE + τ ], thus the fixed

point is unstable when rc − c − τ − (N − 1)cE > 0, while
when rc − c − τ − (N − 1)cE < 0, it is stable. Particularly,
when rc − c − τ − (N − 1)cE = 0, we can prove this fixed
point is stable by using center manifold theorem (see
Theorem 4 for detailed analysis).

(4) When rc − c − τ − (N − 1)cE < 0, there is a bound-
ary equilibrium point (x, y, z) = (0, rc−c−τ

(N−1)cE
, 1 − rc−c−τ

(N−1)cE
).

Then the Jacobian is

J =
[

a11 0
a21 a22

]
, (B9)

where a11 = (N − 1)ycE − yN−1 rc(N−1)

N + τ , a21 = yN−1 rc
N

(N − 1) − (N − 1)y2cE − yτ , and a22 = y(1 − y)(N − 1)cE,
thus the fixed point is unstable since y(1 − y)(N − 1)cE > 0.

(5) When τ < rc − c − [ N(r−1)

r(N−1)
]

1
N−1 (N − 1)cE < τ +

rc−c

[ N(r−1)
r(N−1)

]
1

N−1
− (N − 1)cE, there is an interior equilibrium point

(x, y, z) = ([ N(r−1)

r(N−1)
]

1
N−1 − τ

(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

,

τ
(r−1)c

[ N(r−1)
r(N−1)

]
1

N−1
−(N−1)cE

, 1 − [ N(r−1)

r(N−1)
]

1
N−1 ), we define the equilib-

rium point as (x∗, y∗, z∗) hereafter. And the elements in the
Jacobian matrix for this equilibrium point are written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂x
(x∗, y∗) = x∗

[
(1 − x∗)

∂

∂x
(PC − PE) − y∗ ∂

∂x
(PD − PE)

]
,

∂f

∂y
(x∗, y∗) = x∗

[
(1 − x∗)

∂

∂y
(PC − PE) − y∗ ∂

∂y
(PD − PE)

]
,

∂g

∂x
(x∗, y∗) = y∗

[
(1 − y∗)

∂

∂x
(PD − PE) − x∗ ∂

∂x
(PC − PE)

]
,

∂g

∂y
(x∗, y∗) = y∗

[
(1 − y∗)

∂

∂y
(PD − PE) − x∗ ∂

∂y
(PC − PE)

]
,
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where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x
(PC − PE) = −(x∗ + y∗)N−3 rcy∗(N − 1)(N − 2)

N
,

∂

∂y
(PC − PE) = (N − 1)cE − (x∗ + y∗)N−3 rc(N − 1)

N

[(N − 1)y∗ + x∗],

∂

∂x
(PD − PE) = (x∗ + y∗)N−3 rc(N − 1)

N
[(N − 1)x∗ + y∗],

∂

∂y
(PD − PE) = (N − 1)cE + (x∗ + y∗)N−3

rcx∗(N − 1)(N − 2)

N
.

Then, we define that p1 = ∂f
∂x (x

∗, y∗) ∂g
∂y (x

∗, y∗) − ∂f
∂y (x

∗, y∗) ∂g
∂x

(x∗, y∗) and q1 = ∂f
∂x (x

∗, y∗) + ∂g
∂y (x

∗, y∗). We know that

p1 = x∗y∗(1 − x∗ − y∗)
[

∂

∂x
(PC − PE)

∂

∂y
(PD − PE)

− ∂

∂y
(PC − PE)

∂

∂x
(PD − PE)

]

= x∗y∗(1 − x∗ − y∗)
rc(N − 1)3

N
(x∗ + y∗)N−2

×
[
(x∗ + y∗)N−2 rc

N
− 1

]

< 0

and

q1 = x∗(1 − x∗)
∂

∂x
(PC − PE) + y∗(1 − y∗)

∂

∂y
(PD − PE)

− x∗y∗
[

∂

∂x
(PD − PE) + ∂

∂y
(PC − PE)

]

= (N − 1)cEy∗(1 − y∗ − x∗)

> 0.

We thus conclude that the Jacobian matrix has a posi-
tive eigenvalue. Therefore, the interior equilibrium point is
unstable. �

Theorem 4. For rc − c − τ − (N − 1)cE = 0, the equilib-
rium point (0, 1, 0) is stable.

Proof. Because y = 1 − x − z, the dynamic equations
(B5) become

{
ẋ = x[(1 − x)(PC − PD) − z(PE − PD)],

ż = z[(1 − z)(PE − PD) − x(PC − PD)],
(B10)

where

PC − PD = rc − c − (1 − z)N−1 rc(N − 1)

N
,

PE − PD = rc − c − (N − 1)ycE − τ

− (1 − z)N−1 rc(N − 1)x

N(1 − z)
.

We know that (x, z) = (0, 0) is equilibrium point of system
(B10). Then, the Jacobian is

A =
[ rc

N
− c 0

0 rc − c − τ − (N − 1)cE

]
. (B11)

When rc − c − τ − (N − 1)cE = 0, we know that the eigen-
values of the Jacobian for the fixed point (x, z) = (0, 0) are
0 and rc

N − c. In this condition, we study the stability of
the equilibrium point by further using the center manifold
theorem.56–58 To do that, we construct a matrix M , whose
column elements are the eigenvectors of the matrix A, given
as

M =
[

0 1
1 0

]
. (B12)

Let T = M −1, then we have

TAT−1 =
[

0 0
0 rc

N − c

]
. (B13)

Using variable substitution, we have
[

j
i

]
= T

[
x
z

]
=

[
0 1
1 0

] [
x
z

]
=

[
z
x

]
. (B14)

Therefore, the system (B10) can be rewritten as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j̇ = j(1 − j)

[
rc − c − (N − 1)(1 − j − i)cE

−τ − (1 − j)N−1 rc(N − 1)i

N(1 − j)

]

− ji

[
rc − c − (1 − j)N−1 rc(N − 1)

N

]
,

i̇ = i(1 − i)

[
rc − c − (1 − j)N−1 rc(N − 1)

N

]

− ji

[
rc − c − (N − 1)(1 − j − i)cE − τ

−(1 − j)N−1 rc(N − 1)i

N(1 − j)

]
.

Using the center manifold theorem, we have that j = h(i) is a
center manifold for the above system. Then, the dynamics on
the center manifold can be described by

i̇ = i(1 − i)

[
rc − c − (1 − h(i))N−1 rc(N − 1)

N

]

− h(i)i

[
rc − c − (N − 1)(1 − h(i) − i)cE − τ

−(1 − h(i))N−1 rc(N − 1)i

N(1 − h(i))

]
. (B15)

We start to try h(i) = O(i2); thus, the system (B15) can be
expressed as

i̇ = i(1 − i)

[
rc − c − rc(N − 1)

N

]
+ O(|i|3). (B16)

By defining m(i) = i(1 − i)[rc − c − rc(N−1)

N ], we have

m
′
(i) = (1 − 2i)[rc − c − rc(N−1)

N ]. Since m
′
(0) < 0, thus we

can judge that i = 0 is asymptotically stable. Therefore, we
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can know the fixed point [i, h(i)] = (0, 0) is also stable for the
system (B10). Accordingly, the fixed point (0, 1, 0) is stable
as well.56–58 �

3. Heteroclinic cycle

In this subsection, we show that there is a stable het-
eroclinic cycle on the boundary of the simplex CDIE [see
Fig. 1(f)]. When rc − c − τ − (N − 1)cE > 0 and r < N , we
know that the three vertex equilibrium points (C, D, and IE)
are all saddle nodes, and the heteroclinic trajectories can dis-
play on the three edges (CD, DIE, and IEC). All of these
guarantee the existence of the heteroclinic cycle on the bound-
ary S3. In the following, we will prove that the heteroclinic
cycle is asymptotically stable.

According to Theorem 3, we can get the eigenval-
ues of the Jacobian matrix of the three vertex equi-
librium points, namely, λ−

IE
= −(rc − c − τ), λ+

IE
= τ , λ−

C =
−τ , λ+

C = c − rc
N , λ−

D = rc
N − c, and λ+

D = rc − c − τ −
(N − 1)cE. Then, we define that λIE = − λ−

IE
λ+

IE

, λC = − λ−
C

λ+
C

, and

λD = − λ−
D

λ+
D

, and we have λ = λIEλCλD = rc−c−τ
rc−c−τ−(N−1)cE

> 1.

Thus, the heteroclinic cycle is asymptotically stable.53

4. Limit cycle

Next, we prove that a stable limit cycle can exist in the
simplex CDIE [see Fig. 1(f)]. According to the above theo-
retical analysis, we know that the interior fixed point of the
system is unstable. Now, we set a closed domain 
 that con-
tains the interior fixed point on the phase plane of the system
(B5). Here, we take a straight line l = x + y − b = 0, where b
is an undetermined constant. In order to determine the direc-
tion of the trajectory of the system, we solve the derivative of
the equation l = x + y − b. Thus, we have

∂l

∂t
= ∂x

∂t
+ ∂y

∂t
= x(1 − x − y)

×
[
(N − 1)ycE + τ − (x + y)N−1 rc(N − 1)y

N(x + y)

]

+ y(1 − x − y)

[
(x + y)N−1 rc(N − 1)x

N(x + y)
− rc + c

+ (N − 1)ycE + τ

]

= (1 − x − y)[(N − 1)ycE(x + y) + (x + y)τ − (rc − c)y]

= (1 − b)[(N − 1)ycEb + bτ − (rc − c)y]. (B17)

Thus, when b is sufficiently large, we know that ∂l
∂t < 0. In this

case, the straight line l = x + y − b = 0, x = 0, and y = 0 are
enclosed in a closed domain 
 that points to the interior of the
boundary.

On the straight line x = x∗, we select a point (x∗, y1),
where y1 is slightly larger than y∗, and the trajectory that
passes through (x∗, y1) surrounds the interior fixed point
(x∗, y∗), then intersects with the straight line x = x∗ at another
point (x∗, y2) which meets y2 > y∗. Since the interior fixed
point (x∗, y∗) is unstable, we have y2 > y1. The trajectory from
(x∗, y1) to (x∗, y2) and the line segment y1y2 form a closed

domain 
0 containing the interior fixed point. The trajectories
on the boundary of the closed domain 
0 are all diverged out-
ward. Thus, a ring domain is formed between the boundaries
of the closed domains 
 and 
0, and the trajectories on the
boundary of the inner and outer ring will go to the interior of
the domain. Accordingly, we prove that there exists a stable
limit cycle in the closed domain 
.56

APPENDIX C: EVOLUTIONARY DYNAMICS IN THE
POPULATION WITH POOL-BASED SWITCHING
STRATEGY FOR T = N

1. Pool punishment

Next, we analyze the replicator dynamics for public
goods game with pool punishment, which corresponds to the
special case for pool-based switching strategy with T = N .
Accordingly, there are three strategists, namely, coopera-
tors, defectors, and pool punishers, respectively. Thus, the
replicator equations can be written as⎧⎪⎪⎨

⎪⎪⎩

ẋ = x(PC − P̄),

ẏ = y(PD − P̄),

ż = z(PV − P̄),

(C1)

where P̄ = xPC + yPD + zPV is the average payoff of the
whole population. Then, the expected payoffs of these three
strategies can be, respectively, given by

PC = rc

N
(N − 1)(x + z) + rc

N
− c, (C2)

PD = rc

N
(N − 1)(x + z) − B(N − 1)z, (C3)

PV = rc

N
(N − 1)(x + z) + rc

N
− c − G − τ , (C4)

where (N − 1)(x + z) denotes the expected number of con-
tributors among the N − 1 co-players, and B(N − 1)z repre-
sents the expected fine on a defector.

Theorem 5. For r < N, the system (C1) has four fixed points,
namely, (x, y, z) = (0, 0, 1), (1, 0, 0), (0, 1, 0), and(

0, 1 − N(c+G+τ)−rc
N(N−1)B , N(c+G+τ)−rc

N(N−1)B

)
.

Proof. By solving the system equations (C1), we can
know that there are three vertex equilibrium points, namely,
(x, y, z) = (0, 0, 1), (0, 1, 0), and (1, 0, 0).

There is no interior fixed point since PV < PC. Then,
we study the dynamics on each edge of simplex S3. On
the edge V-D, y + z = 1 results in ż = z(1 − z)(PV − PD) =
z(1 − z)[ rc

N − c − G − τ + B(N − 1)z]; thus, there is an equi-
librium z = N(c+G+τ)−rc

N(N−1)B for 0 < N(c+G+τ)−rc
N(N−1)B < 1. On the

edge C-V, we have x + z = 1 and ẋ = x(1 − x)(PC − PV ) =
x(1 − x)(G + τ) > 0; thus, the direction of the dynamics goes
from V to C. On the edge C-D, D can defeat C, as presented
in Appendix A 1. �

2. The stabilities of equilibria

Theorem 6. In the conditions of Theorem 5, the fixed point
(0, 1, 0) is stable, while the others (0, 0, 1), (1, 0, 0), and
(0, 1 − N(c+G+τ)−rc

N(N−1)B , N(c+G+τ)−rc
N(N−1)B ) are unstable.
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Proof. (1) For (x, y, z) = (0, 0, 1), the Jacobian is

J =
[

G + τ 0
0 −B(N − 1) + c + G + τ − rc

N

]
, (C5)

thus the fixed point is unstable since G + τ > 0.
(2) For (x, y, z) = (1, 0, 0), the Jacobian is

J =
[−τ − G −(c + τ + G − rc

N )

0 c − rc
N

]
, (C6)

thus the fixed point is unstable since c − rc
N > 0.

(3) For (x, y, z) = (0, 1, 0), the Jacobian is

J =
[

rc
N − c 0

−(G + τ) rc
N − c − τ − G

]
, (C7)

thus the fixed point is stable since rc
N − c < 0.

(4) For (x, y, z) = (0, 1 − N(c+G+τ)−rc
N(N−1)B , N(c+G+τ)−rc

N(N−1)B ), then
the Jacobian is

J =
[

G + τ 0
y(1 − y)B(N − 1) − yGyτ y(1 − y)(N − 1)B

]
,

(C8)
thus the fixed point is unstable since G + τ > 0. �

APPENDIX D: EVOLUTIONARY DYNAMICS IN THE
POPULATION WITH POOL-BASED SWITCHING
STRATEGY FOR T = 0

1. Pool exclusion

In this subsection, we study the evolutionary dynamics
of pool exclusion, which corresponds to the special case for
pool-base switching strategy with T = 0. Then, the replicator
equations become ⎧⎪⎪⎨

⎪⎪⎩

ẋ = x(PC − P̄),

ẏ = y(PD − P̄),

ż = z(PF − P̄),

(D1)

where PC, PD, and PF are the expected payoffs of cooperators,
defectors, and pool excluders, respectively.

We also assume that exclusion never fails. In this condi-
tion, we give the expected payoffs as follows:

PC = rc − c − (1 − z)N−1 rc(N − 1)y

N(1 − z)
, (D2)

PD = (1 − z)N−1 rc

N
(N − 1)

x

1 − z
, (D3)

PF = rc − c − δ − τ . (D4)

Theorem 7. For r < N and δ + τ < rc − c, the system (D1)
has four fixed points, namely, (x, y, z) = (0, 0, 1), (1, 0, 0),

(0, 1, 0), and ([ N(r−1)

r(N−1)
]

1
N−1 − (δ+τ)[ N(r−1)

r(N−1)
]

1
N−1

(r−1)c ,
(δ+τ)[ N(r−1)

r(N−1)
]

1
N−1

(r−1)c ,

1 − [ N(r−1)

r(N−1)
]

1
N−1 ).

Proof. By solving the system equations (D1), we can
know that there are three vertex equilibrium points, namely,
(0, 0, 1), (0, 1, 0), and (1, 0, 0).

Solving PC = PD results in z = 1 − [ N(r−1)

r(N−1)
]

1
N−1 . Sim-

ilarly, by solving PC = PF , we have y = (δ+τ)[ N(r−1)
r(N−1)

]
1

N−1

(r−1)c .

Thus, when δ + τ < rc − c, there exists an interior

fixed point ([ N(r−1)

r(N−1)
]

1
N−1 − (δ+τ)[ N(r−1)

r(N−1)
]

1
N−1

(r−1)c ,
(δ+τ)[ N(r−1)

r(N−1)
]

1
N−1

(r−1)c ,

1 − [ N(r−1)

r(N−1)
]

1
N−1 ).

Then, we investigate the dynamics on each edge of
the simplex S3. On the edge C-D, we have z = 0, resulting
in ẏ = y(1 − y)(PD − PC) = y(1 − y)(c − rc

N ) > 0. Thus, the
direction of the dynamics goes from C to D.

On the edge D-F, we have ż = z(1 − z)(PF − PD) =
z(1 − z)(rc − c − δ − τ) > 0; thus, the direction of the
dynamics goes from D to F.

On the edge C-F, we have ẋ = x(1 − x)(PC − PF) =
x(1 − x)(δ + τ) > 0; thus, the direction of the dynamics goes
from F to C. �

2. The stabilities of equilibria

Theorem 8. In the conditions of Theorem 7, the three vertex
equilibria are unstable, and the interior fixed point is neutrally
stable surrounded by closed and periodic orbits.

Proof. (1) For (x, y, z) = (0, 0, 1), the Jacobian is

J(0, 0, 1) =
[
δ + τ 0

0 −rc + c + δ + τ

]
, (D5)

thus the fixed point is unstable since δ + τ > 0.
(2) For (x, y, z) = (1, 0, 0), the Jacobian is

J(1, 0, 0) =
[−δ − τ −(c + δ + τ − rc

N )

0 c − rc
N

]
, (D6)

thus the fixed point is unstable since 1 − r
N > 0.

(3) For (x, y, z) = (0, 1, 0), the Jacobian is

J(0, 1, 0) =
[

rc
N − c 0

−( rc
N − rc + δ + τ) rc − c − δ − τ

]
, (D7)

thus the fixed point is unstable since rc − c − δ − τ > 0.

(4) For (x, y, z) = ([ N(r−1)

r(N−1)
]

1
N−1 − (δ+τ)[ N(r−1)

r(N−1)
]

1
N−1

(r−1)c ,

(δ+τ)[ N(r−1)
r(N−1)

]
1

N−1

(r−1)c , 1 − [ N(r−1)

r(N−1)
]

1
N−1 ), we define the equilibrium

point as (x∗∗, y∗∗, z∗∗) hereafter, and the elements in the
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Jacobian matrix are written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f

∂x
(x∗∗, y∗∗) = x∗∗

[
(1 − x∗∗)

∂

∂x
(PC − PF)

−y∗∗ ∂

∂x
(PD − PF)

]
,

∂f

∂y
(x∗∗, y∗∗) = x∗∗

[
(1 − x∗∗)

∂

∂y
(PC − PF)

−y∗∗ ∂

∂y
(PD − PF)

]
,

∂g

∂x
(x∗∗, y∗∗) = y∗∗

[
(1 − y∗∗)

∂

∂x
(PD − PF)

−x∗∗ ∂

∂x
(PC − PF)

]
,

∂g

∂y
(x∗∗, y∗∗) = y∗∗

[
(1 − y∗∗)

∂

∂y
(PD − PF)

−x∗∗ ∂

∂y
(PC − PF)

]
,

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x
(PC − PF) = −(x∗∗ + y∗∗)N−3 rcy∗∗(N − 1)(N − 2)

N
,

∂

∂y
(PC − PF) = −(x∗∗ + y∗∗)N−3 rc(N − 1)

N

[(N − 1)y∗∗ + x∗∗],

∂

∂x
(PD − PF) = (x∗∗ + y∗∗)N−3 rc(N − 1)

N

[(N − 1)x∗∗ + y∗∗],

∂

∂y
(PD − PF) = (x∗∗ + y∗∗)N−3 rcx∗∗(N − 1)(N − 2)

N
.

Then, we define that p2 = ∂f
∂x (x

∗∗, y∗∗) ∂g
∂y (x

∗∗, y∗∗) − ∂f
∂y

(x∗∗, y∗∗) ∂g
∂x (x

∗∗, y∗∗) and q2 = ∂f
∂x (x

∗∗, y∗∗) + ∂g
∂y (x

∗∗, y∗∗).
Thus, we know that

p2 = x∗∗y∗∗(1 − x∗∗ − y∗∗)
[

∂

∂x
(PC − PF)

∂

∂y
(PD − PF)

− ∂

∂y
(PC − PF)

∂

∂x
(PD − PF)

]

= x∗∗y∗∗(1 − x∗∗ − y∗∗)(x∗∗ + y∗∗)2N−4 r2c2(N − 1)3

N2

> 0,

and

q2 = x∗∗(1 − x∗∗)
∂

∂x
(PC − PF) + y∗∗(1 − y∗∗)

∂

∂y
(PD − PF)

− x∗∗y∗∗
[

∂

∂y
(PD − PF) + ∂

∂y
(PC − PF)

]

= x∗∗y∗∗(x∗∗ + y∗∗)N−3 rc(N − 1)(N − 2)

N
[(y∗∗ − x∗∗)

+ (1 − y∗∗) − (1 − x∗∗)]

= 0.

We have q2
2 − 4p2 < 0 and q2 = 0, therefore the eigenvalues

of the Jacobian matrix are pure imaginary. The dynamics anal-
ysis of the interior of S3 and the stability of interior fixed point
can be found in Appendix D 3. �

3. The Hamiltonian system

To analyze the dynamics in the interior of S3, we intro-
duce a new variable ε = x

x+y , which represents the fraction
of cooperators among members who do not contribute to the
exclusion pool. This yields

ε̇ = xy

(x + y)2
(PC − PD)

= −ε(1 − ε)(PD − PC). (D8)

By substituting x = ε(1 − z) and P̄ = x(PC − PD) + (1 − z)
(PD − PF) + PF into ż = z(PF − P̄), we have ż =
z[x(PD − PC) − (1 − z)(PD − PF)]. Thus, we have

⎧⎪⎨
⎪⎩

ε̇ = −ε(1 − ε)

[
(1 − z)N−1 rc(N − 1)

N
− rc + c

]
,

ż = z(1 − z)[rc − c − δ − τ − ε(rc − c)].

(D9)

By dividing the right-hand side of Eq. (D9) by the function
ε(1 − ε)z(1 − z), we further have

⎧⎪⎪⎨
⎪⎪⎩

ε̇ = − 1

z(1 − z)

[
(1 − z)N−1 rc(N − 1)

N
− rc + c

]
,

ż = 1

ε(1 − ε)
[rc − c − δ − τ − ε(rc − c)].

(D10)
Let us introduce H(ε, z) = M (z) + L(ε), where M (z) and
L(ε) are primitives of ż and ε̇, which are, respectively, given
as

M (z) = (−δ − τ) log(1 − ε) − (rc − c − δ − τ) log(ε),

L(ε) = (rc − c)[log(1 − z) − log(z)]

+
N−2∑
k=1

(
N − 2

k

)
(−1)k zk

k
+ log(z).

Then, we obtain the Hamiltonian system as
⎧⎪⎪⎨
⎪⎪⎩

ε̇ = ∂H

∂z
,

ż = ∂H

∂ε
.

(D11)

Thus, the system is conservative, and all constant level sets of
H are closed curves.
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