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ABSTRACT

Higher-order interactions might play a significant role in the collective dynamics of the brain. With this motivation, we here consider a
simplicial complex of neurons, in particular, studying the effects of pairwise and three-body interactions on the emergence of synchronization.
We assume pairwise interactions to be mediated through electrical synapses, while for second-order interactions, we separately study diffusive
coupling and nonlinear chemical coupling. For all the considered cases, we derive the necessary conditions for synchronization by means of
linear stability analysis, and we compute the synchronization errors numerically. Our research shows that the second-order interactions, even
if of weak strength, can lead to synchronization under significantly lower first-order coupling strengths. Moreover, the overall synchronization
cost is reduced due to the introduction of three-body interactions if compared to pairwise interactions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079834

Synchronous behavior in complex networks is often directly
related to the type of interactions between the different compo-
nents. It has recently been pointed out that the consideration of
only pairwise interactions is an over-simplification for many real
networks, including the nervous system. Indeed, non-pairwise
interactions can have major influences on the behavior of such
networks. Despite numerous studies on the synchronization of
neurons subject to pairwise interactions, higher-order interac-
tions and their impact on the emergence of synchronization are
still poorly understood. To do away with this gap, we consider
a simplicial complex of Hindmarsh–Rose neurons, where the
impact of higher-order interactions can be studied. For pair-
wise interactions, we, therefore, consider only diffusive electri-
cal synapses, while for higher-order interactions, we consider
both diffusive and chemical synapses. We determine the required
first- and second-order coupling strengths for synchronization by
means of linear stability analysis, and we find that second-order

interactions, along with pairwise electrical synapses, decrease the
electrical coupling strength needed for synchronization. We also
define and compute the synchronization cost for different inter-
action types, observing that taking into account second-order
diffusive interactions reduces the cost, while second-order chem-
ical interactions increase it. Nonetheless, the cost of second-order
chemical synapses is still lower than the cost associated with first-
order chemical synapses. Taken together, these results indicate
a prominent role of higher-order interactions in the onset of
neuronal synchronization.

I. INTRODUCTION

Complex networks are a set of nodes with specific dynamics
connected by links.1 Synchronization is among the most fascinating
collective behaviors in complex networks with application in
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different subjects, including technology and biology.2 This phe-
nomenon is referred to as the existence of common dynam-
ics between network systems that can be coupled linearly or
nonlinearly.3 Synchronization plays a vital role in the brain activi-
ties such as the human memory process. This has been confirmed
in the investigations of electroencephalography and magnetoen-
cephalography signals.4 Using these signals, complex networks can
be constructed and analyzed.5 Moreover, many studies can be found
discussing the association between synchronization and some dis-
eases, such as Parkinson’s,6 Alzheimer’s,7 epilepsy,8 and autism.9

Due to the importance of synchronization, many researchers
have investigated synchronization in neuronal networks. These
studies represent the effects of different factors on the neuron’s
synchronization, including the coupling, topology, neuron’s dynam-
ics, time delay, and noise.10–15 Bandyopadhyay and Kar14 considered
the Hindmarsh–Rose neurons in different network structures and
focused on the synchronization problem. They found that the net-
work with a high clustering coefficient and neutral degree mixing
pattern provides a better synchronization. Rakshit et al.16 exam-
ined the synchronization of neurons in a hypernetwork with time-
varying links. They reported that the synchronization is enhanced
in higher rewiring frequencies. Wang et al.17 revealed the effects of
the synaptic time delay and also self-time delay on the synchroniza-
tion of neurons in a multilayer structure. The type of synapses is
another factor impacting the collective behavior of the neurons. In
this regard, several studies have considered electrical, chemical, and
memristor-based synapses or a combination of them.18–20

Despite the real-world application of custom networks with
dyadic interactions, it has been proved that sometimes these pair-
wise interactions are not satisfactory in modeling special systems,
such as biological ones.21–23 The importance of higher-order inter-
actions in brain networks can be found in Refs. 24 and 25.
These higher-order structures are called “simplicial complexes”
that describe many-body interactions between network units.26–28

According to the definition of simplicial complexes, the interaction
between n+1 agents can be represented by n-simplex.29,30 Recently,
simplicial complexes have grabbed researchers’ attention.31–34 For
example, Millán et al.35 studied the dynamics of Kuramoto oscilla-
tors in 2-simplex structures and revealed the emergence of explosive
synchronization. Additionally, they studied the effect of simplicial
geometry on the phase diagram of the network of higher-order
Kuramoto oscillators. Another study on higher-order phase oscil-
lators was conducted by Skardal and Arenas,36 which showed that
by increasing the nonlinearity, the higher-order interactions lead
to a self-organized feature, resulting in the rapid switching to the
synchronization. The synchronization of Kuramoto oscillators was
also studied by Lucas et al.37 They proposed a multi-order Lapla-
cian framework, a generalization pairwise Laplacian framework,
obtained by the Lyapunov exponents. The stability of synchro-
nization in hypernetworks has been investigated in some research
studies.38,39 Also, the study of master stability function (MSF) of
higher-order interactions was conducted by Gambuzza et al.40 They
proposed the method for calculating the MSF of a network with
many-body interactions and applied their method to the Rössler and
Lorenz systems.

The investigation of higher-order interactions has not been
limited to phase oscillators. The neuronal models have also been

employed to study the effect of many-body interactions on their
behavior. For instance, a network of Morris–Lecar neurons with
higher-order interactions was studied by Tlaie et al.41 Based on
this study, higher-order interactions can lead to time-ordered syn-
chronization by only a small coupling strength and provide fast
information propagation. Ince et al.42 also announced that pairwise
interactions could not fully describe the behavior of the neurons
in the rat somatosensory cortex. They also calculated the Shan-
non energy as a measure of transmitted information amount of the
neuron’s activity to evaluate the effect of higher-order interactions
on the information transmission. The study conducted by Amari
et al.43 proved that higher-order interactions exist in neuronal activ-
ity. They showed that the generation of a widespread distribution
could be due to the many-body interactions in a pool of neurons.

In this paper, the synchronization of the Hindmarsh–Rose neu-
rons with higher-order interactions in the global coupling scheme
is studied. The first-order interactions are defined by electrical gap
junctions, while the second-order (or three-body) interactions are
considered in two conditions: linear diffusive coupling (similar to
the electrical synapses) and nonlinear chemical synaptic couplings.
The linear stability analysis is done, and the required coupling
strengths for synchronization are obtained. The synchronization of
the neurons is also computed numerically. A synchronization cost
is also introduced and computed for different connections. The
results represent the enhancement of synchrony in the presence of
second-order interactions.

The paper is organized as follows. Section II elaborates on the
studied model. The results of two different cases of second-order
interactions are detailed in Sec. III, and Sec. IV highlights the main
results as the conclusion.

II. MATHEMATICAL MODEL

The simplicial complex of order D lets for considering not only
pairwise connections (1-simplex known as the links) but also higher-
order interactions such as the three-body interaction known as the
triangles (2-simplex), four-body interaction (3-simplex), etc. Here,
we consider that the neurons evolve through the first-order and
second-order interactions. A simplicial complex of the order D = 2
is described by the following equations:

Ẋ = F(X) + σ1

N
∑

j=1

a(1)
ij g1(Xi, Xj) +

N
∑

j=1

N
∑

k=1

a(2)
ijk g2(Xi, Xj, Xk), (1)

where X ∈ R
m is the m-dimensional state variable of the system,

F(X) : R
m → R

m describes the dynamical function of the nodes,
and σ1 and σ2 are the coupling strengths of the first-order and
second-order interactions. The coupling function between the nodes
is defined by the matrix function g1(Xi, Xj) for 1-simplexes and by

g2(Xi, Xj, Xk) for 2-simplexes. The matrix A(1) =
[

a(1)
ij

]

is the first-
order adjacency matrix that represents the existence of the link

between nodes i and j by a(1)
ij = 1, and otherwise a(1)

ij = 0. Similarly,

A(2) =
[

a(2)
ijk

]

is the adjacency tensor that refers to the 2-simplexes

where a(2)
ijk = 1 shows that the nodes i,j,k construct a triangle.
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FIG. 1. Bifurcation diagram of the Hindmarsh–Rose model [Eq. (2)] according to parameter r . The model shows an intermittency between period-5 and chaotic dynamics at
r = 0.006. Other parameters of the model are s = 4 and Iext = 3.2.

Here, the three-variable Hindmarsh–Rose model (X = [x, y, z])
is considered to describe the dynamics of the neurons; therefore,

F(X) =











f(x, y, z) = y + 3x2 − x3 − z + Iext,

g(x, y, z) = 1 − 5x2 − y,

h(x, y, z) = r(s(x + 1.6) − z),

(2)

where x, y, and z denote the membrane potential, fast, and slow
recovery variables, respectively. The parameters of the model are
set at r = 0.006, s = 4, and Iext = 3.2, where the behavior of the
neuron is spike bursting.44 The bifurcation diagram of the model
according to parameter r is depicted in Fig. 1. It can be observed
that the model exhibits intermittency between period-5 and chaotic

FIG. 2. (a) The schematic of a simplicial complex of five nodes with global coupling. A 1-simplex (link) and a 2-simplex (triangle) of the network are shown by blue and
pink colors as an example. (b) The corresponding adjacency matrix A(1). The elements shown by cyan color represent a link between nodes i and j. (c) The corresponding
adjacency tensor A(2), which is three-dimensional. The cyan elements show that the nodes i, j, k construct a triangle.
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dynamics. Further, it is assumed that the neurons are connected with
the global coupling configuration (all to all coupling). A schematic
of the network is shown in Fig. 2(a). As an illustration, a link (1-
simplex) and a triangle (2-simplex) are shown in blue and pink
colors, respectively. The first- and second-order adjacency tensors
are represented in Figs. 2(b) and 2(c), respectively.

III. RESULTS

The synchronization of the network of N = 20 neurons is
investigated for different first-order and second-order coupling
strengths. We consider that the first-order communication of
the neurons is diffusive to describe the electrical gap junction.
Therefore,

g1(Xi, Xj) = [xj − xi, 0, 0]. (3)

For the second-order interactions, we consider two different
cases: (1) linear diffusive coupling similar to the electrical synapses
and (2) nonlinear coupling raised from chemical synapses. For each
case, we investigate the stability of the synchronization of the neu-
rons by using the linear stability analysis. Therefore, the master
stability function, which gives the necessary conditions for the syn-
chronization of coupled oscillators, is derived.40 Moreover, to evalu-
ate the synchrony level of the neurons, the averaged synchronization
error is also computed with the following equation:

E =

〈

1

N − 1

N
∑

j=2

∥

∥X1(t) − Xj(t)
∥

∥

〉

t

. (4)

A. Diffusive second-order interactions

In the first step, the second-order interactions are also con-
sidered diffusive. Thus, the function g2(Xi, Xj, Xk) is defined as

follows:

g2(Xi, Xj, Xk) = [xj + xk − 2xi, 0, 0]. (5)

To find the stability of the synchronization, the linear stability
analysis is done on the network equation [Eq. (1)] by adding a small
perturbation to the synchronous manifold Xs as δXi = Xi − Xs,
(δxi = xi − xs, δyi = yi − ys, δzi = zi − zs]). Thus,

δẊi = JF(Xs)δXi + σ1

N
∑

j=1

a(1)
ij

×

[

∂g1(Xi, Xj)

∂Xi

∣

∣

∣

∣

(Xs ,Xs)δXi +
∂g1(Xi, Xj)

∂Xj

∣

∣

∣

∣

(Xs ,Xs)δXj

]

+ σ2

N
∑

j=1

N
∑

k=1

a(2)
ijk

[

∂g2(Xi, Xj, Xk)

∂Xi

∣

∣

∣

∣

(Xs ,Xs ,Xs)δXi

+
∂g2(Xi, Xj, Xk)

∂Xj

∣

∣

∣

∣

(Xs ,Xs ,Xs)δXj

+
∂g2(Xi, Xj, Xk)

∂Xk

∣

∣

∣

∣

(Xs ,Xs ,Xs)δXk

]

, (6)

where JF(Xs) denotes the Jacobean of the function F(X) at the
synchronous manifold Xs. In the synchronization state, g1(Xi, Xj)

≡ 0, and g2(Xi, Xj, Xk) ≡ 0; thus, the synchronization manifold is as
follows:











ẋs = ys + 3x2
s − x3

s − zs + Iext,

ẏs = 1 − 5x2
s − ys,

żs = r(s(xs + 1.6) − zs),

(7)

which evolves temporally the same as the single neuron. The time
series and the attractor of the synchronous manifold are shown in

FIG. 3. The time series (a) and attractor (b) of the synchronous manifold of neurons with linear diffusive second-order interactions. The evolution of the neurons in this case is
the same as the single neuron since g1(Xi , Xj) ≡ 0, and g2(Xi , Xj , Xk) ≡ 0 in the synchronous manifold. Therefore, the neurons have a chaotic behavior when synchronized.
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Fig. 3. By considering g1 as Eq. (3) and g2 as Eq. (5), we can write
Eq. (6) as

δẋi = Jf(Xs)δXi + σ1

N
∑

j=1

a(1)
ij

[

δxj − δxj

]

+ σ2

N
∑

j=1

N
∑

k=1

a(2)
ijk

[

−2δxi + δxj + δxk

]

, (8.1)

δẏi = Jg(Xs)δXi, (8.2)

δżi = Jh(Xs)δXi. (8.3)

The Laplacian matrix is generally defined as L = K − A, where
K is the diagonal matrix with the degree of the nodes at its main
diagonal and A is the adjacency matrix. For our simplicial complex,
the first-order Laplacian matrix L(1) is the classical Laplacian matrix,
and the second-order one can be found as follows:

L(2)
ij =















i 6= j :

{

a(1)
ij = 0 : 0,

a(1)
ij = 1 : −k(2)

ij ,

i = j : 2k(2)
i ,

(9)

where k(2)
i = 1

2

∑N
j=1

∑N
k=1 a(2)

ijk is the degree of node i, and k(2)
ij is the

degree of the link ij, i.e., the number of the triangles in which the
link ij participates. Now, a tensor T =

[

τijk

]

N×N×N
is introduced as

T = K(2) − A(2), where the elements of K(2) are κijk = 2k(2)
i for

i = j = k, and κijk = 0 otherwise. Therefore, Eq. (8.1) can be
rewritten as

δẋi = Jf(Xs)δXi − σ1

N
∑

j=1

L(1)
ij δxj

+ σ2

N
∑

j=1

N
∑

k=1

[

κijk − τijk

] [

−2δxi + δxj + δxk

]

= Jf(Xs)δXi − σ1

N
∑

j=1

L(1)
ij δxj − σ2

N
∑

j=1

N
∑

k=1

τijk

[

δxj + δxk

]

= Jf(Xs)δXi − σ1

N
∑

j=1

L(1)
ij δxj

− σ2





N
∑

j=1

δxj

N
∑

k=1

τijk +

N
∑

k=1

δxk

N
∑

j=1

τijk





= Jf(Xs)δXi − σ1

N
∑

j=1

L(1)
ij δxj − 2σ2

N
∑

j=1

L(2)
ij δxj. (10)

In our network, since the coupling is considered to be global,
we have L(2) = (N − 2)L(1); thus,

δẋi = Jf(Xs)δXi − (σ1 + 2σ2 (N − 2))

N
∑

j=1

L(1)
ij δxj. (11)

Since Jf(Xs)δXi is the block diagonal, and the Laplacian matrix
is diagonalizable, Eq. (11) can be rewritten with the eigenvalues of
the Laplacian matrix. Hence, the perturbation equations [Eqs. (8.2),
(8.3), and (11)] can be projected to the following linearized system
with variables η = [ηx, ηy, ηz] as

η̇x = Jf(Xs)η − (σ1 + 2σ2 (N − 2)) λiηx,

η̇y = Jg(Xs)η,

η̇z = Jh(Xs)η,

(12)

where λi, i = 1, . . . , N are the eigenvalues of L(1). Due to the global
connection matrix, λ1 = 0 and λi = N for i = 2, . . . , N. For the first
eigenvalue, i.e., λ1 = 0, the system evolution is along the synchro-
nization manifold. For other eigenvalues λ2, . . . , λN, the system evo-
lution is transverse to the synchronization manifold, whose stability
should be checked by calculating the maximum Lyapunov exponent
(3). Therefore, if 3 < 0 for λ = N , then the synchronization is
stable.

The maximum Lyapunov exponent of the linearized equation
[Eq. (12)] for λ = N = 20 is illustrated in Fig. 4(a) according to
both coupling strengths. Generally, it can be attained that with
considering the second-order interactions, the synchronization is
achieved in smaller coupling strength σ1. Furthermore, this thresh-
old is decreased with increasing the strength of the second-order
interactions. The curves of 3 for different second-order coupling
strength (σ2) are plotted in Fig. 4(b) according to the first-order
coupling strength (σ1). It can be observed that in the absence of
the second-order interactions, the neurons become synchronous
for σ1 > 0.047. By considering the second-order interactions, this
threshold is considerably reduced even for very small σ2. For exam-
ple, for σ2 = 0.000 15 and σ2 = 0.0003, the synchrony is obtained
for σ1 = 0.042 and σ1 = 0.037, respectively. Also, it can be seen that
the neurons are synchronized for any value of σ1 when σ2 = 0.0015.
From Figs. 4(a) and 4(c), it can be seen that the border, which
separates the regions of synchronization and asynchronization is a
straight line. The equation of this line can be obtained from the
linearized system [Eq. (12)]. As mentioned, with first-order inter-
actions, the synchronization is stable for the coupling strengths
higher than 0.047. Therefore, according to Eq. (12), σ1 + 2σ2(N − 2)
= σ1 + 36σ2 should be higher than 0.047. Thus, the equation of the
borderline of synchrony and asynchrony is σ1 + 36σ2 = 0.047. In
fact, for σ1 = 0, i.e., with only considering the second-order inter-
actions, the synchronization is achieved for σ2 > 0.0013. From the
equation of the borderline, it can be seen that σ2 is effective with a
factor of 2(N − 2). Therefore, in second-order interactions, the syn-
chrony can be obtained in remarkably smaller coupling strengths
than the first-order interactions. The numerical synchronization
error of the neurons is also represented in parts c and d, which are
well-matched with the results of linear stability analysis.

Another important factor in the required coupling strength for
synchronization is the considered N, i.e., the number of neurons
in the network. In the absence of the second-order interactions, by
increasing N, the eigenvalue of the connection matrix increases, and
consequently, a lower coupling strength can synchronize the neu-
rons. In other words, the coupling strength thresholds for synchrony
in two networks with a different number of nodes have this relation:
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FIG. 4. The regions of synchronous and asynchronous states for N = 20 neurons with diffusive second-order interactions. First row: the maximum Lyapunov exponent
3 of the linearized equation (12). Second row: the synchronization error (E) computed numerically. (a) and (c) 2D representation in the parameter plane (σ1, σ2); the
synchronous and asynchronous regions can be separated by the line: σ1 + 2σ2(N − 2) = σ1 + 36σ2 = σth, where σth = 0.047 is the threshold of coupling strength for
synchrony in the absence of second-order interactions. (b) and (d) 1D representation according to σ1 for σ2 = 0, 0.000 15, 0.0003, 0.0015. It is clear that with increasing σ2,
the synchronization is achieved in lower σ1.

σ1

σ
′

1

= N
′

N
. On the other hand, with only considering the second-order

interactions, the relation between synchrony thresholds changes

to σ2

σ
′

2

= N
′
(N

′
−2)

N(N−2)
. This means that the variations in the synchrony

thresholds in the second-order interaction are also affected by the

coefficient (N
′
−2)

(N−2)
. Therefore, with increasing N, the required second-

order coupling strength is much more decreased. As an illustration,
the regions of synchronous and asynchronous states for the network
with N = 50 and N = 100 neurons are depicted in Fig. 5, which
are obtained by calculating the maximum Lyapunov exponent of
Eq. (12). Note the coupling ranges in these figures. The border-
lines separating the regions are σ1 + 96σ2 = 0.0188 for N = 50 and
σ1 + 196σ2 = 0.0094 for N = 100.

As discussed, by considering the second-order interactions, a
very small σ2 can reduce the required σ1 for synchrony consider-
ably. But the question is whether the second-order interactions help
in enhancing synchrony or not. To answer this question, we define a
synchronization cost as C = (nl × σ1) + (3nt × σ2), where nl is the
number of the links and nt is the number of the triangles in the
network. The synchronization cost of the network in the absence

(σ2 = 0) and presence (σ1 6= 0) of second-order interactions is
compared. In our network, the coupling is global; thus, we have
nl = N(N−1)

2
and nt = N(N−1)(N−2)

6
. When σ2 = 0, the cost is

C1 = N(N−1)
2

× σth, where σth is the necessary σ1 for synchroniza-
tion when σ2 = 0, which is σth = 0.047 for N = 20. By considering
σ2 6= 0, the cost is obtained by C2 =

(

N(N−1)
2

× σ1

)

+
(

3N(N−1)(N−2)
6

× σ2

)

. According to Eq. (12), in the synchronous state, we have

σ1 + 2σ2(N − 2) = σth or σ2 =
σth−σ1

2(N−2)
. Thus,

C2 =

(

N(N − 1)

2
× σ1

)

+

(

3N(N − 1)(N − 2)

6
×

σth − σ1

2(N − 2)

)

=
N(N − 1)

2

(

σ1 + σth

2

)

. (13)

As shown in Fig. 4, in the synchronous state, σ1 < σth; there-
fore,

σ1+σth
2

< σth and C2 < C1. Consequently, by incorporating
the second-order interactions, the synchronization cost decreases
linearly according to σ1.
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FIG. 5. The maximum Lyapunov exponent (3) of the linearized equation (12) for neurons with diffusive second-order interactions in the parameter plane (σ1, σ2) for N = 50
(a) and N = 100 (b). By increasing N to N′, the first-order coupling strength decreases by the order N/N′, and the second-order coupling strength decreases by the order
(N(N − 2))/(N′(N′ − 2)).

B. Chemical second-order interactions

In this subsection, the second-order interactions are assumed
to be through chemical synapses. To this aim, the function
g2(Xi, Xj, Xk) is considered as

g2(Xi, Xj, Xk) =
[

(vs − xi)
(

0(xj) + 0(xk)
)

, 0, 0
]

, (14)

where 0(x) = 1
1+exp −λ(x−θs)

defines the activation and deactivation

of the chemical synapse with the parameters θs = −0.25 and λ = 10,
and vs = 2 is the reversal potential. In this case, in the synchro-
nization state, the second-order coupling function is g2(Xs, Xs, Xs)

= [2(vs − xs)0(xs), 0, 0], which is not equal to zero. Therefore, the

synchronous manifold is attained as











ẋs = ys + 3x2
s − x3

s − zs + Iext + 2σ2(vs − xs)0(xs),

ẏs = 1 − 5x2
s − ys,

żs = r(s(xs + 1.6) − zs).

(15)

Consequently, the synchronous manifold, in this case, differs from
the manifold of a single neuron. The time series and attractor of this
synchrony manifold [Eq. (15)] are shown in Fig. 6.

To obtain the synchronization stability for second-order chem-
ical interactions, we rewrite the perturbation equation δẋi [Eq. (8.1)]

FIG. 6. The time series (a) and attractor (b) of the synchronous manifold of neurons with nonlinear chemical second-order interactions. In the synchronization manifold, the
coupling term is g2(Xs, Xs, Xs) = [2(vs − xs)0(xs), 0, 0], which is not equal to zero. Therefore, the evolution of neurons differs from the single neuron. However, the neurons
have a chaotic firing pattern.
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by using Eq. (14),

δẋi = Jf(Xs)δXi + σ1

N
∑

j=1

a(1)
ij

[

−δxi + δxj

]

+ σ2

N
∑

j=1

N
∑

k=1

a(2)
ijk

×
[

−20(xs)δxi + (vs − xs) 0x(xs)δxj + (vs − xs) 0x(xs)δxk

]

= Jf(Xs)δXi − σ1

N
∑

j=1

L(1)
ij δxj − 2σ20(xs)δxi

N
∑

j=1

N
∑

k=1

a(2)
ijk

+ σ2 (vs − xs) 0x(xs)

N
∑

j=1

N
∑

k=1

a(2)
ijk (δxj + δxk), (16)

where 0x(xs) is the derivative of the function 0(x) according
to x variable in the synchronous manifold (xs). By substituting

A(2) = K(2) − T, we have

δẋi = Jf(Xs)δXi − σ1

N
∑

j=1

L(1)
ij δxj − 4σ20(xs)k

(2)
i δxi

+ σ2 (vs − xs) 0x(xs)



4k(2)
i δxi − 2

N
∑

j=1

L(2)
ij δxj



 . (17)

Similarly, by considering L(2) = (N − 2)L(1), Eq. (18) can be
derived as

δẋi = Jf(Xs)δXi − 4σ20(xs)k
(2)
i δxi + 4σ2k

(2)
i (vs − xs) 0x(xs)δxi

− [2σ2 (vs − xs) 0x(xs)(N − 2) + σ1]

N
∑

j=1

L(1)
ij δxj. (18)

Since λi(L
(1)) = N, i = 2, . . . , N, the linearized system whose

maximum Lyapunov exponent (3) determines the stability of the

FIG. 7. The regions of synchronous and asynchronous states for N = 20 neurons with chemical second-order interactions. First row: the maximum Lyapunov exponent (3)
of the linearized equation (19). Second row: the synchronization error (E) computed numerically. (a) and (c) 2D representation in the parameter plane (σ1, σ2). (b) and (d) 1D
representation according to σ1 for σ2 = 0, 0.000 5, 0.001, 0.002. It can be observed that involving second-order interactions lead to a lower σ1 needed for synchronization;
however, in contrast to the diffusive second-order interactions, the boundary separating two regions is not linear.
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FIG. 8. The maximum Lyapunov exponent (3) of the linearized equation (19) for neurons with chemical second-order interactions in the parameter plane (σ1, σ2) for N = 50
(a) and N = 100 (b). The range of coupling strengths decreases by increasing the network size.

synchronization is obtained as follows:

η̇x = Jf(Xs)η − 4σ20(xs)k
(2)
i ηx + 4σ2k

(2)
i (vs − xs) 0x(xs)ηx

× [2σ2 (vs − xs) 0x(xs)(N − 2) + σ1] Nηx,

η̇y = Jg(Xs)η, (19)

η̇z = Jh(Xs)η.

Therefore, the synchronization of the network with second-order
chemical connections is stable if 3 [Eq. (19)] < 0.

Figure 7 presents the regions of the synchrony and asyn-
chrony by varying the coupling strengths. It can be observed that
the required electrical coupling strength decreases with considering
the chemical coupling strength. For example, Fig. 7(b) represents
that by setting σ2 = 0.0005, the synchronization is achieved for
σ1 = 0.044. By a slight increase in σ2, more decrease in the electrical

coupling strength is seen, such that for σ2 = 0.002, the neurons
become synchronous at σ1 = 0.0296. In contrast to the diffusive
coupling, the relation between σ1 and σ2 (the border of synchrony
and asynchrony) is not linear due to the existence of the nonlin-
ear term in the obtained linearized system [Eq. (19)]. Note that for
σ2 > 0.002, the synchronous manifold of the neurons changes to
the resting state, and the oscillation death appears. Therefore, in our
simulations, we have set 0 < σ2 < 0.002 to consider the oscillating
region. The numerically calculated synchronization error, which is
illustrated in parts c and d, confirms the results of the linear stability
analysis.

Similar to the diffusive coupling, by increasing the number of
neurons in the network, the value of coupling strengths for syn-
chronization decreases remarkably. However, the relation between
the coupling strengths in the small and larger networks is not as
simple and linear as diffusive coupling. The maximum Lyapunov

FIG. 9. The regions of synchronous and asynchronous states for N = 20 neurons coupled with only pairwise connections through both electrical and chemical synapses.
(a) Maximum Lyapunov exponent of the linearized perturbed system. (b) Numerical synchronization error. By increasing σ2, synchronization occurs in lower σ1; however, the
strength of chemical connections in pairwise coupling is much higher than the second-order ones.
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exponent of Eq. (19) for N = 50 and N = 100 is presented in Fig. 8.
The reduced ranges of coupling strengths for N = 50 and N = 100
are notable in these figures.

Next, we compute the synchronization cost of the chem-
ical second-order interactions and compare with the electrical
ones. The synchronization cost is defined the same as Sec. III A,
C2 = N(N−1)

2
(σ1 + (N − 2)σ2). Since the relation between σ1 and σ2

in the synchronization state is nonlinear, we cannot find C2 ana-
lytically. Thus, the cost can be computed numerically by using the
σ1 and σ2 values obtained from the linear stability analysis. Refer-
ring to Fig. 7, one can find that although by adding the chemical
second-order interactions a lower σ1 is needed, σ1 + (N − 2)σ2 is
more than σ1 = σth. As a result, the second-order chemical interac-
tions lead to the increment of cost. This is in contrast to the case
of electrical second-order coupling. However, second-order chem-
ical connections have lower synchronization costs than first-order
chemical connections. To represent this, the following network with
electrical and chemical pairwise connections is considered:

ẋi = f(xi, yi, zi) + σ1

N
∑

j=1

a(1)
ij (xj − xi) + σ ′

2 (vs − xi)

N
∑

j=1

a(1)
ij 0(xj)),

ẏi = g(xi, yi, zi), (20)

żi = h(xi, yi, zi).

The linear stability analysis of this network has been previously
presented in Ref. 16. Figure 9 represents the synchronous and asyn-
chronous regions in the plane of σ1 and σ2. It can be observed that by
increasing σ2, the network is synchronized for a lower σ1. However,
the σ2 values are much higher than those obtained in the network
with second-order chemical connections. Similarly, the synchro-
nization cost can be computed by C′

1 = N(N−1)
2

(σ1 + σ ′
2) numerically

with using the threshold values found by the linear stability analy-
sis. The comparison between C2 and C′

1 is achieved by comparing
(N − 2)σ2 and σ ′

2 for fixed σ1. Checking the required chemical cou-
pling strength for synchronization in Figs. 7 and 9 represents that
(N − 2)σ2 < σ ′

2 and, thus, C2 < C′
1. Subsequently, the cost of pair-

wise chemical connections is higher than the cost of second-order
chemical connections.

IV. CONCLUSIONS

This paper studied the synchronization of a simplicial complex
of neurons coupled with pairwise and higher-order interactions.
It was assumed that the pairwise connections are diffusive electri-
cal synapses. The synchronization was investigated by performing
the linear stability analysis and also computing the synchronization
error. Two cases were considered for the second-order interactions:
(1) linear diffusive coupling and (2) nonlinear chemical coupling.
In both cases, it was observed that by adding the second-order
interactions even with too weak strength, a lower first-order cou-
pling strength is needed for achieving synchronization. In the linear
diffusive second-order interactions, the relation between two cou-
pling strengths for synchronization was linear, and its equation was
derived. Furthermore, it was shown that by increasing the number
of neurons in the network, the required coupling strengths for syn-
chronization decreased, whereas the decrement in the second-order

coupling strength was notable. A synchronization cost was defined
based on the coupling strength and the connections. It was shown
that in the diffusive second-order interaction, the synchronization
cost is smaller than when only the diffusive links are present. More-
over, the cost was reduced by strengthening the second-order cou-
pling. In contrast, adding the second-order chemical interactions
resulted in the increment of the cost. However, it was represented
that the second-order chemical interactions have a lower cost than
when the chemical interactions are defined on the links. Conse-
quently, it can be concluded that the second-order interactions can
enhance synchronization by decreasing the cost.
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