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ABSTRACT

In this study, we aimed to detect paroxysmal atrial fibrillation episodes before they occur so that patients can take precautions before putting
their and others’ lives in potentially life-threatening danger. We used the atrial fibrillation prediction database, open data from PhysioNet,
and assembled our process based on convolutional neural networks. Conventional heart rate variability features are calculated from time-
domain measures, frequency-domain measures using power spectral density estimations, time-frequency-domain measures using wavelet
transform, and nonlinear Poincaré plot measures. In addition, we also applied an alternative heart rate normalization, which gave promising
results only in a few studies, before calculating these heart rate variability features. We used these features directly and their normalized
versions using min–max normalization and z-score normalization methods. Thus, heart rate variability features extracted from six different
combinations of these normalizations, in addition to no normalization cases, were applied to the convolutional neural network classifier.
We tuned the classifiers’ hyperparameters using 90% of feature sets and tested the classifiers’ performances using 10% of feature sets. The
proposed approach resulted in 87.76% accuracy, 91.30% precision, 80.04% recall, and 87.50% f1-score in heart rate variability with z-score
feature normalization. When the heart rate normalization was also utilized, the suggested method gave 100% accuracy, 100% precision, 100%
recall, and 100% f1-score in heart rate variability with z-score feature normalization. The proposed method with heart rate normalization and
z-score normalization methods resulted in better classification performance than similar studies in the literature. By comparing the existing
studies, we conclude that our approach provides a much better tool to determine a near-future paroxysmal atrial fibrillation episode. However,
although the achieved benchmarks are impressive, we note that the approach needs to be supported by other studies and on other datasets
before clinical trials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0069272

Atrial fibrillation is one of the most common types of
arrhythmia.1,2 It can lead to hospitalization, impaired life qual-
ity, depression, vascular dementia, heart failure, stroke, and even
death.4 Atrial fibrillation generally starts in a paroxysmal (i.e.,
auto-terminating) pattern. It progressively gets worse and trans-
forms into a steady condition.5 Paroxysmal atrial fibrillation
starts suddenly with no indication and terminates automati-
cally within a maximum of seven days of onset. During the

episode, the patient may show one or more symptoms, including
excessive fatigue, dizziness, fast and irregular heartbeat, palpita-
tions in the chest, shortness of breath, anxiety, and weakness.4

Thus, if the patient is driving or performing a vital task, life-
threatening situations may arise for both themself and others.
Therefore, it is crucial to predict these attacks earlier to enhance
the patient’s comfort and reduce possible risks.6 Many machine
learning-based approaches have been proposed to detect these
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episodes; nonetheless, none has achieved a perfect classifier per-
formance yet. Recently, deep learning algorithms have promised
better results in various applications. In this study, we calculated
conventional features from 30-min heart rate variability data
and utilized two preprocessing methods to data, although deep
learning can calculate features from raw data itself. After remov-
ing the patient’s usual mean heart rate and extracted features’
size effects, we observed that the convolutional neural network
can detect patients who faced a near-future attack of paroxysmal
atrial fibrillation with a perfect accuracy of 100%.

I. INTRODUCTION

Medical doctors generally rely on analyzing Electrocardiogra-
phy (ECG) to diagnose several heart diseases first.7 Since exam-
ining ECG graphs is time-consuming, a computer program may
help to analyze them. The literature contains many methods to
detect and follow heart diseases using digital ECG data.8,9 In the
last half-century, heart rate variability (HRV), derived from ECG,
has become popular.10 HRV analysis has included various (i) time-
domain, (ii) frequency-domain, (iii) frequency–time-domain, and
(iv) non-linear features.11–13

A general pattern recognition study reveals various classifi-
cation methods after the features were calculated. Many studies,
based on disease diagnosis using HRV, have employed differ-
ent well-known classifier algorithms such as k-nearest neighbors
(kNNs), linear discriminant analysis (LDA), decision tree (DT),
fuzzy logic (FL), multi-layer perceptron (MLP), support vector
machines (SVM), stochastic gradient descent (SGD), radial basis
function (RBF), etc.6,14–16 Similarly, various studies evaluated differ-
ent classifiers to discriminate paroxysmal atrial fibrillation (PAF)
patients from normal subjects.17–27 Also, several studies evaluated
different classifiers to predict recent PAF episodes. For example,
Lynn and Chiang28 achieved 78.00% accuracy using the kNN classi-
fier. Another study resulted in 81.63% accuracy with heart rate and
min–max normalizations and 83.67% accuracy with min–max nor-
malized heart rate variability measures using the RBF classifier.29

Chesnokov reached 82.05% accuracy using the MLP classifier.30

Boon and colleagues obtained 83.90% accuracy by utilizing genetic
algorithms and SVM.31 The same authors achieved 86.80% using the
same configuration in 2019.32 Schreier et al. reached 84.00% accu-
racy using FL.18 Three papers use DT as a classifier. Among them,
Zong et al. reached 88.00% accuracy, Thong et al. achieved 89.29%,
and Costin et al. obtained 89.40% accuracy, interestingly. Maier et al.
determined 92.00% accuracy using LDA.17 Recently, Mohebbi and
Ghassemian can determine 94.50% accuracy using the SVM classi-
fier. In recent studies, Surucu et al.20,29 highlighted the significance of
both feature and heart rate normalizations in HRV-related studies.

Lately, deep learning algorithms have been displayed very
famously, notably in image labeling studies.33,34 After thriving out-
comes in image identification, deep learning has also become pop-
ular in signal classification studies.26,35,36 Due to its assuring higher
achievement in many classification problems, we decided to uti-
lize the convolutional neural network (CNN) to predict near PAF
attacks.

Shortly, this study examines the impacts of both heart rate and
feature normalizations in predicting the PAF episodes using CNN
from 30-min HRV data. For this purpose, six feature sets evaluated
the CNN classifier.

II. MATERIALS AND METHODS

We summarized our study in Fig. 1 by determining blocks
from the HRV-based literature and our previous studies. The
dashed line indicates the alternative heart rate normalization
method. Feature extraction methods were time-domain parame-
ters, frequency-domain measures (using FFT, Lomb–Scargle, and
Welch), time–frequency-domain measures (using a wavelet trans-
form), and Poincaré plot measures. Then, one of the feature nor-
malization methods (no normalization, min–max normalization,
and Z-score normalization) was applied to the extracted HRV (or
NHRV) features. Finally, a deep learning classifier decides whether
the data belong to a PAF patient with the following episode or a
PAF patient with no recent attack. Subsections II A–II I cover brief
definitions of these blocks.

A. ECG data

The Atrial Fibrillation Prediction Database (AFPDB, dis-
tributed for “The Computers in Cardiology Challenge 2001”) is
freely available at the PhysioNet website of https://www.physionet.
org/content/afpdb/1.0.0/ and comprises two channels of 30-min
ECG data with a resolution of 16 bits at a sampling frequency of
128 Hz.37 ECGs are collected from 25 patients with the following
PAF episodes and 24 patients with no-near PAF episodes. ECG data,
obtained from the subject p37, were excluded from the study because
it involves many noises.

Although HRV studies have used different data durations in
the literature, Seker et al.38 showed the necessity of a minimum of
10 000 heartbeat samples to get reliable results. For this reason, we
extracted all these frequently used features for 30-min HRV data
from the database.

B. Beat detection and HRV data

QRS complexes in ECG are matched by blood-pumping activ-
ity in the body. Also, since its detection is easier than the detection
of other waveforms in ECG, QRS complexes are assumed as heart-
beat times, in general. Hence, the interval variations among these
peaks create the beat time-series data [or heart rate variability (HRV)
intervals].

For this purpose, the ECG signal is objected to a bandpass filter,
differentiation, squaring, time-averaging, and applying thresholds,
in an order.39 HRV data are the interval variations between suc-
cessive data vs their occurrences. Since the peak intervals are not
identical, the HRV data shift to an irregularly sampled nature.

C. Removing ectopic beats

Heartbeats that are not originating from the sinoatrial node
of the heart are called ectopic beats. The workgroup has offered
to remove these irregular beats before the HRV analysis.10 Langley
et al.40 presented an easy method to detect these premature beats. In
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FIG. 1. Block diagram of the proposed study. The dashed line shows the optional processes. Solid-line optional processes (normalize HRV and Z-score normalization)
resulted in the maximum classifier accuracy in this study.

Chaos 31, 113119 (2021); doi: 10.1063/5.0069272 31, 113119-3

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 2. Removing ectopic beats from HRV data. The horizon-
tal axis shows the time in ms where the vertical axis shows the
amplitude. The top figure shows the raw ECG data and QRS
complexes, the next figure shows ectopic points where data
change higher than 20% of the average value, the third figure
visualizes the ectopic-free data, and the last figure shows heart
rate normalized ectopic-free heart rate variability data.

this method, a heartbeat and its following heartbeat shape an ectopic
beat together if the occurring time of the heartbeat is 20% less than
the average occurring time. Simply eliminating these beats from the
data is the ectopic removal process. Figure 2 shows the detection
and removal of ectopic beats. From top to bottom, this figure plots
an example ECG record, heart rate data derived from the ECG, and
ectopic-free heart rate data. The red points emphasize the earlier
heartbeats, and blue dots are succeeding heartbeats.

D. Heart rate normalization (optional)

Heart rate normalization, pioneered by Hallstrom et al.,41 is a
process to remove the mean from HRV data by

dataNHRV =
60

new_bpm
×

dataHRV

mean(dataHRV)
, (1)

dataNHRV =
1000

new_mean_period
×

dataHRV

mean(dataHRV)
, (2)

where dataNHRV is heart rate normalized HRV data, dataHRV is HRV
data, new_bpm is the new beat per minutes, new_mean_period is the
mean of new heartbeats, and mean(dataHRV) is the mean of HRV
data given.

HRV features, calculated from HRV data after this heart rate
normalization, are called normalized HRV (NHRV) features. NHRV
analysis increased classifier performances in CHF diagnosis,16 sys-
tolic dysfunction diagnosis,14 and PAF diagnosis.20,29 Therefore, we
used mean values as 75 beats/min (or 800 ms in period) in this study
as offered in the original article41 and some similar research.14,16

E. Re-sampling and de-trending

HRV data are unevenly sampled and contain non-stationary
components. Some feature extraction methods (FFT, Welch, and

Wavelet) require the data sampled at equal time intervals.42 Re-
sampling (or interpolation) is the solution to cope with this issue.
Although there are several interpolation methods in the litera-
ture, Clifford and Tarassenko43 have offered a robust interpolation
method, called cubic-spline, to re-sample HRV data. The vari-
ous sampling frequencies (number of sample points in a second)
of 1–10 Hz have been used.44 We preferred 4 Hz, similar to our
previous studies, in this study.

All linear feature extraction methods use linear data, naturally.
The possible nonlinear components of the data disturb the results.
Slowly changing polynomials or sinusoidal trends are common non-
stationarity origins.45 In recent years, Tarvainen et al.46 pioneered
the smoothness priors method to make the data non-stationary by
the following equation:

Rdetrended = (I − (I + λDT
2 D2)

−1
)R, (3)

where R is HRV data, Rdetrended is the stationary HRV data, I is the
unity matrix, λ is the regularity parameter, D2 is the second-order
derivative operator, and T is the transpose of a matrix. We used
λ = 1000 as offered in Ref. 46.

F. Feature extraction

Feature extraction discovers the data to calculate features.47 We
decided to extract 16 time-domain features, 24 frequency-domain
features from 4 different transforms, 4 time–frequency wavelet
entropy measures, and 4 non-linear features, which equals 48 fea-
tures in total. Since these methods are outlined here only, detailed
information can be discovered in Ref. 6.

1. Time-domain features

The time-domain features are calculated from the raw time-
series data, in general. These features hold statistical measures such
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TABLE I. Commonly used frequency-domain heart rate variability measures.

Features Spectral power
Frequency
range (Hz)

PULF In the ultra-low-frequency (ULF) band 0.000–0.003
PVLF In the very-low-frequency (VLF) band 0.003–0.040
PLF In the low-frequency (LF) band 0.040–0.150
PHF In the high-frequency (HF) band 0.150–0.400
PTotal In total 0.000–0.400
LF
HF

The ratio of PLF to PHF 0.040–0.400

as mean, minimum, maximum, standard deviation (SDNN), root
means square of successive differences (RMSSD), standard deviation
of successive differences (SDSD), NN50 (the number of successive
differences greater than 50 ms), NN20 (the number of successive dif-
ferences greater than 20 ms), PNN50 (the ratio of NN50), PNN20
(the ratio of NN20), etc., as offered in Ref. 10.

2. Frequency-domain features

These features are estimated from the power spectral density
(PSD) estimation. There are some methods to estimate PSD that
require some preprocessing steps. Among them, the Lomb–Scargle
algorithm does not require re-sampling and de-trending sub-steps,
but it is a computationally expensive method compared to other
methods.48,49 On the other hand, the Fast Fourier Transform (FFT)
and Welch Periodogram algorithms require both re-sampling and
de-trending steps since these methods can only work on evenly
sampled stationary data.43,50

The spectrum in the HRV analysis contains four frequency-
band components: ultra-low-frequency (ULF), very-low-frequency
(VLF), low-frequency (LF), and high-frequency (HF) bands.10 The
total power, powers of each frequency band, and the ratio of LF
band to HF band are frequency-domain features (Table I).6,10 These
features can be calculated from the FFT-based periodogram, the
Welch periodogram, and the Lomb–Scargle periodogram similar to
previous studies (Fig. 3).6,15,16

FIG. 4. Poincaré plot example. The red arrow shows the SD1 feature, and the
green arrow shows the SD2 feature from the fitted ellipse.

3. Nonlinear features

The Poincaré plot (Fig. 4) reflects the nonlinearity. Since heart-
beats show nonlinear nature, the Poincaré plot becomes popular in
HRV studies.51,52 There are two commonly used measures53 derived
from the fitted ellipse method54 on this plot,

SD1 =

√

1

2
(SDSD)2, (4)

SD2 =

√

2(SDNN)2
−

1

2
(SDSD)2, (5)

FIG. 3. An example for the Welch periodogram, the Lomb–Scargle periodogram, and the wavelet spectrogram, with six calculated spectral HRV features for each.
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where SDSD and SDNN are standard time-domain features. In addi-
tion, there are two measures,6 derived from SD1 and SD2, that are
also calculated as

SD1SD2 = SD1 × SD2, (6)

RATIO =
SD1

SD2

. (7)

4. Time–frequency-domain features

The wavelet transform can examine signals in both the time and
frequency domains. It also eliminates polynomial non-stationarity.55

Various features extracted from the wavelet transform have been
used in HRV studies.6,15

Although choosing an appropriate mother wavelet is an impor-
tant issue,56,57 many HRV-related studies preferred Daubechies-4 as
a mother wavelet.14–16 This study applied Daubechies-4 with the level
of 7 to the re-sampled data as reported enough to group wavelet
packets into specific HRV frequency bands.6

The energy of each coefficient was calculated using the follow-
ing equation:

Ej = C2
j , (8)

where Cj is the wavelet coefficients. The total energy of an HRV
band, Ef, was calculated separately,

Ef =

∑

j∈f

Ej, (9)

where f represents the HRV frequency band.6 The wavelet entropy
features (ENTf) were calculated as follows:

ENTf = −

∑

j∈f

(pjlog2(pj)), (10)

where the probability of energies of all frequency (f) values in the
frequency band of interest is calculated as pj

6,55 and pj is the value

TABLE II. Time–frequency-domain heart rate variability measures.

Features Description

ENTULF Wavelet entropy of the ultra-low-frequency (ULF) band
ENTVLF Wavelet entropy of the very-low-frequency (VLF) band
ENTLF Wavelet entropy of the low-frequency (LF) band
ENTHF Wavelet entropy of the high-frequency (HF) band

obtained by dividing the energy of the frequency of interest by the

total band energy
(

Ej

Ef

)

. The entropy features were calculated for the

standard frequency bands (Table II).

G. Feature normalization

Since ranges of features are very different, high-value features
affect the classifier performances more than low-value features.47

Eliminating this negative effect is very important in many pattern
recognition applications.20,29 There are two commonly used feature
normalization methods: Min–Max normalization (11) and Z-score
normalization (12). The min–max normalized (fmin−max

i ) and z-score
(fz−score

i ) normalized samples can be calculated using

fmin − max
i =

fi − min(f)

max(f) − min(f)
, (11)

fz−score
i =

fi − µf

σf

, (12)

where fi is the ith sample, min(f) is the minimum value, max(f) is
the maximum value, µf is the average value, and σf is the standard
deviation of the feature f.

This study iterates HRV and NHRV features using no nor-
malization, min–max normalization, and z-score normalization and
reports corresponding classifier performances to examine the effect
of feature normalization methods.

FIG. 5. Block diagram of the proposed convolutional neural network classifier. It accepts extracted features to its inputs, and it gives a decision whether there is a following
paroxysmal atrial fibrillation (PAF) episode or not.
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H. Classifier: Convolutional neural network

The Convolutional Neural Network (CNN) is the most famous
Deep learning (DL) model. DL seems more complex than com-
monly accepted artificial neural network models by having more
layers.58–60 Since CNN exhibits outstanding achievement in ana-
lyzing two-dimensional (2D) pictures and three-dimensional (3D)
videos, it becomes popular in one-dimensional (1D) time-series data
classification recently.35,36

A generic CNN classifier has an input layer, one or more con-
volution blocks, a dropout block, a pooling block, one (or more)
fully connected classifier block(s), a dense layer, and an output
layer. The input layer takes 1D data from the physical system,
and the output layer exhibits the judgment given by the classi-
fier. Other blocks reveal some arithmetical formulas. For instance,
Conv1D layers calculate convolutions with varied dimensions and
acting filters to evoke cryptic knowledge from the data. The dropout
layer stops overfitting by disengaging random links from input to
output, which is described as regularization.61 The pooling layer
diminishes the number of parameters by calculating averages of
small-size input boxes. The fully connected layer runs as a hidden
layer of a traditional Multi-Layer Perceptron (MLP), as usual. In
some papers, different algorithms (such as k-nearest neighbors) are
favored alternatively.26 The dense layer involves activation functions
(ReLu, tanh, or sigmoid) to assess natural outputs. Figure 5 reflects
the classification stage of our model. No PAF Episode is the deci-
sion of No-Near Attack PAF Patient (or negative), and Near PAF
Episode is the decision of PAF Patient with the Following Episode
(or positive) in this study.

All layers between the input and output layers should be deter-
mined by trials or by experience62 since the performance of a
CNN network is strictly dependent on its hyper-parameters.63 We
proposed this model by tuning hyper-parameters in 1000 iterations.

I. Evaluating classifier performances

In pattern recognition applications, the performance of a clas-
sifier is calculated by its responses against unseen inputs before.47 All
samples were divided into two parts by 90% for training and 10% for
testing the classifier in this study. The performance of the classifier is
calculated using test samples, while hyperparameters of the classifier
are adjusted using the training data.

The confusion matrix is calculated for evaluating classifier per-
formances. It is generated by comparing the responses of the classi-
fication algorithm to the test set with the actual values in the dataset.

TABLE III. Python libraries with versions used in this study.

Library Version Description

hyperopt 0.2.5 Hyper-parameter optimization module
Keras 2.4.3 ANNs for the TensorFlow library
Matplotlib 3.1.2 To show image, animation, and views
Numpy 1.18.1 Scientific calculations
Pandas 1.2.3 Data analysis and manipulation tool
PyWavelets 1.1.1 To calculate the wavelet transform
Scipy 1.4.1 Engineering, scientific, and mathematical

tools
Sklearn 0.24.1 Predictive data analysis
Tensorflow 2.4.0 To develop and train machine learning

models

In the case of two-class problems, one class is positive, and the other
is negative. True Positive (TP) is the number of patients classified
correctly, and True Negative (TN) is the number of healthy subjects
classified correctly. On the other hand, False Negative (FN) is the
number of patients misclassified as healthy ones, and False Positive
(FP) is the number of healthy subjects misclassified as patients.47,64 In
this study, we assigned the negative class for PAF patients with no-
near attack and the positive class for PAF patients with near-future
attack.

Four commonly used performance measures (Accuracy, Recall,
Precision, and F1-Score) were used to evaluate classifiers in this
study,47,65

Accuracy =
TP + TN

TP + FP + FN + TN
, (13)

Recall =
TP

TP + FN
, (14)

Precision =
TP

TP + FP
, (15)

F1 − Score =
Precision × Recall

Precision + Recall
. (16)

TABLE IV. Classifier performances achieved in this study in predicting whether PAF patients will have the following episode or not. The bold-indicated row emphasizes the

highest classifier accuracy among them.

Features Feature normalization Accuracy (%) Precision (%) Recall (%) F1-score (%)

HRV No normalization 51.02 52.00 52.00 52.00
Min–max 83.67 86.96 80.00 83.33
Z-score 87.76 91.30 84.00 87.50

NHRV No normalization 53.06 53.57 60.00 56.60
Min–max 93.88 95.83 92.00 93.88
Z-score 100.0 100.0 100.0 100.0
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III. RESULTS AND DISCUSSION

This study examined the impacts of both heart rate and feature
normalizations in the onset prediction of PAF attacks using CNN.
HRV features were calculated from both 30 min HRV data and heart
rate normalized 30 min HRV data (NHRV). In addition, two feature
normalization methods were applied. The CNN classifier experi-
mented with six distinct feature sets. Table III listed the libraries
used in the programming language of Python 3.8 to discriminate
PAF patients as to whether they have a near attack or not.

The first part of our study repeated the classifiers from the
HRV features for no normalization, min–max normalization, and
z-score normalization cases. The achieved classifier accuracies are
51.02%, 83.67%, and 87.76% (Table IV), respectively. Since both
the min–max and z-score normalizations give higher accuracies, the
CNN classifier using one of these two normalization methods seems
enough in predicting the near PAF episodes based on HRV data.

The second part of our study repeated the classifiers from the
NHRV features for the same normalization cases. The achieved clas-
sifier accuracies become 53.06%, 93.88%, and 100.0% (Table IV),
respectively. Although the min–max normalization gives satisfac-
torily noticeable accuracy again, the z-score normalization method
results in excellent accuracy. As a result, the CNN classifier using
both the heart rate normalization and z-score feature normalization
methods together is enough to predict PAF episodes from 30 min
NHRV data.

Table V summarizes PAF diagnosis studies using 30 min HRV
data given in the literature. The classifier accuracies from the liter-
ature varied from 78.00% to 94.50%. Our proposed method, using
the CNN classifier with the heart rate normalized and z-score nor-
malized heart rate variability features, gives the highest classifier
accuracy of 100%. By comparing the accuracy of the proposed classi-
fier to other studies, our method has superior accuracy among them,
to our knowledge.

TABLE V. Studies to determine recent PAF episodes using 30min heart rate variabil-

ity measures in the literature. The bold-indicated row emphasizes the highest classifier

accuracy.

Study Features Classifier Description
Accuracy

(%)

Ref. 28 HRV kNN . . . 78.00
Ref. 29 NHRV RBF Min–max 81.63
Ref. 30 HRV MLP . . . 82.05
Ref. 29 HRV RBF Min–max 83.67
Ref. 19 HRV SVM GAs 83.90
Ref. 18 ECG FL . . . 84.00
Ref. 32 HRV SVM GAs 86.80
This study HRV CNN Z-score 87.76
Ref. 66 ECG DT . . . 88.00
Ref. 21 ECG DT . . . 89.29
Ref. 67 ECG + HRV DT . . . 89.40
Ref. 17 HRV LDA . . . 92.00
Ref. 5 HRV SVM . . . 94.50
This study NHRV CNN Z-score 100.0

Consequently, the proposed method in this study results in bet-
ter classification performance than similar studies in the literature.
We may propose that our approach provides a better tool to deter-
mine a PAF episode among PAF patients. On the other hand, CNN
works well with big data. The database used in this study consists of
ECG data obtained from only 49 patients with PAF only, which is
a weakness of this study. The findings obtained in our study, which
are preliminary research in character, need to be supported by other
studies on larger datasets.
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