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Collective behavior in a two-layer neuronal
network with time-varying chemical connections
that are controlled by a Petri net
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ABSTRACT

In this paper, we propose and study a two-layer network composed of a Petri net in the first layer and a ring of coupled Hindmarsh-Rose neu-
rons in the second layer. Petri nets are appropriate platforms not only for describing sequential processes but also for modeling information
circulation in complex systems. Networks of neurons, on the other hand, are commonly used to study synchronization and other forms of
collective behavior. Thus, merging both frameworks into a single model promises fascinating new insights into neuronal collective behavior
that is subject to changes in network connectivity. In our case, the Petri net in the first layer manages the existence of excitatory and inhibitory
links among the neurons in the second layer, thereby making the chemical connections time-varying. We focus on the emergence of different
types of collective behavior in the model, such as synchronization, chimeras, and solitary states, by considering different inhibitory and exci-
tatory tokens in the Petri net. We find that the existence of only inhibitory or excitatory tokens disturbs the synchronization of electrically
coupled neurons and leads toward chimera and solitary states.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0045840

Multilayer networks have attracted ample attention in complex-
ity science due to their ability to comprehensively model different
levels of complex systems. Indeed, this framework is also com-
patible with the structural and functional properties of neural
systems. With this motivation, we study the collective behavior
of a multilayer neuronal network with different layers. The infor-
mation transmitted between the neurons is achieved through the

synapses. For modeling the circulation of information, however,
we use the Petri net. Thus, the Petri net represents one layer of
the network, while the other layer is composed of a ring of Hind-
marsh-Rose neurons. The neurons are connected by means of
constant electrical synapses and time-varying chemical synapses.
It is assumed that the Petri net manages the chemical links by
considering excitatory and inhibitory tokens. The behavior of the
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neurons is studied by varying the parameters of the Petri net. We
find that the existence of the chemical tokens causes the transi-
tion of the network from synchronization toward chimera and
solitary states. Moreover, by increasing the timing of the Petri
net, we observe that more neurons are able to escape from the
synchronous group.

I. INTRODUCTION

Complexity science studies the mechanism and behavior of
complex systems such as neural populations, climate change, social
networks, etc.'” To better understand these systems, it is necessary
to investigate many different aspects of the interactions that connect
many constituents.”” A popular tool for mimicking these different
characteristics is the multilayer framework."” In a multilayer net-
work, the aspects of a complex phenomenon can be considered with
each layer."" For instance, multilayer networks are widely used for
modeling the features of human behaviors in both societies and
social media spaces.'” In these examples, the models consider one
layer for the agents’ behavior in physical environments and another
for their behavior in virtual spaces. Thus, a multiplex framework is
usually applied wherein the corresponding nodes in different lay-
ers refer to the same agent.”” Multilayer structures have also been
extensively selected for studying the neurons’ behaviors.' "'

The neuronal behaviors have usually been modeled by coupling
a group of dynamical neuronal models such as Hindmarsh-Rose
and Hodgkin-Huxley equations.'®"'” Among the neurons, electrical,
chemical, or magnetic connections exist. Chemical connections can
be classified into two main categories: excitatory and inhibitory.”
Electrical coupling is built by gap junctions.”’ The neurons are also
able to interact with each other through magnetic fields.”” In neu-
ronal population models, the dynamical equations can be linked
to each other with these different connections to structure the
networks.”’ Consequently, the networks can show some well-known
collective behaviors such as synchronization.”” The synchroniza-
tion is a universal concept and has many applications in different
fields.”>* Studying the synchronization among neurons is crucial to
understand some brain disease mechanisms such as epilepsies.”” In
addition, some brains’ cognitive activities are also associated with
neurons’ synchronous state.”’

A chimera state is another collective phenomenon that has
grabbed the attention of many researchers.”~"" A chimera state
refers to the pattern in which some oscillators of the network are
synchronous, while others are asynchronous. Chimera states can
be found in natural phenomena such as dolphins” uni-hemisphere
sleep, the human brain’s local sleep, and also some brain disor-
ders such as schizophrenia.’’** Recently, chimera-like states have
also been observed in heterogeneous Kuramoto phase oscillators
with attractive and repulsive couplings.” The existence of chimera
has been investigated in multilayer neuronal networks with various
kinds of coupling.” For instance, a study showed how the chimera
state can exist in a network with electrical intra-layer and chemical
inter-layer couplings.” The other interesting collective behavior is
the solitary state that has recently received attention.””~*” The soli-
tary state describes a special state when most of the neurons are
synchronous, but a few split off from them.” These few neurons
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that are scattered among the synchronous ones are named solitary
neurons.”® The emergence of solitary states in a multiplex net-
work was investigated by Majhi et al.,” with considering positive
inter-layer and negative intra-layer couplings.

Most studies on the neuronal population have been done by
networks with constant connections among neurons. However, neu-
ronal networks with time-varying links have recently received much
attention from researchers.”! As an example, the effect of changing
the frequency of time-variant links on the neurons spiking behav-
iors has been investigated in Ref. 42. In another work, it was shown
that the higher frequency increases the synchronization level among
neurons in a multiplex network.” In a study, Belykh et al. introduced
the blinking coupling that refers to the time-dependent on-off con-
nections among neurons.” The variations in the connections can
be referred to as the neuroplasticity.” The blinking coupling and its
effect on the chimera and synchronization have also been studied in
multilayer networks.*® Besides, the advent of chimera has been stud-
ied in a network wherein the strength of the links depends on the
bursting time."’

Inspired by multilayer networks that are mostly used for mod-
eling human behaviors, this paper introduces a two-layer network
to show different aspects of neurons’ behavior. One layer of the net-
work is composed of the coupled Hindmarsh-Rose neurons with
constant electrical connections and time-varying chemical connec-
tions. The second layer is a Petri net that represents the circulation
of information and determines which neurons’ chemical connec-
tions should be on or off. Petri nets, which were first introduced
by Carl Adam Petri," are widely used in different branches of
sciences including the behavior of the neurons.”>”’ Petri nets are
suitable for modeling the consequential processes. Each Petri net
is built of four main elements: tokens, places, arrows, and func-
tions (Fig. 1).”' Tokens move among places. In each step, a token
may transfer from a place to the next one or may remain in its
current place.”” Each place may contain zero, one, or more num-
bers of tokens.”” Tokens move from a place to another based on
the directions of the arrows and conditions of functions.” Arrows
show the path of tokens’ movement.”* Functions determine the con-
ditions for the tokens to leave a place and locate in the others. In
this way, Petri nets provide the opportunity of visualizing sequences

Place Transfer function Place

N b7

Token

Output Arrow Input Arrow

FIG. 1. A simple example of a Petri net. It has four main parts: places, arrows,
functions, and tokens. Tokens are located in places and move among them based
on the directions of arrows and function rules.
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of processes.” In neuronal behaviors, tokens can be assumed as the
model of many concepts including information.” Places can also be
considered neurons.”” Therefore, tokens’ movement among places
can simulate the circulation of information among neurons.”

In this paper, the emergence of synchronization, chimera, and
solitary states is studied in the described network. The effects of dif-
ferent factors such as the excitatory and inhibitory tokens and the
Petri net timing are investigated. In Sec. II, different parts of the
model are explained in detail. The results are presented in Sec. I1I,
and the conclusions are given in Sec. I'V.

Il. MODEL

In this paper, a two-layer network is considered. The network
has a Petri net in its first layer and a ring of Hindmarsh-Rose neu-
rons in the second layer. In Subsections II A-II C, the details about
the Petri net layer, the Hindmarsh-Rose layer, and the connections
among them are presented, respectively. Each pair of nodes (one
Petri net place in the first layer and one Hindmarsh-Rose model in
the second layer) represents an agent (a neuron). Each node in the
layers is considered to represent an aspect of the neuron behavior.

A. Petri net layer

As mentioned, Petri nets are constructed of four main parts:
places, arrows, tokens, and functions (Fig. 1). The considered Petri
net has N = 100 number of places. A number between 1 and 100
is allocated to each place. It is assumed that each place has just
one input arrow and one output arrow. The input of each place is
selected randomly. Similarly, each place gives its output arrow to
another one randomly. Therefore, a ring of places is formed where
the arrangement of places’ allocated number is random.

Tokens in Petri nets are located in places and move from one
place to another based on the directions of arrows and rules of func-
tions. In this paper, two kinds of tokens are considered: excitatory
and inhibitory. The number of excitatory and inhibitory tokens is
represented by Token,, and Token;,, respectively. All functions of
the Petri net have the same simple rule. The rule is that tokens must
go to the next place after Tp,, time.

The described Petri net can be presented by the following
Bulletins:

(1) N number of places (P) is considered a finite set; i.e.,
P: Pl,Pz,P3,.. -)PN'
(2) Token,,: K1 number of excitatory tokens are considered; i.e.,

Token,, = Tokey1, Tokeyss . . . TOkoek1 -

(3) Token;,: K2 number of inhibitory tokens are considered; i.e.,

Token;, = Toki,, Tokiy, . . ., Tokiyk.

(4) A shuffled arrangement of places is considered the path
of the excitatory and inhibitory tokens; i.e., Path = shuffle
(P1, Py, Ps, ..., Py). This set of shuffled arrangement makes a
circle that determines the direction of arrows, for instance,

P,—>P_s—>P —---—>Py—>---—> P, —>P;, (i,s<N).
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(5) For each excitatory and/or inhibitory token, a random integer
number between 1 and N is allocated as the number of its initial
place.

(6) After each T}, time, each token changes its current place to the
next. The next place is determined with the Petri net’s path (the
4th Bulletin).

B. Hindmarsh-Rose neuron layer

Hindmarsh-Rose equations are used for each node of the
second layer. These equations are described as™

x=Fxp2) =y—ax’ +bx* —z+ L,
y=Gxy2) =c—dd —y, (1)
z=H(x,y,z) = r(s(x + 1.6) — 2).

In these equations, x,y,z represent the membrane voltage
variable, the slow recovery current variable, and the membranes’
adaption current (the faster one), respectively. In the following
simulations, the parameters’ values of the equation are set as a =
Lb=3c=1d=5, r=0.006 s=4, and L, =22. N= 100
Hindmarsh-Rose neurons are considered in a ring structure with
nonlocal coupling. There are also some time-varying chemical con-
nections that are determined by the Petri net layer.

C. The network

A multiplex network is constructed of the described layers.
The schematic of the network is shown in Fig. 2. As mentioned,
the Hindmarsh-Rose neurons can affect each other with excita-
tory or inhibitory connections. The number of these excitatory (or
inhibitory) connections is shown by the CON variable. The excita-
tory (or inhibitory) connections of a node in the Hindmarsh-Rose

Petri net layer

Hindmarsh-Rose layer

FIG. 2. Schematic of the proposed two-layer network. For each node in the Hind-
marsh-Rose layer, there is an equivalent node (a place) in the Petri net layer.
Excitatory and inhibitory tokens go from place to place in the Petri net based on
the directions of arrows (which can be seen in the Petri layer) and the functions’
rule. If an excitatory (inhibitory) token settles in a place in the Petri net, the excita-
tory (inhibitory) connections in the equivalent Hindmarsh-Rose neuron become
activated.
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layer are activated if and only if an excitatory (or inhibitory) token
exists in the corresponding node in the Petri net layer. In other
words, when an excitatory (or inhibitory) token exists in a place
in the Petri net layer, the corresponding Hindmarsh-Rose neuron
excites (inhibits) the CON number of other Hindmarsh-Rose neu-
rons randomly. When there is no token in the place, all of the
excitatory (inhibitory) activation contacts of the neurons become
off. In the schematic shown in Fig. 2, the inhibitory connections of
neuron 1 are activated because it has an inhibitory token in its rele-
vant Petri net place. Similarly, the excitatory connections of neuron
2 are activated because it has an excitatory token.
The equations of coupled neurons can be given as follows:*>*!

20 40 60 80 100

N
. 1
Xi = F(xi,}’i, zi) + j_Zlgex(Vse —X;) (m) Alij

N
1
+ D gin (Vin — %) (m) A2
j=1

N
+ de (x] — x,-) A3,],
j=1
' )
yi =G (xy52)
z; = H(xisyi,zi) >

where g, g.» and g;, represent electrical, excitatory, and inhibitory
connection coefficients, respectively. In each time step, A1 and A2
determine excitatory and inhibitory connections among neurons
based on the tokens in the Petri net layer. Thus, Al; =1 and
A2 =1 if neurons i and j are connected. The Hindmarsh-Rose
neurons are electrically connected in a ring network with nonlo-
cal coupling. Therefore, A3 is the adjacency matrix of the Hind-
marsh-Rose neuron layer. The parameters are set at v, =2,
v = —1.5,0 = —0.5, and A = 100.

20 40 0 80 100

I1l. RESULTS D neurons

SR S L Tt T

The 4th order Runge-Kutta method is used for numerical sim-
ulations. To quantify the coherence of the network for different
parameters, the strength of incoherence (SI), which is a statisti-
cal measurement, is used. To calculate SI, first, a transformation is
introduced as wy; = x;; — x;01,i = 1,2,...,N,1=1,2,...,d. Con-
sidering n = N/M (dividing N neurons to M groups), SI is calculated
by the following formula:

¢ B TYY

N
1
<W’>=ﬁ E Wij»
j=1

20 40 60 80 100
neurons

2

oi(m) = < Z (Wi — <wi >) > > FIG. 3. The effects of inhibitory and excitatory tokens on the network states with
J=n(m=1)+1 ¢ considering (ge = 0.08, CON = 20, Tpe; = 20). (a) Token;, = 0 and Tokene,
(©) = 0: the network is synchronous (S/ = 0). (b) Token;, =2, Tokene, =0,
Zﬁ_l Sm gin = 0.8, and gex = 0: the synchronization is disturbed with some solitary neu-
- rons (S = 0.04). (c) Token;, = 0, Tokeng, = 2, gi, = 0, gex = 0.8: the network
M is in the chimera state (S/ = 0.87). (d) Token;, = 2, Tokene, = 2, gi, = 0.8,

sm = 0(8 — oy(m)), Jex = 0.8: the network is asynchronous (SI = 1).

SI=1
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where < -+ >, §, and 6(- - -) denote the average over time, pre-
defined threshold, and the Heaviside step function, respectively.
SI=0,SI=1, and 0 < SI < 1 represent the coherence, incoher-
ence, and chimera state, respectively. In our investigations, we have
used n = 4 and §, = 0.039.

First, it is investigated how excitatory or inhibitory connections
may affect the behavior of the network. To this aim, at first, only the
inhibitory tokens and then the excitatory tokens are considered in
the Petri net. Next, both excitatory and inhibitory tokens with the
same number are considered (Fig. 3). Figure 3(a) shows the spa-
tiotemporal pattern of the network with no token (only electrical
connections). It is observed that the network is zero-lag synchro-
nized. When the network has only excitatory tokens [Fig. 3(b)],
some neurons tend to escape from the synchronized group. Thus,
the synchronous state that was the result of the electrical connec-
tions is disturbed and an imperfect synchronization can be seen.
With changing the tokens of the network to the inhibitory ones
[Fig. 3(c)], more neurons get away from the synchronous group
and form the asynchronous clusters. Therefore, the network moves
toward a chimera state. If both types of tokens exist in the network,

A
1000
15
|
1500 -
0
£ 2000
£ 05
4
2500 r
. 2
3000
20 40 60 80 100
neurons
B
1000
15
1
1500
05
0
€ 2000 4
= 0.5
4
2500 s
2
3000
20 40 60 80 100
neurons

FIG. 4. The effects of the Petri net timing (Tpe) on the network’s state
(9o =0.04, gy =02, gex =0, CON =1, Token;, =1). (a) Tpet =0.1
(SI'=0.64). (b) Tpet = 20 (SI = 0.89). Increasing T, Causes an increment in
the number of neurons that tend to escape from the synchronization.
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the synchronous clusters disappear and the neurons become asyn-
chronous [Fig. 3(d)].

In the next step, the network behavior is investigated by consid-
ering different values for the Petri net time (T}.). It was mentioned
that the time-varying links can be interpreted as the changes among
neurons’ synapses, which is known as neural plasticity. Consider-
ing this presumption, a higher value of T, might be interpreted
as a lower level of plasticity and vice versa (a lower value of Tj,
may represent a higher plasticity level). Figures 4(a) and 4(b) show

1000
15
1
1500 f
0.5
0
g 2000
= 0.5
-
2500 15
-2
3000
20 40 60 80 100
neurons
1000 p==g
1.5
1
1500 05
0
£ 2000
= 0.5
-1
2500 15
-2
3000
1000
1.5
1
1500 05
0
o ey e .
g 2000 [Ea———— 0.5
1
2500 1.5
-2
3000 -25

neurons

FIG. 5. The effect of the number of chemical connections on the behavior of
the network (ge = 0.04, gj, = 0.12, gex = 0.12, Token;, = 5, Tper = 20). (a)
CON = 10, Tokene, = 0 (SI = 0.32). (b) CON = 50, Tokene, = 0 (SI = 0.67).
(c) CON = 50, Tokene, =5 (SI = 0.24). Increasing the number of connec-
tions results in synchronization disturbance. Adding excitatory tokens leads to a
chimera state.
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spatiotemporal patterns of the network under two different values
of Tye. It is observed that the lower value of Ty, [Fig. 4(a)] results in
phase synchronization with a few neurons tending to escape from
this synchronous state. For a higher value of Ty, [Fig. 4(b)], the

number of the escaping neurons is increased and the chimera state 0:5
is formed. One possible reason for this might be that the lower "
value of Tj,, causes the tokens to rotate among the places faster.

Thus, in a lower period, all nodes could have tokens at least for one 05

time. Therefore, it might make the network more homogenous, and
consequently, the trend of escaping neurons is decreased.

1.5 neurons

FIG. 7. The Petri nettiming is set at T,y = 2000. The chimera state is preserved

0.5 when a sudden change happens in the network’s chemical links (S/ = 0.48). The
0 parameters are set at g, = 0.08, gex = 0.4, gox = 0.4, Token;, = 2, Tokeney
=2,and CON = 40.
05
-
i The effect of different numbers of excitatory and inhibitory
2 connections (CON), which are activated when a neuron has a token,
25 is represented in Fig. 5. When there are a few inhibitory connections,
the network is phase synchronized. Comparing Figs. 5(a) and 5(b)
— reveals that for a fixed number of inhibitory tokens, increasing
B e the number of connections causes some neurons to leave the syn-
chronous group. Besides, Fig. 5(c) shows that adding the excitatory
x 0 h h tokens with the same number as the inhibitory tokens and simi-
2 lar strength results in the increment of asynchronous neurons and
s D e o — changes the network’s state to the chimera.
HBUFGAS Figure 6 demonstrates the time series of different neurons when
C . the network is in a solitary state. In this case, only excitatory neurons
" h h M h/mﬁ J\ with Token,, = 40 and CON = 20 are considered. The timing of the
X Petri net is set at Tp,; = 0.2, which means that each token rotates
2 almost among ten places during a burst duration. There are some
1000 1500 2000 2500 3000 solitary neurons with different bursting behaviors in the network.
D neurons With considering a large value for the timing of the Petri
2 net, there will be a sudden change in the structure of the cou-
0 P\ \ h N pled neurons. To investigate the effect of this change, Tpret = 2000
A \ is selected. The pattern of the network for g, = 0.08, g.. = 0.4,
-2 \/ ex = 0.4, Token;, = 2, Token,, = 2, and CON = 40 is illustrated
1000 1500 2000 2500 3000 in Fig. 7. The network in this case exhibits a chimera state. It
E neurons is observed that with changing the network’s links, the chimera
2 state is preserved. However, the location of the synchronous and
0 M y\ m}\ M W\ /m\ asynchronous neurons is changed.
X
24 L \/‘ ’ ~/ &
1000 1500 2000 P 3000 IV. DISCUSSION AND CONCLUSION
neurons

Neuronal population models have been used frequently for
studying collective behaviors. The usual networks that are only com-
posed of coupled dynamical models may not reveal all aspects of

Token;, = 0, Tokene, = 40, Toe = 20, CON = 20 (SI = 0.08). (a) The spa-

tiotemporal pattern of the network shows the solitary state. Parts B, C, D, and the neurons’ communications. In other V\{OI’dS, even though new
E are the time series of neurons i 6, 39, 88, and 90, respectively. ronal networks are useful for understanding collective behaviors,

further models may represent other neurons’ aspects in a better

FIG. 6. Different time series of the neurons when g, = 0.04, g, = 0.12,
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way. The Petri nets can demonstrate the circulation of informa-
tion among neurons simply and properly.”® Because of this ability
of the Petri nets, we tried to link these models and the dynamical
population neurons. Considering Petri nets besides coupled dynam-
ical neuronal models can expand the capacity of neuronal networks.
Therefore, in this paper, a two-layer framework was proposed to
consider different aspects of neuronal interactions. In one layer, a
ring of coupled Hindmarsh-Rose neurons was considered to assess
different collective behaviors such as synchronization, solitary, and
chimera state. The other layer was a Petri net to represent the cir-
culation of information. It was assumed that the movement of the
tokens in the Petri net’s places defines which neurons are connected
chemically. To this aim, two kinds of excitatory and inhibitory
tokens were considered, and a token in a place led to the existence
of the chemical connections to the corresponding neuron. Thus, the
chemical connections were time-varying. We examined the effects
of different factors on the neurons’ behavior. First, the existence of
the excitatory and inhibitory tokens was investigated. For the sit-
uations of just excitatory and just inhibitory tokens, the network
showed imperfect synchronization and chimera, respectively. With
considering both tokens, asynchronization was seen in the network.
It was also observed that decreasing the timing of the Petri net causes
less number of neurons to escape from the phase synchronous state.
Besides, increasing the number of inhibitory connections (CON) led
to disturbing the neurons’ synchronization, while adding excitatory
connections led the network toward the chimera state.

We hope that the introduced platform can be used in future
research for modeling different aspects of neuronal dynamics.
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