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ABSTRACT

We study the evolution of cooperation in 2 x 2 social dilemma games in which players are located on a two-dimensional square lattice.
During the evolution, each player modifies her strategy by means of myopic update dynamic to maximize her payoff while composing neigh-
borhoods of different sizes, which are characterized by the corresponding radius, r. An investigation of the sublattice-ordered spatial structure
for different values of r reveals that some patterns formed by cooperators and defectors can help the former to survive, even under untoward
conditions. In contrast to individuals who resist the invasion of defectors by forming clusters due to network reciprocity, innovators spon-
taneously organize a socially divisive structure that provides strong support for the evolution of cooperation and advances better social

systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073632

As a basic research issue, how to maintain high-level cooperation
has attracted great attention both theoretically and experimen-
tally. The most commonly used theoretical framework to study
the cooperation between selfish individuals is evolutionary game
theory. Here, we study the effects of myopic strategy update and
neighborhood on social dilemma games. Interestingly, the evolu-
tion outcomes show a spatial order strategy distribution, which
is similar to the antiferromagnetic order in the spin system. In
detail, below the threshold temptation value, the distribution
of cooperators is homogeneous; i.e., p4 = pg. While above the
threshold value, there is an ordered structure. That is, one sub-
lattice is mainly occupied by defectors and the other sublattice
is occupied by cooperators. This orderly arrangement of cooper-
ators and defectors can provide maximum total payoff in social
dilemmas. Through mean-field approximation and Monte Carlo
simulation, we associate the emergence of these ordered struc-
tures with the microscopic dynamics of the evolutionary process.

I. INTRODUCTION

In the past half century, cooperation among individuals for
the benefit of others has been a subject of interest in the natural
and social sciences."* Evolutionary game theory is often used as a
theoretical framework to understand and explain the evolution of
cooperation,’ and the prisoner’s dilemma (PD) game is frequently
used for theoretical analysis.”"* In the PD game, two players can
either cooperate (C) or defect (D). The two players both receive
R (reward) if they mutually cooperate and P (punishment) after a
mutual defection. If a defector exploits a cooperator, the defector
receives T (temptation), and the cooperator receives a small pay-
off, S (sucker). In the PD game, the rank of the four payoff values
is T> R > P> Sand 2R > T+ S. The only Nash equilibrium for
the PD game is the pure strategy (D, D). In a population in which
all individuals interact with each other, both players have made the
choice that seems to be in their best interest, but in fact, they have
fallen into a dilemma that is not beneficial for either side. There is

Chaos 31, 123113 (2021); doi: 10.1063/5.0073632
Published under an exclusive license by AIP Publishing

31, 1231131


https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0073632
https://doi.org/10.1063/5.0073632
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0073632
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0073632&domain=pdf&date_stamp=2021-12-08
http://orcid.org/0000-0002-3087-541X
http://orcid.org/0000-0001-5007-6327
mailto:dthree@nwpu.edu.cn
mailto:w-zhen@nwpu.edu.cn
https://doi.org/10.1063/5.0073632

Chaos

a contradiction between personal interest and collective interests in
that individuals making rational choices often lead to collective irra-
tionality. Therefore, how to promote cooperative strategies among
selfish participants has always been a hot research topic."*'*

The spatial structure introduced by Nowak and May inspired
follow-up work and enabled cooperators to aggregate compact clus-
ters on the structured network to protect themselves against invad-
ing defectors.”” A series of subsequent studies placed evolutionary
games in regular networks,”’~** small-world networks,”>** scale-free
networks,”>”® and other related network topologies.”’~*’ In addition
to network reciprocity, various mechanisms, such as kin selection,”
direct reciprocity,” indirect reciprocity,’”” and group selection,” can
be used to simulate the emergence of cooperative behaviors and
explain the causes of cooperation. In line with these achievements,
different real-world natural mechanisms have also been explored
in structured populations to explain cooperative behaviors, for
example, punishment,’** teaching activity,” reputation,”** social
diversity,”"" aspiring to be the fittest,""* and noise,">"" to name but
a few. >

Recently, the myopic rule has attracted considerable
attention.”*~” Compared to imitation of a better-performing neigh-
bor, the myopic rule is more consistent with the innovative char-
acteristics of human beings.”** For the imitation update rule, the
player can choose only a strategy owned by the neighbor; as a result,
if a strategy disappears, it will not appear again.”>"~"" However,
the myopic rule allows players to make different choices than their
neighbors. In the present work, inspired by previous works™ > that
investigated the consequences of a structured population for myopic
players with specific properties, we study the myopic dynamical
rule that exhibits different disordered and sublattice-ordered spa-
tial arrangements when the number of interactional neighbors is
increased. We explore the effects of neighborhood size on 2 x 2
social dilemma games [including prisoner’s dilemma (PD), snow-
drift (SD), stag-hunt (SH), and the harmony game (HG)] with
myopic players located on a square lattice.”' By using the Monte
Carlo (MC) method to simulate evolutionary dynamics, we observe
an interesting phenomenon: as the number of neighbors increases,
the cooperators and defectors on the square lattice form different
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special ordered structures. This phenomenon also corresponds to
real-world society, in which individuals occupy a position in a com-
plex social relation, thus forming different role relations and special
structures. It is worth mentioning that the mean-field approxima-
tion provides a simple explanation of this phenomenon.

The remainder of this paper is arranged as follows. We first
introduce the model. Subsequently, we investigate the effects of dif-
ferent neighborhood sizes both by mean-field theory and by MC
simulations. Then, we use the local pattern steady-state analysis
to explain the spatial structure of different strategy distributions.
Finally, we summarize our conclusions and discuss potential direc-
tions for future research.

Il. MODEL

We study the evolution of cooperation in 2 x 2 games on a
square lattice with N = L x L sites and periodic boundary condi-
tions. Every site is initially assigned with a player that can be, with
equal probability, either a cooperator (C) or a defector (D) and rep-
resented by the variable S;,i = 1,. .., N. Different interaction ranges
can be explored by considering regions that go beyond the standard
von Neumann neighborhood around the focal site [Fig. 1(a)]. Here,
we include all the N, = 2r(r + 1) sites that can be reached within
r steps. Figure 1 illustrates the increasing neighborhood sizes cor-
responding to r =1 (a), 2 (b), and 3 (c). The payoff received by a
player when interacting with a neighbor depends on their strategies
and is obtained from the matrix

C D
C (R S
D <T P>' 1)

The elements of the payoff matrix are rescaled such that R =1,
P=0,Te[0,2], and S € [—1, 1]. Depending on the chosen range
for the sucker’s payoff S and the temptation T, four different dilem-
mas are obtained: (a) prisoner’s dilemma (PD) game when S < 0
and T > 1, (b) snowdrift (SD) game when S > 0 and T > 1, (¢)
the stag-hunt (SH) game when S < 0 and T < 1, and the harmony

FIG. 1. Examples of different neighborhoods for the square lattice. Starting at the focal player (black dot), N; sites can be reached within r steps. From (a) to (c): r = 1 (von
Neumann), 2, and 3, corresponding to N, = 4, 12, and 24, respectively. Notice that the Moore neighborhood is intermediate between r = 1 and 2.
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game (HG) when § > 0 and T < 1.°%% The dynamics uses an asyn-
chronous Monte Carlo (MC) procedure as follows. First, a randomly
selected player i with strategy S; accumulates the total payoff P; by
interacting with all its neighbors (those that are within r steps). Next,
the payoff P; is compared with what would have been obtained (P;)
with a different strategy, S/, with the same neighbors. Accordingly
with the myopic rule, the player updates its strategy with probability

1

pSi— S) = m.

2

Through simulation, we found that when K is greater than
0.2, there will be an ordered structure in the snowdrift (SD) game.
In the literature,”* K is usually set between [0.001, 0.4] to simu-
late minor irrationalities. Therefore, the amplitude of noise is set
to K =0.25 (its inverse, 1/K, is called the intensity of selection).
For the sake of comparison, the imitation updating rule is also con-
sidered, where the focal player i updates its strategy by randomly
choosing a neighbor j (with payoff P;) and adopting its strategy with
the probability,”

1

The amount of cooperation is measured by the average frac-
tion of cooperators in the system, p. In order to check whether
staggered ordering (similar to an antiferromagnet) is possible, the
square lattice is divided into two sublattices (A and B) in a checker-
board pattern. The fraction of cooperators in each sublattice is thus
represented by ps and pg, respectively. Within the range r, the num-
ber of sites in each sublattice is N, and Nj such that N, + Ny = N,
= 2r(r + 1). For r odd, there is N, = ¥* — 1 and N = (r + 1)? sites
around a focal site in sublattice A. For r even, N, = r(r + 2) and
N = r2. If the focal site is in the sublattice B, we switch the roles of
both indices in the above expressions.

The results of the MC simulations presented below were typi-
cally obtained for L = 400. We checked, through larger system sizes
(up to L = 2000), that finite-size effects are not significative. To
assure that the system reached a stationary state, the first 10*-10°
MCS (one Monte Carlo Step, MCS, corresponds to N site updatings)
were discarded. The results shown are averages over 100 indepen-
dent samples for each set of parameters (unless indicated, the error
bars are smaller than the symbol sizes).

lll. RESULT AND ANALYSIS

The myopic model is first analyzed using a mean-field approx-
imation for neighborhoods of different radii r. For simplicity, we
choose a weak PD game version (namely, S = 0) and study the
role of the temptation T. Playing with all its N, = 2r(r + 1) neigh-
bors (n of which are cooperators, with 0 < n < N,), a cooperative
player would obtain the payoff P© = n, while a defector would get
PP = nT. The agent tries to optimize its payoff using Eq. (2). The
temporal evolution for the density of cooperators p is given by

Q
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FIG. 2. Average fraction of cooperators p for the weak version (S = 0) of the
PD game as a function of temptation to defect T and different values of r. The
mean-field predictions, obtained from the numerical solution of Eq. (4), are shown
as continuous lines and compared with the MC simulations (points) on the square
lattice with K = 0.25 and L = 400. For the imitation rule, cooperation vanishes
when temptation is small (T = 1.04). Nonetheless, regardless the value of r, the
myopic rule always presents a residual level of cooperation as cooperators resist
to be completely invaded by defectors.
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FIG. 3. Fraction of cooperation in the sublattices (o4 and pg) as a function of
temptation to defect T for different values r, predicted by mean-field theory for
the weak PD game (S = 0) on square lattices at K = 0.25.
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The above MF equation can be numerically solved, and the fixed
points, which indicate the asymptotic fraction of cooperators, are
shown in Fig. 2 (continuous lines) for different values of r. For
T > 1, r =1 presents the largest amount of cooperation with the
myopic updating rule, and the larger r is, the steeper the curve
becomes and p gradually decreases. Notice that a residual level of
cooperation remains within the population, which is approximately
independent of the value of the temptation, even when the environ-
ment is very hostile (large values of T), a well known property of the
myopic rule.” These MF predictions are also observed in the MC
simulations, Fig. 2 (points), and the comparison shows a very good
agreement. Interestingly, as the size of the neighborhood increases,
the amount of cooperation decreases. With an enlarged neighbor-
hood, the cooperators forming a sustainable cluster do not need to
be nearest neighbors and some of these clusters always persist. How-
ever, more neighbors are also helpful to defectors, and the number
of cooperators decreases. For comparison, we also considered the
imitation dynamics, Eq. (3), where the strategy of the player can
be inherited from a random neighbor depending on their relative
payoffs. In this case, already for r = 1, the fraction of cooperators

|
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quickly decreases to zero at T = 1.04, as depicted in Fig. 2 (red
points).

Previous results for the particular case r = 1°” have shown, in
some cases, particular spatial structures, akin to an antiferromag-
netic ordering. Indeed, dividing the system into two sublattices, A
and B, it was remarked that in some situations, their occupation by
cooperators becomes asymmetric. We then extend the above analy-
sis to investigate whether such sublattice symmetry breaking occurs
also at the MF level for different r values. The payoff of cooperators
and defectors in sublattice A (for B, switch all A and B labels) can be
approximated, when r is odd, by

PO = (r+1*[Ros + S — pp)] + (¥ — D[Rps + S — pu)],
(5)
PP = (r+ 1)’[Tps + P(1 — pp)] + (* = D[Tps + P(1 = py)]

and, when r is even, by
P = 1[Rps + S(1 = py)] + r(r +2)[Rps + S(1 = o)),
PP = P[Tps + P(1 — pp)] + r(r + 2)[Tps + P(1 — py)].

In the following, we set R = 1 and P = 0.

Based on the myopic strategy updating rule, we obtain the fol-
lowing equation for the time derivative of cooperation frequency on
sublattice A:

1 1
oo T 1= pa) oo )
A A A A
1+exp™ ¥ 1+exp™ ¥

Pa = —pPa

By combining expression (5) and Eq. (7), we obtain the equations
for the fraction of cooperators on sublattices A and B for different r
values. When r is odd,

Pa =

L+exp {{r+ 1D’ [(S+T—R=P)pg—S+P|+(* =) [(S+T—R—P)ps —S+PI} /K

} — Pa> (8)

pp =

When r is even,

1+exp{{r+ 1’ [S+T—R—=P)ps—S+Pl+ @ -1 [(S+T—R—P)ps—S+P]} /K

} — PB. 9

. 1
P ep (P [(S+T—R—P) ps—S+Pl+r(r+2) [S+T—R—P)ps—S+P /K "* (10)
iy 1 ~ s (an

T 1t exp({rP[S+T—R—P)ps—S+Pl+r(r+2)[(S+P—R—T)ps—S+ P} /K}

Figure 3 shows the results of the mean-field prediction of the
fraction of cooperation in the sublattices as a function of tempta-
tion for various radii . When r = 1, the distribution of cooperators
is homogeneous below the threshold of temptation to defect b
(pa = pp). As the temptation value increases, the mean-field
theory predicts a long-range ordered state (ps = 0,05 = 0.5).
Interestingly, when r =2, regardless of the temptation value,
the phenomenon of sublattice ordering disappears. Specifically,

(

the distribution of cooperators in sublattices A and B is always
homogeneous (ps = pp). For r = 3, the phenomenon of sublat-
tice ordering emerges again; however, the difference between the
frequency of cooperation in the two sublattices is much less than
that of r = 1. For r =4, similar to r = 2, the sublattice order-
ing structure disappears. When r > 4, the cooperative distribu-
tion of the two sublattices will converge, regardless of the value
of r.
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FIG. 4. Frequency of cooperation in the sublattices (o4 and pg) when varying T and S for K = 0.25. From (a) to (d), the values of r are 1, 2, 3, and 4, respectively. The solid
lines indicate that the fraction of cooperation in sublattices A and B is nearly equal; that is, they show the absence of sublattice ordering. The dashed lines indicate sublattice

ordering patterns.

Next, we use MC simulation to verify the prediction of the
mean-field theory. For different radii r, the results of the MC simula-
tions are summarized in Fig. 4, where we can distinguish two types of
ordered structures. Note that all cases differ mainly in the SD regions
and that the above-mentioned sublattice ordering occurs within the
range of the SD game. The dynamics evolve in almost the same way
in the PD, HG, and SH regions.

To determine why different values of r lead to different results
for the evolution of cooperation, in Fig. 5, we show snapshots of
the MC steps 0, 100, 10000, and 39999 for the four scenarios
(r=1, 2, 3, and 4) on the SD region. In all cases, cooperators are
depicted as blue, while defectors are depicted as red. Interestingly,

different r values lead to spatial patterns with typical character-
istics. As shown in Figs. 5(a)-5(d), where r = 1, multiple “lines”
emerge in the checkerboard background. As the system evolves,
the “line” gradually decreases, eventually forming a black-and-white
checkerboard format in which one sublattice is occupied only by the
cooperators (p4 = 1), while the other is occupied by the defectors
(pp =0). For r=2 [Fig. 5(b)], a checkerboard-like pattern is
formed by glancing at the diagram, but the organization of cooper-
ators and defectors is totally different from that for » = 1. In fact,
the blue point in Fig. 5(h) is a 2 x 2 cooperator cluster. In addi-
tion, the fraction of cooperation is equal on the two sublattices
(pa = pp). For r = 3, when the system evolves to a stable state, it is
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5
r =4 (m)—(p). Cooperators and defectors are represented by blue and red, respectively. All panels are depicted on a 100 x 100 spatial lattice. All results are obtained for
T=15and S=05.
similar to r = 1; that is, it evolves to a checkerboard pattern (p, = 1, imitation update rule, which allows cooperators to prevent defectors
pp = 0). The steady state formed for r = 4 is different from the pre- by forming giant clusters, the myopic update rule brings an inno-
vious steady states, as it is in the shape of bars. However, it can vative dynamic that makes cooperators maintain cooperation by
be observed that each cooperator (defector) has the same pattern forming a special pattern of strategies. In human society, although
of strategies in her neighborhood for a certain r. Compared to the solidarity can have a great impact on cooperation, the social division
Chaos 31, 123113 (2021); doi: 10.1063/5.0073632 31, 123113-6
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FIG. 6. Local spatial patterns in the sublattice-ordered arrangement of defectors
and cooperators for r = 1. A blue circle indicates a cooperator, and a red circle
indicates a defector. (a) shows the pattern of the system evolving to a stable state.
(b)-(e) are some strategy distribution patterns that appear in the system during
the evolution process.

in which each individual plays a certain role can produce a greater
collective benefit.

Finally, to further explain why different r values lead to differ-
ent special spatial structures, we analyze the stability of the ordered
arrangement of strategies under the microscopic perspective. The
ratio in Fig. 6 represents the payoff ratio of the focal player if he
chooses both cooperation and defection (W : Wp) in the case of
the neighbors being unchanged. Figure 6(b) is obviously the most
stable pattern with the highest payoff ratio. Meanwhile, the pattern
opposite to Fig. 6(a), that is, four cooperators around the defector
(not shown in the figure), is also stable for a reason similar to that
for Fig. 6(a). Figure 7(a) shows the pattern of the system evolving
to a stable state when r = 2. Figures 7(b) and 7(c) show the two
different patterns when r = 2, which are different from the pat-
tern when the system is stable. In contrast to Fig. 6(a), every four
players with the same strategy form a 2 x 2 cluster, while four clus-
ters with opposite strategies are located around the former clusters.
Figure 7(a) shows the pattern of the system evolving to a stable state
in which the diamond-shaped shadows represent the neighborhoods
of the focal players C1, C2, C3, and C4. Figures 7(b) and 7(c) present

ARTICLE scitation.org/journal/cha

two other possible patterns. Since each akin player should have the
same pattern of strategies in her neighborhood, some specific pat-
terns are removed, such as the pattern of a cooperator surrounded
by 12 defectors. Compared to the patterns presented in Figs. 7(b)
and 7(c), the pattern in Fig. 7(a) gives cooperators the highest pay-
off ratio and spontaneously remains stable. In the case of r =3,
because akin players should have the same pattern of strategies in
their neighborhoods, individuals cannot form 3 x 3 clusters with
the same strategies. The checkerboard pattern is the only one that
can be formed when the system is stable. When r is greater than or
equal to 4, the stable patterns can be explained similarly.

IV. CONCLUSION

Our model is motivated by human society, in which players
who are innovative are able to choose strategies that are not within
their neighborhood. To explore and quantify the consequence of
innovation dynamics in the context of different numbers of neigh-
bors, we use MC simulation and mean-field theory to identify this
model. Interestingly, when r = 1 and r = 3, an ordered spatial strat-
egy distribution emerges (ps = 0, pp = 1), which is analogous to a
checkboard pattern and enables the cooperators to effectively resist
the invasion of defectors. When r = 2 and r = 4, the phenomenon
of the ordering structure disappears (04 = pp), and the special spa-
tial structure of the system enables the cooperators to survive. By
investigating the reasons for the special strategy distribution, we use
a microscopic perspective to analyze the local pattern in the stable
state of the system. We find that each player with the same strategy
has the same neighborhood structure. Therefore, there is a special
role separation between the cooperator and the defector. In contrast
to cooperators forming huge cooperative clusters to resist the inva-
sion of defectors under the imitation dynamic, cooperators survive
by forming some special patterns in which cooperators and defec-
tors live together with a certain order under a myopic dynamic.
The social division assigns different characters to different members
of the society, and a reasonable social structure can lead to social

FIG. 7. Local spatial patterns in the sublattice-ordered arrangement of defectors and cooperators for r = 2. The colors and other details are the same as in Fig. 6(a) depicts
the steady state at r = 2, and the four shaded rhomboids in (a) represent the domains of the player’s neighbors centered on C1, C2, C3, and C4. (b) and (c) are the patterns
that explain why (a) is the final steady state of the system when r = 2. The shaded rhomboids in (b) and (c) represent the domains of the player’s neighbors.
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development. Our work may be meaningful for understanding the
impact of social division on the level of cooperation with different
neighborhood sizes.
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