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ABSTRACT

Studies to date on the role of social exclusion in public cooperation have mainly focused on the peer or pool sanctioning types of excluding
free-riders from the share of common goods. However, the exclusive behaviors are not necessarily performed by individuals or local organiza-
tions but may rather be implemented by a centralized enforcement institution at a global scale. Besides, previous modeling methods of either
peer or pool exclusion often presuppose some particular forms of feedback between the individual or collective efforts and the efficiency of
social exclusion and, therefore, cannot comprehensively evaluate their effects on the evolution of cooperation in the social dilemma situations.
Here, we construct a general model of global exclusion by considering the successful construction of the centralized exclusive institution as an
arbitrary non-decreasing and smooth function of the collective efforts made by the global excluders and then theoretically analyze its potential
impacts in the replicator dynamics of the public goods game. Interestingly, we have shown that, despite the presence of both the first- and
second-order free-riding problems, global exclusion can indeed lead to the emergence or even stabilization of public cooperation without
the support of any other evolutionary mechanism. In addition, we have also observed rich dynamical behaviors, such as the occurrence of a
global or local family of neutrally stable closed orbits revolving around a nonlinear center or the existence of stable heteroclinic cycles between
defectors, cooperators as well as global excluders, which give rise to a classification of up to 21 different phases.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0099697

The overexploitation of natural resources, climate inaction, and
vaccination hesitancy are all different examples of public goods
dilemmas, the dilemma being that what might be best for an indi-
vidual in the short term is at odds with that is best for the public
goods in the long term. The public goods game is long estab-
lished as the theoretical framework to study what might avert the
tragedy of the common and promote cooperation, i.e., acting self-
lessly and at a personal cost for the greater good. Previous studies
have often considered rewarding and punishment, as well as var-
ious forms of reputation and image scoring as possible strategies
and mechanisms to enhance cooperation, all to different levels of
success depending on the details of implementation. In our work,
we consider global exclusion as an extreme form of punishment

that is enforced by a centralized institution, and we perform a
theoretical analysis of its merits by means of replicator dynam-
ics. We show that global exclusion alone, without the support of
other strategies or mechanisms, can promote public cooperation
by means of a rich plethora of fascinating dynamical states that
emerge due to the considered nonlinear evolutionary dynamics.

I. INTRODUCTION

Replicator dynamics is one of the most classical approaches
to study evolutionary games in the infinite and well-mixed
populations.1 From a mathematical point of view, it is described by a
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set of ordinary differential equations, i.e., the replicator equations,2

ẋi = xi

[

E (Pi) − E
(

P̄
)]

, i = 1, 2, . . . , n, (1)

where i = 1, 2, . . . , n labels each of the n (≥ 2) strategies in an
evolutionary game. xi denotes the frequency of the ith strategy
in a population, which satisfies

∑n
i=1 xi = 1. E (Pi) represents the

expected payoff of strategy i, which can be used to express the aver-
age payoff of the population E

(

P̄
)

=
∑n

i=1 xiE (Pi). From Eq. (1),
one can find that the replicator equations assume that the difference
between the expected payoff of one strategy and the mean payoff of
the population determines direction and speed of natural selection,
which reflects the idea that strategies performing relatively better
become more abundant in the population. The replicator dynam-
ics can be conveniently described on the simplex Sn, wherein each
point denotes a population state: Each vertex of Sn corresponds to a
homogeneous state in which only one strategy is present; each face of
Sn represents a heterogeneous state that is defined by one or several
strategies being present; and each point inside Sn refers to a fully het-
erogeneous state where all strategies are present. Interestingly, the
simplex Sn under replicator dynamics governed by Eq. (1) has many
important properties from the perspective of dynamical systems.3,4

For instance, it is invariant in the sense that each trajectory start-
ing from the simplex never leaves the simplex. The corners of the
simplex are all fixed points because the replicator equation depicts
dynamics of pure selection.

One of the most important applications of replicator dynamics
is to explain the evolution of cooperation in both nature and human
society.5 The standard metaphor for studying the evolutionary game
dynamics of cooperation in the context of group interaction is pub-
lic goods game.6 In such an N-player social dilemma game, each
player can simultaneously decide whether or not to contribute to
the common pool: Cooperators make a certain amount of contri-
bution (= 1 without loss of generality), while defectors do not make
any contribution. Then, the sum of contributions is multiplied by an
enhancement factor r ∈ (1, N), which takes the synergistic impacts
of cooperation into account, and the produced public goods are
distributed equally among all group members irrespective of their
initial decisions on contribution. According to the above rules of
the public goods game, the payoffs of defectors and cooperators in a
group can thus be, respectively, given by















PD =
r (N − ND)

N
, (2a)

PC =
rNC

N
− 1, (2b)

where ND and NC = N − ND represent the number of defectors
and cooperators, respectively. Therefore, the expected payoffs for
defectors and cooperators in an infinitely well-mixed population are















E (PD) =
r (N − 1) (1 − xD)

N
, (3a)

E (PC) =
r [(N − 1) xC + 1]

N
− 1, (3b)

where xD and xC = 1 − xD denote, respectively, the relative fre-
quencies of defectors and cooperators in the population. Because
E (PD) − E (PC) = 1 − r/N > 0 always holds for any composition

of the population [see Eq. (3)], all individuals in the populations
will refuse to make any contributions to the common pools even-
tually, which is thus the unique stable fixed point for the replicator
dynamics in an infinite and well-mixed population and is also the
evolutionarily stable strategy in evolutionary game theory.7 This in
turn leads to no production of any public goods and thus no col-
lective benefits distributed to any player. However, had each group
member contributed to the common pool, everyone would have
received a positive net benefit r − 1 > 0. Apparently, the public
goods game captures elegantly the essence of cooperation puzzle in
social dilemma situations. In the past few decades, many mecha-
nisms have been proposed by researchers to explain the evolution
of cooperation in public goods game. For example, Hauert et al.
have shown that the introduction of voluntary participation into the
public goods game is able to induce the emergence of cooperation
by cyclic dominance between cooperators, loners, and defectors.8

Santos et al. have found that population structures organized by
networks can promote the evolution of cooperation in the pub-
lic goods game.9 Wang et al. have revealed that collective risk is
able to provide a way out of the tragedy of the commons.10 Arenas
et al. have demonstrated that the indiscriminate destruction toward
public goods can result in the bursts of cooperation by forming a
rock-paper-scissors dynamics.11

Noteworthy, a large number of studies have also focused on
the impacts of costly punishment and reward in the evolutionary
dynamics of public cooperation or in more realistic scenarios, such
as the issue of “yield to pedestrians” in recent years.12–14 Generally
speaking, without the support of other mechanisms, such as net-
work reciprocity, direct reciprocity, and indirect reciprocity, such
a manner of negative or positive incentives cannot construct long-
term cooperation due to the presence of the second-order free-rider
problems in the evolutionary public goods game. However, as an
important manner of negative incentives, exclusive behaviors have
been found by numerous researchers to be able to overcome both
the first- and second-order free-rider problems in various types
of populations.15–19 Note that previous studies on the resolution
of public cooperation dilemmas by social exclusions concentrate
exclusively in the impacts of peer and pool exclusions, which are exe-
cuted by local excluders, either collectively or individually, within
each group to enforce cooperation in that group of individuals.
Nevertheless, exclusive behaviors may also act at the global scale
through the construction of a centralized enforcement institution,
such as the United Nations—supported by all excluders in the pop-
ulation—which regulates all group interactions in the population.
In this paper, we aim to construct a general model of global exclu-
sion in a stochastic manner and to study its effects on the replicator
dynamics of public goods game. Interestingly, we have found that
global exclusion leads to the emergence or even stabilization of
cooperation and, therefore, can solve the tragedy of the commons
in the public goods game. In addition, we have shown that the intro-
duction of global exclusion also opens the gate to fascinating rich
dynamical behaviors, such as the occurrence of a family of neutrally
stable closed orbits or a stable heteroclinic limiting cycle between
defectors, cooperators, and global excluders.

This paper is organized as follows. In Sec. II, we present
the evolutionary model of public goods game with global exclu-
sion. In Sec. III, we first classify the replicator dynamics and then
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provide some numerical examples to verify the theoretical analysis.
Section IV is devoted to concluding remarks and further discussions.

II. EVOLUTIONARY PUBLIC GOODS GAME WITH

GLOBAL EXCLUSION

Consider an infinitely well-mixed population consisting of xD

defectors, xC cooperators, and xGE = 1 − xD − xC global excluders.
In the evolutionary public goods game with global exclusion, a num-
ber of N individuals are randomly chosen from the population to
constitute a group. The N group members adopt one of the follow-
ing three strategies: defection, cooperation, and global exclusion.
While defectors and cooperators play the same role as they do in
the classical public goods game, global excluders in our model not
only contribute to the joint venture but are also willing to pay a
cost cGE > 0 to construct a centralized exclusive institution for the
purpose of excluding free-riders from sharing the public goods pro-
duced in the groups they belong to. Note that global excluders in
our model are challenged by dual social dilemmas: (1) The first-
order free-riding problem: Cooperative players, who contribute to
the common pool, seem to fare worse than those who do not coop-
erate. (2) The second-order free-riding problem: Global exclusion
seems to be an altruistic act, given that players, who do cooperate
but do not make joint efforts to construct the coercive organization,
are better off than global excluders.

Here, we introduce global exclusion into the evolutionary pub-
lic goods game in a stochastic manner: The centralized exclusive
institution is successfully constructed with a probability p (xGE)

∈ [0, 1] satisfying

p′ (xGE) ≥ 0, (4)

which takes into account the collective efforts of global excluders
in the construction of the exclusive institution and, therefore, is
designed as a general non-decreasing and smooth function of xGE.
Otherwise, the construction of exclusive institution fails. In this case,
the payoffs of defectors, cooperators, and global excluders in the
group, respectively, become











































PD =
{

1 − p (xGE) [1 − ε (−NGE)]
} r (N − ND)

N
, (5a)

PC =
{

1 − p (xGE) [1 − ε (−NGE)]
} r (NC + NGE)

N

+ p (xGE) [1 − ε (−NGE)] r − 1, (5b)

PGE =
[

1 − p (xGE)
] r (NC + NGE)

N
+ p (xGE) r − 1 − cGE, (5c)

where ND, NC, and NGE = N − ND − NC denote the number of
defectors, cooperators, and global excluders, respectively. Here, ε (z)
is the unit step function, which satisfies

ε (z) =

{

0, z < 0,
1, z ≥ 0.

(6)

In our model, we assume that the exclusive institution would exclude
defectors within a particular group from sharing the public goods
only if global excluders do exist in this group [see Eq. (5)]. Therefore,
the second term in the curly bracket of Eq. (5a) represents the prob-
ability of successful exclusion toward defectors, which should satisfy

the following two conditions: (1) The exclusive institution is suc-
ceeded to be constructed. (2) The involved group does exist global
excluders. Equation (5a) thus denotes the expected payoff obtained
by the focal defector if defectors are not successfully excluded. Note
that the focal defector obtains nothing if defectors are successfully
excluded. Similarly, the first terms in Eqs. (5b) and (5c) denote the
expected public goods shared, respectively, by the focal coopera-
tor and the focal global excluder if defectors are not successfully
excluded, whereas the second terms represent the expected pub-
lic goods shared, respectively, by the focal cooperator and the focal
global excluder otherwise.

III. ANALYSIS AND RESULTS

For replicator dynamics in an infinite and well-mixed popula-
tion, the interaction groups are randomly formed in accordance with
binomial sampling. Then, the probability with which a focal indi-
vidual interacts with ND defectors, NC cooperators, and NGE global
excluders among its N − 1 co-players is given by

(N − 1)!

ND!NC!NGE!
xD

NDxC
NCxGE

NGE , (7)

with ND + NC + NGE = N − 1. Thus, the average number of con-
tributors among the focal individual’s co-players is equal to

N−1
∑

i=0

(N − 1)!

(N − 1 − i)!i!
xD

N−1−i(1 − xD)i = (N − 1) (1 − xD) . (8)

Similarly, one can also obtain the average number of defectors, coop-
erators as well as global excluders that the focal individual confronts
are (N − 1) xD, (N − 1) xC, and (N − 1) xGE, respectively. According
to the evolutionary game theoretical model described in Sec. II, the
expected payoffs for defectors, cooperators, and global excluders in
an infinite and well-mixed population can, therefore, be given by



























































































E (PD) = r
[

1 − p (xGE)
] (N − 1) (1 − xD)

N

+ rp (xGE)
(N − 1) (1 − xGE − xD) (1 − xGE)

N−2

N
,

(9a)

E (PC) = r
[

1 − p (xGE)
] 1 + (N − 1) (1 − xD)

N

+ rp (xGE)

[

1 −
(N − 1) xD(1 − xGE)

N−2

N

]

− 1, (9b)

E (PGE) = r
[

1 − p (xGE)
] 1 + (N − 1) (1 − xD)

N

+ rp (xGE) − 1 − cGE, (9c)

respectively. The replicator equations for the public goods game
with global exclusion can then be written as















ẋD = xD

[

E (PD) − E
(

P̄
)]

, (10a)

ẋC = xC

[

E (PC) − E
(

P̄
)]

, (10b)

ẋGE = xGE

[

E (PGE) − E
(

P̄
)]

, (10c)
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where E
(

P̄
)

= xDE (PD) + xCE (PC) + xGEE (PGE) denotes the aver-
age population payoff.

A. Classification of dynamics

The replicator dynamics of the three strategies, i.e., defection,
cooperation, and global exclusion, take place in the state space
S3 = {(xD, xC, xGE) : xD, xC, xGE ≥ 0, xD + xC + xGE = 1}. The three
homogeneous states, i.e., the pure D state (1, 0, 0), the pure C state
(0, 1, 0), and the pure GE state (0, 0, 1), corresponding to the three
vertices of the simplex S3, are trivial fixed points for the evolu-
tionary game dynamics described by Eq. (8). Of the three homo-
geneous states, the pure D state is stable unless cGE ∈ [0, r − 1) and

p (xGE = 0) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, in which case it is a saddle point. Note

that the stability of equilibriums in the evolutionary system can
often be analyzed by linearizing about the fixed points. However,
the linear stability analysis fails when the Jacobian matrix, eval-
uated at an equilibrium point, may have some eigenvalues with
zero real parts and no eigenvalues with positive real parts, e.g., the
two eigenvalues of the Jacobian matrix at the equilibrium (1, 0, 0)

when cGE ∈ [0, r − 1) and p (xGE = 0) =
N(cGE+1)−r

(N−1)r
: 0 and r

N
− 1

< 0, in which case one requires to use the methods of advanced
stability analysis (for example, see the advanced stability analy-
sis of the homogeneous D state in the Appendix).20 If cGE > 0,
the pure C state is a saddle point; otherwise, it is unstable. The
pure GE state is unstable except when cGE = 0 and p (xGE = 1)

∈
(

N−r
(N−1)r

, 1
]

, in which case, it is stable as well as when cGE

∈ (0, r − 1) and p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, in which case, it is a

saddle point. There are no interior fixed points on the edge D − C of
the simplex S3 because

E (PD) − E (PC) = 1 −
r

N
> 0 (11)

always holds for xD ∈ (0, 1), xC ∈ (0, 1), and xGE = 0. This also
indicates that the evolutionary trajectory on the edge D − C is
unidirectional from C to D. On the edge D − GE, there exists a
unique interior fixed point U at

(

1 − xGE
−, 0, xGE

−
)

for xGE
− ∈ (0, 1)

satisfying

E (PD) − E (PGE) = 1 + cGE −
r (N − 1)

N
p
(

xGE
−
)

−
r

N
= 0 (12)

as long as cGE ∈ [0, r − 1), p (xGE = 0) ∈
[

0, N(cGE+1)−r

(N−1)r

)

, p (xGE = 1)

∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, and p (xGE) 6= p
(

xGE
−
)

for any xGE belonging to

an arbitrarily small neighborhood of xGE
−. The unique interior

fixed point U on the edge D − GE is unstable if it does exist.

In addition, if p (xGE) = p
(

xGE
−
)

=
N(cGE+1)−r

(N−1)r
with cGE ∈ [0, r − 1)

for any xGE belonging to the neighborhood of xGE
− is satisfied

for an S − T segment, where S and T, respectively, locate at
(

1 − xGE
− + 11, 0, xGE

− − 11

)

and
(

1 − xGE
− − 12, 0, xGE

− + 12

)

with 11 ∈
(

0, xGE
−
)

and 12 ∈
(

0, 1 − xGE
−
)

, each point on the seg-
ment S − T is a fixed point, in which case the fixed points satisfying

xGE ∈

(

0, 1 −
[

NcGE
N(cGE+1)−r

]
1

N−1

)

are stable, while those satisfying

xGE ∈

[

1 −
[

NcGE
N(cGE+1)−r

]
1

N−1
, 1

)

are unstable. Otherwise, there are

no interior fixed points on the edge D − GE of the simplex S3.
Because

E (PC) − E (PGE) = cGE ≥ 0 (13)

for xD = 0, xC ∈ (0, 1), and xGE ∈ (0, 1), the following results on
the existence of fixed points on the edge C − GE of the simplex
S3 can be obtained: (1) All interior points on the edge C − GE are
fixed points only if cGE = 0. (2) No fixed point exists on the edge
C − GE if cGE > 0. When cGE = 0, the stability of the interior fixed
points

(

0, 1 − xGE
+, xGE

+
)

on the edge C − GE is determined by the
value of p (xGE = 1): (1) All the interior fixed points are unstable if

p (xGE = 1) ∈
[

0, N−r
(N−1)r

]

. (2) If, however, p (xGE = 1) ∈
(

N−r
(N−1)r

, 1
]

,

there exists a critical fixed point V satisfying

p
(

xGE
+
)

=
N − r

(N − 1) r
[

1 − (1 − xGE
+)N−1

] , (14)

which divides the edge C − GE into two segments with stable fixed
points on the segment V − GE and unstable fixed points on the
segment C − V. Note that the three trivial fixed points on the ver-
tices of the simplex S3 are all saddle points when cGE ∈ (0, r − 1),

p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, and p (xGE = 0) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

. In

this case, defectors are wiped out by global excluders, cooperators
are dominated by defectors, and global excluders are in turn invaded
by cooperators, which leads to the formation of a heteroclinic cycle
on the boundary of the simplex S3. For the purpose of determin-
ing the stability of the heteroclinic cycle, one should consider the
eigenvalues of the Jacobian matrix of the three trivial fixed points,



























































λ1|(1,0,0) = −1 +
r

N
< 0, λ2|(1,0,0)

= −cGE − 1 +
r

N
+

N − 1

N
rp (xGE = 0) > 0, (15a)

λ1|(0,1,0) = −cGE < 0, λ2|(0,1,0) = 1 −
r

N
> 0, (15b)

λ1|(0,0,1) = 1 −
r

N
+ cGE −

N − 1

N
rp (xGE = 1) < 0, λ2|(0,0,1)

= cGE > 0. (15c)

Let λ|(1,0,0) = −
λ1|(1,0,0)

λ2|(1,0,0)
, λ|(0,1,0) = −

λ1|(0,1,0)

λ2|(0,1,0)
, and λ|(0,0,1)

= −
λ1|(0,0,1)

λ2|(0,0,1)
, we thus have

λ|(1,0,0) λ|(0,1,0) λ|(0,0,1) =
r
[

1 + (N − 1) p (xGE = 1)
]

− N (cGE + 1)

r
[

1 + (N − 1) p (xGE = 0)
]

− N (cGE + 1)
.

(16)

From Eq. (16), one can find that the heteroclinic cycle is asymptot-
ically stable when p (xGE = 0) < p (xGE = 1) but is neutrally stable
when p′ (xGE) = 0 for any xGE ∈ [0, 1].
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Now, let us turn to analyze the replicator dynamics in the
interior of the simplex S3. Letting E (PD) − E (PC) = 0 leads to

p (xGE)
[

1 − (1 − xGE)
N−1

]

=
N − r

(N − 1) r
. (17)

As the left-hand and right-hand side of Eq. (17) are, respectively,
increased with and independent on xGE, there exists one fixed point
at most in the interior of the simplex S3. By solving Eq. (17), we have

xGE
∗ = 1 −

[

1 −
N − r

rp (xGE
∗) (N − 1)

]
1

N−1

. (18)

Here, one can find that the line determined by Eq. (18) and the
edge C − GE of the simplex S3 intersect at the critical fixed point V,
the location of which satisfies Eq. (14). Similarly, by solving E (PC)

− E (PGE) = 0 as well as applying Eq. (18), one can get

xD
∗ =

NcGE

[

1 − N−r
rp(xGE

∗)(N−1)

]
1

N−1

rp (xGE
∗) (N − 1) − N + r

. (19)

Substituting Eqs. (18) and (19) into xC
∗ = 1 − xD

∗ − xGE
∗ yields

xC
∗ =

[

1 −
N − r

rp (xGE
∗) (N − 1)

]
1

N−1

×

[

1 −
NcGE

rp (xGE
∗) (N − 1) − N + r

]

. (20)

Equation (20) indicates that xC
∗ = 0 requires

p (xGE
∗) =

N (cGE + 1) − r

(N − 1) r
, (21)

which is equivalent to Eq. (12). This means that the line given
by Eq. (18) connects to the edge D − GE of the simplex S3 at
the fixed point U, the location of which satisfies Eq. (12). From
Eqs. (18)–(20), one can derive the critical condition that ensures the
existence of an interior fixed point (xD

∗, xC
∗, xGE

∗) inside the sim-

plex S3: p (xGE
∗) ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

and cGE ∈ (0, r − 1). The interior

fixed point Q at (xD
∗, xC

∗, xGE
∗) is unstable unless p′ (xGE

∗) = 0, in
which case it is neutrally stable. If p′ (xGE) = 0 is further satisfied for
xGE ∈ [xGE

∗ − 13, xGE
∗ + 14] with 13 ∈ (0, xGE

∗) and 14 ∈ (0, 1
− xGE

∗), the interior fixed point Q becomes a neutrally stable
center. In order to show the existence of such an nonlinear
center, let us introduce a new variable x =

xC
xC+xD

, which repre-

sents the fraction of cooperators among members who do not
contribute to the construction of the exclusive institution. This
yields

ẋ = −x (1 − x) [E (PD) − E (PC)] . (22)

Then, the master equations, i.e., Eq. (10), that describe the repli-
cator dynamics of public goods game with global exclusion can be
rewritten as



















ẋ = −x (1 − x)

{

1 −
r

N
− rp (xGE)

[

1 −
(N − 1) (1 − xGE)

N−1 + 1

N

]}

, (23a)

ẋGE = −xGE (1 − xGE)

{

cGE + (1 − x)

[

1 −
r

N
− rp (xGE)

(

1 −
1

N

)]}

. (23b)

Dividing the right-hand side of Eq. (23) by x (1 − x) xGE (1 − xGE), which is positive for any (xGE, x) on the unit square (0, 1)2, leads to






















ẋ =
−1 + r

N
+ rp (xGE

∗)

[

1 −
(N−1)(1−xGE)N−1+1

N

]

xGE (1 − xGE)
= s (xGE) , (24a)

ẋGE =
−cGE − (1 − x)

[

1 − r
N

− rp (xGE
∗)

(

1 − 1
N

)]

x (1 − x)
= −w (x) , (24b)

where p (xGE) is replaced by a constant p (xGE
∗) for xGE ∈ [xGE

∗ − 13, xGE
∗ + 14]. Such a transformation corresponds to a change in veloc-

ity and does not affect the orbits. Introducing H (xGE, x) = S (xGE) + W (x), where S (xGE) and W (x) are primitives of s (xGE) and w (x),
respectively,



















S (xGE) =

[

−1 +
r

N
+

(N − 1) r

N
p (xGE

∗)

]

ln
xGE

1 − xGE

−
(N − 1) r

N
p (xGE

∗)

∫

(1 − xGE)
N−2

xGE

dxGE, (25a)

W (x) =

[

cGE + 1 −
r

N
−

(N − 1) r

N
p (xGE

∗)

]

ln x − cGE ln (1 − x) , (25b)

where
∫

(1 − xGE)
N−2

xGE

dxGE =
∑N−2

i=1

(

N − 2
i

)

(−xGE)
i

i
+ lnxGE. (26)
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Then, we obtain the Hamiltonian system,















ẋ =
∂H

∂xGE

, (27a)

ẋGE = −
∂H

∂x
. (27b)

Due to the fact that the system is conservative and the Hamilto-

nian H attains a strict maximum at

(

1 −
(

1 − N−r
rp(xGE

∗)(N−1)

)
1

N−1
, 1

−
NcGE

rp(xGE
∗)(N−1)−N+r

)

, the interior fixed point (xD
∗, xC

∗, xGE
∗) is a

center; i.e., it is neutrally stable and is surrounded by a family of
closed orbits in its local neighborhood. Beyond this region, there
exist unstable spirals attracted by the stable heteroclinic limit cycle

if p (xGE = 1) > p (xGE = 0) and p (xGE = 0) ∈
[

N(cGE+1)−r

(N−1)r
, 1

]

. If,

however, p (xGE = 1) > p (xGE = 0) and p (xGE = 0) ∈
[

0, N(cGE+1)−r

(N−1)r

)

,

the evolutionary trajectories move toward the stable fixed point
D at (1, 0, 0). Otherwise, i.e., p′ (xGE) = 0 for any xGE ∈ [0, 1] (or

p (xGE = 0) = p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

), Eq. (27) shows that

G (xGE) → −∞ for xGE → 0, 1 and L (x) → −∞ for x → 0, 1,
which results in H → −∞ uniformly near the boundary of [0, 1]2.
This means that the region of closed orbits is extended from the local
neighborhood of the nonlinear center to the whole simplex S3 in this
case.

According to the detailed analysis of the replicator dynam-
ics presented above, one can obtain the following 21 classes of
deterministic behavior with different dynamical properties:

Phase i: cGE = 0 and p (xGE = 1) ∈
[

0, N−r
(N−1)r

)

; cGE = 0 and

p (xGE = 1) = N−r
(N−1)r

> p (xGE) for any xGE ∈ [0, 1). There exist an

infinite number of unstable fixed points on the edge C − GE and a
unique stable fixed point on the vertex D of the simplex S3.

Phase ii: cGE = 0 and p (xGE) = N−r
(N−1)r

for xGE ∈
[

xGE
− − 11, 1

]

with 11 ∈
(

0, xGE
−
)

. In this phase, the dynamical behaviors are the
same as those in Phase i except that there exists an infinite number
of interior stable fixed points on the segment S − GE of the edge
D − GE.

Phase iii: cGE = 0, p (xGE = 1) ∈
(

N−r
(N−1)r

, 1
]

, p (xGE = 0)

∈
[

0, N−r
(N−1)r

)

and p (xGE) 6= p
(

xGE
−
)

= N−r
(N−1)r

satisfied in an arbi-

trarily small neighborhood of xGE
−. The vertex D of the simplex S3

is a stable fixed point, whereas the pure C and GE states are unsta-
ble and stable, respectively. On the edge C − GE, all points on the
segment C − V and V − GE are unstable and stable fixed points,
respectively. In addition, there exists an unstable fixed point U on
the edge D − GE.

Phase iv: cGE = 0, p (xGE = 1) ∈
(

N−r
(N−1)r

, 1
]

and p (xGE)

= N−r
(N−1)r

for xGE ∈
[

xGE
− − 11, xGE

− + 12

]

with 11 ∈
(

0, xGE
−
)

and

12 ∈
(

0, 1 − xGE
−
)

. Here, the dynamical behaviors are the same as
those in Phase ii except that there exists an infinite number of stable
fixed points on the segment S − T of the edge D − GE.

Phase v: cGE = 0, p (xGE = 1) ∈
(

N−r
(N−1)r

, 1
]

and p (xGE) = N−r
(N−1)r

for xGE ∈
[

0, xGE
− + 12

]

with 12 ∈
(

0, 1 − xGE
−
)

. In this case, the

dynamical behaviors are the same as those in Phase iv except that the
infinite stable fixed points move from the segment S − T to D − T
on the edge D − GE.

Phase vi: cGE = 0 and p (xGE = 0) ∈
(

N−r
(N−1)r

, 1
]

; cGE = 0,

p
(

xGE = xGE
− = 0

)

= N−r
(N−1)r

and p (xGE) 6= p
(

xGE
−
)

= N−r
(N−1)r

satis-

fied in an arbitrarily small neighborhood of xGE
−. Here, the dynam-

ical behaviors are the same as those in Phase iii except that both
the pure D and GE states become saddle points and that the unique
interior unstable fixed point U disappears whereas the evolutionary
trajectory becomes unidirectional from D to GE on the edge D − GE.

Phase vii: cGE ∈ (0, r − 1) and p (xGE = 1) ∈
[

0, N(cGE+1)−r

(N−1)r

)

;

cGE ∈ (0, r − 1) and p (xGE = 1) =
N(cGE+1)−r

(N−1)r
> p (xGE) for any

xGE ∈ [0, 1); cGE ∈ [r − 1, +∞). In this phase, the dynamical behav-
iors are the same as those in Phase i except that the pure state C
becomes a saddle point and that the infinite number of unstable
interior fixed points on the edge C − GE disappear, whereas the
evolutionary trajectory becomes unidirectional from GE to C.

Phase viii: cGE ∈ (0, r − 1) and p (xGE) =
N(cGE+1)−r

(N−1)r
for xGE

∈
[

xGE
− − 11, 1

]

with 11 ∈
(

0, xGE
−
)

. In this case, the dynami-
cal behaviors are the same as those in Phase vii except that there
exists an infinite number of fixed points on the segment S − GE
of the edge D − GE, in which case the fixed points satisfying xGE

∈

(

0, 1 −
[

NcGE
N(cGE+1)−r

]
1

N−1

)

are stable, while those satisfying xGE

∈

[

1 −
[

NcGE
N(cGE+1)−r

]
1

N−1
, 1

)

are unstable.

Phase ix: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p (xGE

= 0) ∈
[

0, N(cGE+1)−r

(N−1)r

)

, p (xGE) 6= p
(

xGE
−
)

=
N(cGE+1)−r

(N−1)r
satisfied in

an arbitrarily small neighborhood of xGE
−, and p′ (xGE

∗) 6= 0. The
vertex D of the simplex S3 is a stable fixed point, whereas both the
pure C and GE state are saddle points. The evolutionary trajectory is
unidirectional from GE to C on the edge C − GE of the simplex S3.
Moreover, there exists a unique unstable fixed point U on the edge
D − GE. Besides, there also emerges a unique unstable fixed point Q
in the interior area of the simplex S3.

Phase x: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p (xGE

= 0) ∈
[

0, N(cGE+1)−r

(N−1)r

)

, p (xGE) 6= p
(

xGE
−
)

=
N(cGE+1)−r

(N−1)r
satisfied in

an arbitrarily small neighborhood of xGE
−, and p′ (xGE

∗) = 0. Here,
the dynamical behaviors are the same as those in Phase ix except that
the unique interior fixed point Q becomes neutrally stable.

Phase xi: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p (xGE

= 0) ∈
[

0, N(cGE+1)−r

(N−1)r

)

, p (xGE) 6= p
(

xGE
−
)

=
N(cGE+1)−r

(N−1)r
satisfied in

an arbitrarily small neighborhood of xGE
−, and p′ (xGE) = 0 sat-

isfied for xGE ∈ [xGE
∗ − 13, xGE

∗ + 14] with 13 ∈ (0, xGE
∗) and

14 ∈ (0, 1 − xGE
∗). In this phase, the dynamical behaviors are the

same as those in Phase ix except that the unique interior fixed point
Q becomes a neutrally stable center; i.e., it is neutrally stable and is
surrounded by a family of closed orbits in its local neighborhood.

Phase xii: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p (xGE)

=
N(cGE+1)−r

(N−1)r
for xGE ∈

[

xGE
− − 11, xGE

− + 12

]

with 11 ∈
(

0, xGE
−
)
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and 12 ∈
(

0, 1 − xGE
−
)

, and p′ (xGE
∗) 6= 0. In this case, the dynam-

ical behaviors are the same as those in Phase ix except that there
exists an infinite number of interior fixed points on the segment
S − T of the edge D − GE, in which case the fixed points satisfy-

ing xGE ∈

(

0, 1 −
[

NcGE
N(cGE+1)−r

]
1

N−1

)

are stable, while those satisfying

xGE ∈

[

1 −
[

NcGE
N(cGE+1)−r

]
1

N−1
, 1

)

are unstable.

Phase xiii: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p (xGE)

=
N(cGE+1)−r

(N−1)r
for xGE ∈

[

xGE
− − 11, xGE

− + 12

]

with 11 ∈
(

0, xGE
−
)

and 12 ∈
(

0, 1 − xGE
−
)

, and p′ (xGE
∗) = 0. Here, the dynamical

behaviors are the same as those in Phase xii except that the unique
interior fixed point Q becomes neutrally stable.

Phase xiv: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p (xGE)

=
N(cGE+1)−r

(N−1)r
for xGE ∈

[

xGE
− − 11, xGE

− + 12

]

with 11 ∈
(

0, xGE
−
)

and 12 ∈
(

0, 1 − xGE
−
)

, and p′ (xGE) = 0 satisfied for xGE

∈ [xGE
∗ −13, xGE

∗ + 14] with 13 ∈ (0, xGE
∗) and 14 ∈ (0, 1 − xGE

∗).
In this phase, the dynamical behaviors are the same as those in Phase
xii except that the unique interior fixed point Q becomes a neutrally
stable center; i.e., it is neutrally stable and is surrounded by a family
of closed orbits in its local neighborhood.

Phase xv: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p (xGE)

=
N(cGE+1)−r

(N−1)r
for xGE ∈

[

0, xGE
− + 12

]

with 12 ∈
(

0, 1 − xGE
−
)

, and

p′ (xGE
∗) 6= 0. In this case, the dynamical behaviors are the same as

those in Phase xii except that the infinite fixed points move from the
segment S − T to D − T on the edge D − GE.

Phase xvi: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p (xGE)

=
N(cGE+1)−r

(N−1)r
for xGE ∈

[

0, xGE
− + 12

]

with 12 ∈
(

0, 1 − xGE
−
)

, and

p′ (xGE
∗) = 0. Here, the dynamical behaviors are the same as those

in Phase xv except that the unique interior fixed point Q becomes
neutrally stable.

Phase xvii: cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

,

p (xGE) =
N(cGE+1)−r

(N−1)r
for xGE ∈

[

0, xGE
− + 12

]

with 12 ∈
(

0, 1

− xGE
−
)

, and p′ (xGE) = 0 satisfied for xGE ∈ [xGE
∗ − 13, xGE

∗ + 14]
with 13 ∈ (0, xGE

∗) and 14 ∈ (0, 1 − xGE
∗). In this phase, the

dynamical behaviors are the same as those in Phase xv except that
the unique interior fixed point Q becomes a neutrally stable cen-
ter; i.e., it is neutrally stable and is surrounded by a family of closed
orbits in its local neighborhood.

Phase xviii: cGE ∈ (0, r − 1), p (xGE = 0) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

,

p (xGE = 1) > p (xGE = 0) and p′ (xGE
∗) 6= 0; cGE ∈ (0, r − 1),

p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p
(

xGE = xGE
− = 0

)

=
N(cGE+1)−r

(N−1)r
and

p (xGE) 6= p
(

xGE
−
)

satisfied in an arbitrarily small neighborhood of
xGE

−, and p′ (xGE
∗) 6= 0. The vertices D, C, and GE of the simplex

S3 are saddle points. Furthermore, there exists a stable heteroclinic
cycle GE − C − D around the boundary of the simplex S3. Addition-
ally, there also exists a unique unstable fixed point Q in the interior
area of the simplex S3.

Phase xix: cGE ∈ (0, r − 1), p (xGE = 0) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

,

p (xGE = 1) > p (xGE = 0) and p′ (xGE
∗) = 0; cGE ∈ (0, r − 1),

p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p
(

xGE = xGE
− = 0

)

=
N(cGE+1)−r

(N−1)r
and

p (xGE) 6= p
(

xGE
−
)

satisfied in an arbitrarily small neighborhood of
xGE

−, and p′ (xGE
∗) = 0. Here, the dynamical behaviors are the same

as those in Phase xviii except that the unique interior fixed point Q
becomes neutrally stable.

Phase xx: cGE ∈ (0, r − 1), p (xGE = 0) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

,

p (xGE = 1) > p (xGE = 0), and p′ (xGE) = 0 satisfied for xGE

∈ [xGE
∗−13, xGE

∗+14] with 13∈ (0, xGE
∗) and 14∈ (0, 1−xGE

∗);

cGE ∈ (0, r − 1), p (xGE = 1) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, p
(

xGE = xGE
− = 0

)

=
N(cGE+1)−r

(N−1)r
and p (xGE) 6= p

(

xGE
−
)

satisfied in an arbitrarily

small neighborhood of xGE
−, and p′ (xGE) = 0 satisfied for xGE

∈ [xGE
∗−13, xGE

∗+14] with 13∈ (0, xGE
∗) and 14∈ (0, 1−xGE

∗).
In this phase, the dynamical behaviors are the same as those in Phase
xviii except that the unique interior fixed point Q becomes a neu-
trally stable center; i.e., it is neutrally stable and is surrounded by a
family of closed orbits in its local neighborhood.

Phase xxi: cGE ∈ (0, r − 1), p (xGE = 0) ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, and

p (xGE = 1) = p (xGE = 0). In this case, the dynamical behaviors are
the same as those in Phase xx except that the heteroclinic cycle
GE − C − D becomes neutral and that the region of closed orbits
is extended from the local neighborhood of the nonlinear center to
the whole simplex S3.

B. Numerical examples

In order to verify the results derived by theoretical analysis
above, we provide three classes of numerical examples by consid-
ering the following normalized logistic function of p (xGE):

p (xGE) = pmin +
l (xGE) − l (0)

l (1) − l (0)

(

pmax − pmin

)

, (28)

where pmin and pmax, respectively, set the lower and upper bounds
that p (xGE) can achieve for xGE ∈ [0, 1] and, therefore, should satisfy
0 ≤ pmin ≤ pmax ≤ 1. l (xGE) denotes the logistic function,

l (xGE) =
1

1 + exp
[

s
(

h − xGE

)] , (29)

where h ∈ [0, 1] defines the position of the inflection point: h → 0
leads to the decrease of p′ (xGE) with xGE, while h → 1 the increase of
p′ (xGE) with xGE (see Fig. 1); s > 0 governs the steepness of the func-
tion at the inflection point: s → 0 results in the linear dependence
of p (xGE) on xGE, whereas s → +∞ the step function of p (xGE) with
xGE, whose transition point is at xGE = h (see Fig. 1). Depending on
the parameters pmin, pmax, h, and s determining the shape of p (xGE) in
Eq. (28), one can classify the numerical examples into the following
three typical categories:

Class i. Consider the special case that the construction of the
centralized institution is independent on the collective efforts of
global excluders,21 i.e., p (xGE) = p, which can be obtained by setting
pmin = pmax = p ∈ [0, 1] in Eq. (28).

Class ii. Consider the limiting case that the construction of the
centralized institution replies discounted or synergistically on the
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FIG. 1. Construction probability of the centralized exclusive institution p (xGE),
defined by a normalized logistic function [see Eq. (28)] at three different positions
of the inflection points h: h = 0 (upper left part of top panel), h = 1 (lower right
part of top panel), and h = 0.5 (bottom panel), in dependence on the frequency
of global excluders xGE . For the different classes of function p (xGE) resulted from
the three values of h, the increment of steepness s leads to the increasing opacity
of the curves. Parameter settings: pmin = 0 and pmax = 1.

joint efforts provided by the global excluders,22 which can be real-
ized by letting h = 0 and pmin 6= pmax, or h = 1 and pmin 6= pmax in
Eq. (28), respectively (see the upper part of Fig. 1).

Class iii. Consider the case that the construction of the cen-
tralized institution is sigmoidally dependent on the group efforts
by the global excluders,23 which requires to satisfy h ∈ (0, 1) and
pmin 6= pmax in Eq. (28) (see the bottom part of Fig. 1). Particularly, if
pmin = 0, pmax = 1 and s → +∞ is further satisfied, the construc-
tion of the centralized institution replies deterministically on the
threshold parameter h:24 If xGE < h, the construction of the central-
ized institution fails; If xGE > h, the construction of the centralized
institution succeeds.

For p (xGE) belonging to Class i, the theoretical analysis pre-
dicts that the dynamical behaviors of the evolutionary system
may be in Phase i or Phase vii if cGE ∈ [0, r − 1) and p (xGE) = p

∈
[

0, N(cGE+1)−r

(N−1)r

)

or cGE ∈ [r − 1, +∞), or in Phase ii if cGE = 0

and p (xGE) = p = N−r
(N−1)r

, or in Phase vi if cGE = 0 and p (xGE)

= p ∈
(

N−r
(N−1)r

, 1
]

, or in Phase viii if cGE ∈ (0, r − 1) and

p (xGE) = p =
N(cGE+1)−r

(N−1)r
, or in Phase xxi if cGE ∈ (0, r − 1) and

p (xGE) = p ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

. The full cGE − p phase diagram

obtained by numerical simulations confirms our theoretical predic-
tions, as shown in the top left panel of Fig. 2. Particularly, if the
global exclusion is costless, i.e., cGE = 0, and the construction prob-
ability of the centralized exclusive institution is large enough, i.e.,

p ∈
(

N−r
(N−1)r

, 1
]

, the pure state of global excluders as well as a mix-

ture of cooperators and global excluders along the V − GE segment
on the C − GE edge of the simplex S3 are stable, but the homoge-
neous state of defectors, that of cooperators as well as a mixture of
cooperators and global excluders along the C − V segment on the
C − GE edge of the simplex S3 are all unstable, which means that the
first-order free-riding problem is solved, but the second-order free-
riding problem may still remain in this case (see the top right panel
of Fig. 2). A moderate increment of the cost of global exclusion, i.e.,

cGE ∈
(

0,
p(N−1)+1

N
r − 1

)

, leads to the destabilization of the pure state

of global excluders, which in turn results in the formation of a global
family of neutral stable cycles moving anti-clockwise around a non-
linear center (see the bottom left panel of Fig. 2). This means that
the emergence of cooperation can be realized in this case. A fur-

ther increment of the cost of global exclusion to cGE =
p(N−1)+1

N
r − 1

results in the transition of the evolutionary system from Phase xxi
to Phase viii, wherein the fixed points along the D − U segment and
the U − GE segment on the D − GE edge of the simplex S3 are stable
and unstable, respectively (see the bottom right panel of Fig. 2). In
other cases, the homogeneous state of defectors is the unique stable
fixed point.

For p (xGE) belonging to Class ii or Class iii satisfying
s 6= +∞, we have h = 0 and pmin 6= pmax, or h = 1 and pmin 6= pmax,
or h ∈ (0, 1) and pmin 6= pmax, which leaves s, pmin, and pmax as the
three remaining variables in Eq. (28). From a mathematical view-
point, the qualitative difference among these three cases lies in the
high order derivative of Eq. (28) with xGE. For instance, h = 0 leads
to the second-order derivative p′′ (xGE) < 0; h = 1 results in p′′ (xGE)

> 0; if h ∈ (0, 1), one can obtain p′′ (xGE) > 0 for xGE ∈ [0, x̄GE) and
p′′ (xGE) < 0 for xGE ∈ (x̄GE, 1], where x̄GE = h denotes the inflection
point satisfying p′′ (x̄GE) = 0. However, according to the theoretical
analysis of the replicator dynamics in Sec. III A, the higher order
derivatives of Eq. (28) with xGE, e.g., the second-order derivative
p′′ (xGE), the position of the inflection point, i.e., h, as well as the
steepness of the function at the inflection point, i.e., s ( 6= +∞), do
not qualitatively affect the results of such deterministic dynamics,
which means that one can consider all three cases at the same time.
In all these cases, one can find that p′ (x̄GE) > 0 is always satisfied,
which leads to the theoretical predictions that the evolutionary sys-
tem may exhibit the deterministic behaviors in Phase i if cGE = 0 and

pmax ∈
[

0, N−r
(N−1)r

]

, or in Phase iii if cGE = 0, pmax ∈
(

N−r
(N−1)r

, 1
]

and
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(a) (b)

(c) (d)

FIG. 2. Dynamics of public goods game with global exclusion for the construction probability of the centralized exclusive institution p (xGE) belonging to Class i. Top left panel:
Full cGE − p phase diagram as obtained by numerical simulations (filled symbols), which is in good agreement with that obtained by theoretical analysis (solid lines). The

green filled triangles corresponding to Phase viii coincide with the green solid line predicted by the equation p =
N(cGE+1)−r

(N−1)r
. The yellow hollow inverted triangles, which fits

perfectly with the value predicted by the equation cGE = r − 1 (see the vertical dotted line), denotes the critical cost of global exclusion cGE beyond which the homogeneous
state of defectors is the unique stable fixed point irrespective of the value of p. The remaining panels: Phase portraits for cGE = 0 (top right panel), cGE = 0.1 (bottom left
panel), and cGE = 0.2 (bottom right panel) at p = 0.5 corresponding respectively to Phase vi, Phase xxi, and Phase viii in the simplex S3. The arrows show the directions
of natural selection, and white (black) circles denote unstable (stable) fixed points. The gray circle represents an nonlinear center [i.e., the neutrally stable interior fixed point
Q locating at (xD

∗, xC
∗, xGE

∗) ≈ (0.3535, 0.3535, 0.293) in the bottom left panel], while white circles with thicker edges saddle points. The half-black and half-white circle V
(U) in the top right panel (bottom right panel), locating at

(

xD
+, xC

+, xGE
+
)

≈ (0, 0.7071, 0.2929) (
(

xD
−, xC

−, xGE
−
)

≈ (0.7071, 0, 0.2929)), refers to a critical fixed point,
which divides the edge C − GE (D − GE) into two segments with stable fixed points on the segment V − GE (D − U) and unstable fixed points on the segment C − V
(U − GE). Blue corresponds to fast dynamics and red to slow dynamics close to the fixed points of the system. The graphical outputs of the top right, bottom left, and bottom
right panels are based on the Dynamo software.25 Parameter settings: N = 5 and r = 2. For this special case, the emergence or even stabilization of public cooperation can
be realized as long as the constant construction probability of the centralized exclusive institution and the cost of global exclusion are sufficiently large and low, respectively.

pmin ∈
[

0, N−r
(N−1)r

)

, or in Phase vi if cGE = 0 and pmin ∈
[

N−r
(N−1)r

, 1
]

,

or in Phase vii if cGE ∈ (0, r − 1) and pmax ∈
[

0, N(cGE+1)−r

(N−1)r

]

, or if

cGE ∈ [r − 1, +∞), or in Phase ix if cGE ∈ (0, r − 1),

pmax ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

and pmin ∈
[

0, N(cGE+1)−r

(N−1)r

)

, or in Phase xviii

if cGE ∈ (0, r − 1) and pmin ∈
[

N(cGE+1)−r

(N−1)r
, 1

]

. The full pmax − pmin

phase diagrams obtained by numerical simulations confirm our the-
oretical predictions, as shown in Fig. 3. Interestingly, we do find the
existence of unstable spirals approaching the heteroclinic limiting

cycles on the boundary of the simplex S3 in Phase xviii, as shown by
a numerical example given in Fig. 4.

For the limiting case s → +∞ in Class ii or Class iii, p (xGE)

becomes a step function,

p (xGE) =







pmin, xGE ∈
[

0, h
)

,
(

pmin + pmax

)

/2, xGE = h,
pmax, xGE ∈

(

h, 1
]

,
(30)

where h denotes the position of the step transition, and pmin

and pmax, satisfying 0 ≤ pmin < pmax ≤ 1, represent the constant
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(a)

(b)

(c)

FIG. 3. Full pmax − pmin phase diagrams of cGE = 0 (top panel), cGE = 0.2
∈ (0, r − 1) (middle panel), and cGE = 1.5 ∈ [r − 1,+∞) (bottom panel) for
p (xGE) belonging to Class ii or Class iii satisfying s 6= +∞ and pmax > pmin,
as obtained by numerical simulations (filled symbols) as well as theoretical anal-
ysis (solid lines). Note that the phase separation here is meaningful only if the
parameter region locates below the dashed line given by the equation pmax = pmin.
The blue filled squares and red filled circles, which coincide perfectly with the
blue vertical and red horizontal lines, respectively, given by the equations pmax

=
N(cGE+1)−r

(N−1)r
and pmin =

N(cGE+1)−r

(N−1)r
, denote phase boundaries between differ-

ent phases in both top and middle panels. Parameter settings: N = 5 and r = 2.
For this general case, the public cooperation can be maintained by either stabiliz-
ing itself or self-organizing the infinitely well-mixed population into the dynamics
of global cyclic dominance between defectors, cooperators, and global excluders.

(a)

(b)

FIG. 4. A numerical example of the construction probability for the centralized
exclusive institution p (xGE) when pmax = 0.8, pmin = 0.6, h = 0.5, and s = 10,
which belongs to the normalized logistic functions of Class iii resulting in the
dynamical behaviors of Phase xviii. Top panel: Numerical example of p (xGE) in
dependence on the frequency of global excluders xGE . The red solid circle marks
the two-dimensional coordinate (xGE

∗, p (xGE
∗)) ≈ (0.2124, 0.6095) satisfying

Eq. (18). The dotted vertical line given by the equation xGE = h defines the posi-
tion of the inflection point for the function p (xGE), while the top and bottom dashed
horizontal lines correspond to the bounds of the function p (xGE): p (xGE) = pmax
(upper bound) and p (xGE) = pmin (lower bound). Bottom panel: Phase portrait in
the simplex S3 for the numerical example of p (xGE) given in the top panel. The
white circle represents an unstable fixed point [i.e., the interior unstable fixed point
Q locating at (xD

∗, xC
∗, xGE

∗) ≈ (0.4199, 0.3677, 0.2124)], while the ones with
thicker edges the saddle points. Note that starting from any interior point except
the interior unstable fixed point Q inside the simplex S3, all unstable spirals will
move anti-clockwise toward the stable heteroclinic limiting cycles on the boundary
of the simplex S3 in Phase xviii. The arrows show the directions of natural selec-
tion. Blue corresponds to fast dynamics and red to slow dynamics close to the
fixed points of the system. The graphical output of the bottom panel is produced
from an adapted version of the Dynamo software.25 Parameter settings: N = 5,
r = 2, and cGE = 0.2.
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values of the function p (xGE) for xGE ∈
[

0, h
)

and xGE ∈
(

h, 1
]

,
respectively. In this case, the theoretical analysis predicts that
the dynamical behaviors of the evolutionary system may be

in Phase i if h ∈ [0, 1), cGE = 0, and pmax ∈
[

0, N−r
(N−1)r

)

, or if

h = 1, cGE = 0, and
pmin+pmax

2
∈

[

0, N−r
(N−1)r

]

, or in Phase ii if

h ∈ [0, 1), cGE = 0, and pmax = N−r
(N−1)r

, or in Phase iii if h ∈ (0, 1),

cGE = 0, pmax ∈
(

N−r
(N−1)r

, 1
]

, pmin ∈
[

0, N−r
(N−1)r

)

, and p
(

xGE = xGE
− = h

)

=
pmin+pmax

2
= N−r

(N−1)r
, or in Phase v if h ∈ (0, 1), cGE = 0, pmax

∈
(

N−r
(N−1)r

, 1
]

and pmin = N−r
(N−1)r

, or if h = 1, cGE = 0,
pmin+pmax

2

∈
(

N−r
(N−1)r

, 1
]

and pmin = N−r
(N−1)r

, or in Phase vi if h ∈ (0, 1],

cGE = 0 and pmin ∈
(

N−r
(N−1)r

, 1
]

, or if h = 0, cGE = 0 and
pmin+pmax

2

∈
[

N−r
(N−1)r

, 1
]

, or in Phase vii if h ∈ [0, 1), cGE ∈ (0, r − 1) and

pmax ∈
[

0, N(cGE+1)−r

(N−1)r

)

, or if h = 1, cGE ∈ (0, r − 1) and
pmin+pmax

2

∈
[

0, N(cGE+1)−r

(N−1)r

]

, or if cGE ∈ [r − 1, +∞), or in Phase viii if

h ∈ [0, 1), cGE ∈ (0, r − 1) and pmax =
N(cGE+1)−r

(N−1)r
, or in Phase xi

if h ∈ (0, xGE
∗), cGE ∈ (0, r − 1), pmax ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

, xGE
∗ = 1

−
[

1 − N−r
rpmax(N−1)

]
1

N−1
, pmin ∈

[

0, N(cGE+1)−r

(N−1)r

)

and p
(

xGE = xGE
− = h

)

=
pmin+pmax

2
=

N(cGE+1)−r

(N−1)r
, or in Phase xvii if h ∈ (0, xGE

∗), cGE

∈ (0, r − 1), pmax ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, xGE
∗ = 1 −

[

1 − N−r
rpmax(N−1)

]
1

N−1

and pmin =
N(cGE+1)−r

(N−1)r
, or in Phase xviii if h = xGE

∗, cGE ∈ (0, r − 1),

pmin ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

and
pmin+pmax

2
= N−r

(N−1)r[1−(1−xGE
∗)N−1]

∈
(

pmin, 1
)

,

or in Phase xx if h ∈ (0, xGE
∗), cGE ∈ (0, r − 1), pmin ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

and pmax = N−r

(N−1)r[1−(1−xGE
∗)N−1]

∈
(

pmin, 1
]

, or if h ∈ (xGE
∗, 1), cGE

∈ (0, r − 1) and pmin = N−r

(N−1)r[1−(1−xGE
∗)N−1]

∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, or if

h = 0, cGE ∈ (0, r − 1),
pmin+pmax

2
∈

[

N(cGE+1)−r

(N−1)r
, 1

]

, or if h = 1, cGE

∈ (0, r − 1), pmin ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

.

Due to the dissatisfaction of Eq. (30) with the general assump-
tion made in Sec. II that p (xGE) should be smooth for xGE ∈ [0, 1],
the evolutionary system may exhibit deterministic behaviors that do
not belong to any phase classified in Subsection III A: It may be
in Phase iii′, i.e., Phase iii but without the presence of the unique
unstable fixed point U on the edge D − GE, if h = 0, cGE = 0, pmax

∈
(

N−r
(N−1)r

, 1
]

and
pmin+pmax

2
∈

[

0, N−r
(N−1)r

)

, or if h ∈ (0, 1), cGE = 0,

pmax ∈
(

N−r
(N−1)r

, 1
]

, pmin ∈
[

0, N−r
(N−1)r

)

and p
(

xGE = h
)

=
pmin+pmax

2

6= N−r
(N−1)r

, or if h = 1, cGE = 0,
pmin+pmax

2
∈

(

N−r
(N−1)r

, 1
]

and pmin

∈
[

0, N−r
(N−1)r

)

, or in Phase xi′, i.e., Phase xi but without the

presence of the unique unstable fixed point U on the edge

D − GE, if h = 0, cGE ∈ (0, r − 1), pmax ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

and

pmin+pmax

2
∈

[

0, N(cGE+1)−r

(N−1)r

)

, or if h ∈ (0, xGE
∗), cGE ∈ (0, r − 1),

pmax ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, xGE
∗ = 1 −

[

1 − N−r
rpmax(N−1)

]
1

N−1
, pmin

∈
[

0, N(cGE+1)−r

(N−1)r

)

and p
(

xGE = h
)

=
pmin+pmax

2
6=

N(cGE+1)−r

(N−1)r
, or in

Phase xi′′, i.e., Phase xi but without the presence of the
unique interior fixed point Q and the family of local closed

orbits, if h ∈ (xGE
∗, 1), cGE ∈ (0, r − 1), pmax ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

, xGE
∗

= 1 −
[

1 − N−r
rpmax(N−1)

]
1

N−1
, pmin ∈

[

0, N(cGE+1)−r

(N−1)r

)

and p
(

xGE = h
)

=
pmin+pmax

2
=

N(cGE+1)−r

(N−1)r
, or if h = xGE

∗, cGE ∈ (0, r − 1), pmax

∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, pmin ∈
[

0, N(cGE+1)−r

(N−1)r

)

and p
(

xGE = h
)

=
pmin+pmax

2

=
N(cGE+1)−r

(N−1)r
, or in Phase xi′′′, i.e., Phase xi but without the pres-

ence of the unique unstable fixed point U on the edge D − GE, the
unique interior fixed point Q and the family of local closed orbits,

if h ∈ (xGE
∗, 1), cGE ∈ (0, r − 1), pmax ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

, xGE
∗ = 1

−
[

1 − N−r
rpmax(N−1)

]
1

N−1
, pmin ∈

[

0, N(cGE+1)−r

(N−1)r

)

and p
(

xGE = h
)

=
pmin+pmax

2
6=

N(cGE+1)−r

(N−1)r
, or if h = xGE

∗, cGE ∈ (0, r − 1),

pmax ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, pmin ∈
[

0, N(cGE+1)−r

(N−1)r

)

, xGE
∗ 6= 1 −

[

1

− 2(N−r)

r(pmin+pmax)(N−1)

]
1

N−1
and p

(

xGE = h
)

=
pmin+pmax

2
6=

N(cGE+1)−r

(N−1)r
,

or in Phase xi′′′′, i.e., Phase xi but without the presence of the
unique unstable fixed point U on the edge D − GE and the

family of local closed orbits, if h = xGE
∗, pmax ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

,

pmin ∈
[

0, N(cGE+1)−r

(N−1)r

)

and xGE
∗ = 1 −

[

1 − 2(N−r)

r(pmin+pmax)(N−1)

]
1

N−1
, or

in Phase xvii′, i.e., Phase xvii but without the presence of the
unique interior fixed point Q and the family of local closed orbits,

if h ∈ (xGE
∗, 1), cGE ∈ (0, r − 1), pmax ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

, xGE
∗ = 1

−
[

1 − N−r
rpmax(N−1)

]
1

N−1
and pmin =

N(cGE+1)−r

(N−1)r
, or if h = xGE

∗, cGE

∈ (0, r − 1), pmax ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

, pmin =
N(cGE+1)−r

(N−1)r
and xGE

∗

6= 1 −
[

1 − 2(N−r)

r(pmin+pmax)(N−1)

]
1

N−1
, or in Phase xvii′′, i.e., Phase xvii

but without the presence of the family of local closed orbits, if

h = xGE
∗, cGE ∈ (0, r − 1), pmax ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

, pmin =
N(cGE+1)−r

(N−1)r

and xGE
∗ = 1 −

[

1 − 2(N−r)

r(pmin+pmax)(N−1)

]
1

N−1
, or in Phase xviii′, i.e.,

Phase xviii but without the presence of the unique interior fixed

point Q, if h = xGE
∗, cGE ∈ (0, r − 1), pmin ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

and

xGE
∗ 6= 1 −

[

1 − 2(N−r)

r(pmin+pmax)(N−1)

]
1

N−1
, or in Phase xx′, i.e., Phase xx

but without the presence of the unique interior fixed point Q and
the family of local closed orbits, if h ∈ (0, xGE

∗), cGE ∈ (0, r − 1),

pmin ∈
(

N(cGE+1)−r

(N−1)r
, 1

]

and xGE
∗ 6= 1 −

[

1 − N−r
rpmax(N−1)

]
1

N−1
, or if

h ∈ (xGE
∗, 1), cGE ∈ (0, r − 1), pmin ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

and xGE
∗ 6= 1

−
[

1 − N−r
rpmin(N−1)

]
1

N−1
, or in Phase ix′, i.e., Phase ix but with-

out the presence of the unique unstable fixed point U on the
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(a)

(b)

(c)

FIG. 5. Full pmax − (pmin + pmax)/2, pmax − pmin and (pmin + pmax)/2 − pmin
phase diagrams of h = 0 (top panel), h = 0.5 ∈ (0, 1) (middle panel), and h = 1
(bottom panel) at cGE = 0 for p (xGE) belonging to Class ii or Class iii satis-
fying s → +∞ and pmax > pmin, as obtained by numerical simulations (filled
symbols) as well as theoretical analysis (solid lines). Note that the phase sep-
aration in the top, middle, and bottom panels is meaningful only if the parameter
region locates below the dashed line given by the equations pmax =

pmin+pmax
2

,

pmax = pmin, and
pmin+pmax

2
= pmin, respectively. The blue filled squares and red

filled circles in all three panels, which coincide perfectly with the blue vertical
and red horizontal lines respectively given by the equations pmax or

pmin+pmax
2

= N−r
(N−1)r

and
pmin+pmax

2
or pmin = N−r

(N−1)r
, denote phase boundaries between dif-

ferent phases. Parameter settings: N = 5 and r = 2. For this limiting case, when
global exclusion is costless, there emerges a new phase, i.e., Phase iii′, in which
the evolutionary system exhibits a novel behavior: the separation of attraction
basins for different stable fixed points by the transition point h in the simplex S3.

(a)

(b)

FIG. 6. Full pmax − (pmin + pmax)/2 and (pmin + pmax)/2 − pmin phase diagrams
of h = 0 (top panel) and h = 1 (bottom panel) at cGE = 0.2 for p (xGE) belong-
ing to Class ii satisfying s → +∞ and pmax > pmin, as obtained by numerical
simulations (filled symbols) as well as theoretical analysis (solid lines). Note that
the phase separation in the phase diagrams is meaningful only if the parame-
ter region locates below the dashed line given by the equations pmax =

pmin+pmax
2

and
pmin+pmax

2
= pmin for h = 0 (top panel) and h = 1 (bottom panel), respec-

tively. The blue filled squares and red filled circles in both panels, which coincide
perfectly with the blue vertical and red horizontal lines respectively given by the

equations pmax or
pmin+pmax

2
=

N(cGE+1)−r

(N−1)r
and

pmin+pmax
2

or pmin =
N(cGE+1)−r

(N−1)r
,

denote phase boundaries between different phases. Parameter settings: N = 5
and r = 2. For this limiting case, when the cost of global exclusion ismoderate, the
evolutionary system may stay in three newly emerging phases, including Phase
ix′, Phase xi′, and Phase xv′, in which it exhibits novel behaviors. For instance,
in Phase xi′, there co-occur a family of closed orbits in the local neighborhood of
an nonlinear centerQ as well as other evolutionary trajectories moving toward the
stable fixed point D in the simplex S3.
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edge D − GE and the unique interior fixed point Q, if h = 1, cGE

∈ (0, r − 1),
pmin+pmax

2
∈

(

N(cGE+1)−r

(N−1)r
, 1

]

and pmin ∈
[

0, N(cGE+1)−r

(N−1)r

)

,

or in Phase xv′, i.e., Phase xv but without the presence of
the unique interior fixed point Q, if h = 1, cGE ∈ (0, r − 1),
pmin+pmax

2
∈

(

N(cGE+1)−r

(N−1)r
, 1

]

and pmin =
N(cGE+1)−r

(N−1)r
. The full pmax

−
(

pmin + pmax

)

/2, pmax − pmin and
(

pmin + pmax

)

/2 − pmin phase
diagrams at cGE = 0 and cGE ∈ (0, r − 1) obtained respectively

(a) (b)

(c) (d)

FIG. 7. Full pmax − pmin phase diagrams of h ∈ (0, xGE
∗) (top left panel), h = xGE

∗ (top right panel), and h ∈ (xGE
∗, 1) (bottom left panel) at cGE = 0.2 and xGE

∗ = 0.2 for
p (xGE) belonging to Class iii satisfying s → +∞ and pmax > pmin, as obtained by numerical simulations (filled symbols) as well as theoretical analysis (solid lines). Note that
the phase separation in the phase diagrams is meaningful only if the parameter region locates below the dashed line given by the equation pmax = pmin. The blue filled squares,
red filled circles, green filled triangles, and the yellow filled inverted triangles in all phase diagrams, which coincide perfectly with the blue vertical, red horizontal, green diagonal,

and yellow lines, respectively, given by the equations pmax =
N(cGE+1)−r

(N−1)r
, pmin =

N(cGE+1)−r

(N−1)r
,
pmin+pmax

2
=

N(cGE+1)−r

(N−1)r
and pmax,

pmin+pmax
2

or pmin = N−r

(N−1)r
[

1−(1−xGE
∗)

N−1
] ,

denote phase boundaries between different phases. For this limiting case, much more new phases, including Phase xi′, Phase xi′′, Phase xi′′′, Phase xvii′, Phase xvii′′,
Phase xviii′, and Phase xx′, emerge in the evolutionary system. The bottom right panel shows a phase portrait for a numerical example of the construction probability for
the centralized exclusive institution p (xGE) when pmax = 625/984 ≈ 0.6352, pmin = 0.2, h = 0.1, and s → +∞ leading to the dynamical behaviors of Phase xi′. The
white circles with thicker edges represent saddle points, while the filled black (gray) one the stable fixed point [the nonlinear center, i.e., the interior fixed point Q locating at

(xD
∗, xC

∗, xGE
∗) ≈ (0.3844, 0.4156, 0.2)]. Because

pmin+pmax
2

= 4109/9840 ≈ 0.4176 <
N(cGE+1)−r

(N−1)r
= 0.5, instead of any interior fixed point existing on the edgeD − GE,

there emerges a discontinuous transition for the evolutionary speed along the white solid line given by xGE = h = 0.1. Besides a family of closed orbits revolving anti-clockwise
around the nonlinear centerQ in its local neighborhood, all other evolutionary trajectories would converge to the stable fixed point D eventually. The arrows show the directions
of natural selection. Blue corresponds to fast dynamics and red to slow dynamics close to the fixed points of the system. The graphical output of the bottom right panel is
produced from an adapted version of the Dynamo software.25 Parameter settings: N = 5 and r = 2.

for h = 0, h ∈ (0, 1) and h = 1 via numerical simulations con-

firm our theoretical predictions in this limiting case, i.e.,
s → +∞, as shown in Figs. 5–7. Note that, whenever cGE

∈ [r − 1, +∞), the dynamical behaviors of the evolutionary sys-
tem for s → +∞ also inevitably fall into the category of Phase vii.
Due to the discontinuity of the construction probability for the
centralized exclusive institution p (xGE), one can observe some
intriguing behaviors of the evolutionary system, such as the
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(a)

(b)

FIG. 8. A numerical example of the construction probability for the central-
ized exclusive institution p (xGE) when pmax = 0.8, pmin = 0.2, h = 0.5, and
s → +∞, which becomes the Heaviside step function resulting in the dynamical
behaviors of Phase iii′. Top panel: Numerical example of p (xGE) in dependence on
the frequency of global excluders xGE . The blue filled square marking the two-di-
mensional coordinate (h, (pmin + pmax)/2) = (0.5, 0.5) does not coincide with
the red filled cross locating at (h, (N − r)/[(N − 1) r ]) = (0.5, 0.375), which
indicates that the function value of p (xGE) at h = 0.5 does not satisfy Eq. (12).
The dashed vertical line given by the equation xGE = h = 0.5 defines the tran-
sition point for the Heaviside step function p (xGE). Bottom panel: Phase portrait
in the simplex S3 for the numerical example of p (xGE) given in the top panel.
The white circles represent unstable fixed points, while the filled ones the stable
fixed points. Due to the non-overlap between the blue filled square and the red
filled cross in the upper panel, i.e.,

pmin+pmax
2

= 0.5 > N−r
(N−1)r

= 0.375, instead of

any interior fixed point emerging on the edge D − GE, there exists a white solid
line given by xGE = h = 0.5 dividing the simplex S3 into two regions of attrac-
tion basins: (1) All evolutionary trajectories originating from the population states
belonging to the parameter region above the white solid line (including itself) would
move toward the stable fixed points on the edgeC − GE. (2) The population start-
ing from the states belonging to the parameter area below the white solid line
would evolve to the stable fixed point D. The arrows show the directions of natural
selection. Blue corresponds to fast dynamics and red to slow dynamics close to
the fixed points of the system. The graphical output of the bottom panel is based
on the Dynamo software.25 Parameter settings: N = 5, r = 2, and cGE = 0.

separation of attraction basins for different stable fixed points by a
line in the simplex S3 determined by the position of the step tran-
sition p (xGE) = h, instead of unstable fixed points typically (see
Fig. 8), or the local destruction of the global cyclic dominance
between defectors, cooperators, and global excluders, as well as the
concurrent introduction of the stable fixed point at the vertex D of
the simplex S3 (see the bottom right panel of Fig. 7).

IV. CONCLUSION AND DISCUSSIONS

In sum, we have constructed an evolutionary model of public
goods game with global exclusion and have theoretically studied the
replicator dynamics among defectors, cooperators as well as global
excluders in an infinite and well-mixed population. While defectors
and cooperators in our model play the same roles as they do in the
classic public goods game, global excluders refer to such a type of
individuals who contribute not only to the common pool for the
purpose of producing public goods but also to the collective con-
struction of a centralized exclusive institution so as to coercively
exclude free-riders from sharing the common goods. By analyzing
the dynamical behaviors of public goods game with global exclu-
sion, we have shown that global exclusion is able to induce the
emergence or even stabilization of cooperation in spite of its fac-
ing both first- and second-order free-riding problems. Despite being
somewhat an unrealistic condition, i.e., cGE = 0 and p (xGE = 1)

∈
(

N−r
(N−1)r

, 1
]

, for the stabilization of cooperation, we do find that

the emergence of cooperation, achieved by the spontaneous for-
mation of cyclic dominance between defectors, cooperators, and
global excluders, can be observed in more realistic as well as con-
siderably larger parameter regions, e.g., cGE ∈ (0, r − 1) and p (xGE)

= p (xGE
∗) ∈

(

N(cGE+1)−r

(N−1)r
, 1

]

satisfied for xGE ∈ [xGE
∗ − 13, xGE

∗

+ 14] with 13 ∈ (0, xGE
∗) and 14 ∈ (0, 1 − xGE

∗), the conclusion
of which thus deserves to be further testified by empirical studies in
the future. Besides, the evolutionary model of public goods game
with global exclusion, despite its simplicity, can give rise to rich,
i.e., 21 classes in total, dynamical behaviors. For instance, we have
demonstrated the co-occurrence of a stable heteroclinic cycle on the
boundary of the simplex S3 and a family of closed orbits in the local
neighborhood of the nonlinear center Q∗ in Phase xx.

Note that, different from many previous works, we introduce
the extension of model, i.e., global exclusion, into the public goods
game by designing p (xGE) as a general non-decreasing function of
xGE but not by prescribing some specific class of functions, which
allows us to consider its arbitrary function forms, and, therefore,
to provide a more general theoretical framework for studying the
impacts of global exclusion in the evolutionary dynamics of public
cooperation. Herein, we would like to point out that such a man-
ner of model construction is necessary in the sense that only in
this way can we reveal the full picture for the replicator dynam-
ics of public goods game with global exclusion. Interestingly, it has
been shown that the dynamical behaviors of the evolutionary sys-
tem do not qualitatively change with the specific shape of p (xGE)

but are merely dependent on the values of p (xGE) at some key
positions of xGE as well as in their neighborhoods (see the critical
conditions for the classification of the replicator dynamics in Sub-
section III A) if all other conditions being equal. Besides, thanks also
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to the general way of model construction for global exclusion and
the following theoretical analysis of its replicator dynamics in our
work, we can make some predictions for many relevant studies on
social dilemma games with exclusion. For example, we argue that the
emergence of a family of closed orbits in the whole neighborhood of
the nonlinear center claimed in Ref. 19 needs rather strict condition,
i.e., requirement of the deterministic exclusion toward defectors for
any particular groups involving any pool excluders, which is also
an implicit assumption made in this study. Otherwise, one cannot
observe the oscillatory coexistence between defectors, cooperators,
and pool excluders in the whole neighborhood of the nonlinear
center. Note that peer excluders in Ref. 15, unlike pool and global
excluders, can stabilize itself in rather reasonable and larger param-
eter regions owing to their equal performance of evolution with
that of second-order free-riders, i.e., cooperators, whenever defec-
tors are absent in the population. On the other hand, from a broader
perspective, institutional punishment, similar to global exclusion
in our model, represents another form of negative incentives act-
ing at a global scale. In one study, the institutional punishment is
assumed to be successfully constructed with certainty and to be inde-
pendent on the composition of the population, which leads to the
observation that cooperation can completely dominate the infinite
and well-mixed population even in the classic public goods game
as long as the negative incentive is sufficiently large.21 In another
study, the construction of the punishment institution depends deter-
ministically on a threshold number of punishers: If the number of
punishers in the finite and well-mixed population is no less than
such a threshold, the construction of the punishment institution
succeeds; otherwise, the construction of the punishment institution
fails.24 In contrast with both studies mentioned above, we consider
any forms of positive or no feedback between the state of the evo-
lutionary system, i.e., xGE, and that of the centralized institution
determined by p (xGE), which thus can make our model cover more
cases in reality.

Furthermore, some other relevant studies have also considered
the coupled effects between global exclusion and prior agreement
with posterior compensations not only in the general model of
public goods game but also in more specific scenarios, such as
the issue of AI safety.26,27 In general, regardless of the underlying
backgrounds, one can observe a positive interplay between these
two mechanisms, which indicates the potential synergistic impacts
of global exclusion with other evolutionary rules in the resolu-
tion of public cooperation dilemma. Moreover, considering the fact
that there are numerous ways to implement institutional incen-
tives, such as institutional rewards, punishment as well as exclusion,
it is thus interesting to ask which manner is more cost-efficient
than other ones. Actually, such optimization problems have already
been considered and studied in the context of both determinis-
tic and stochastic evolutionary dynamics of social dilemma games
with institutional rewards and punishment as the two alternative
ways of incentives.28,29 In parallel, a natural question arising here
can be that whether the global exclusion proposed in this study can
be more cost-efficient than both institutional rewards and punish-
ment. Generally speaking, one cannot make a direct comparison of
cost-efficiency between global exclusion and institutional rewards
as well as punishment because global exclusion results in not only
the reduction of payoff for defectors and the increment of payoff

for cooperators in mixed groups but also the different degree of
its efficiency in any different heterogeneous groups, which means
that it becomes very difficult to compare the performance of the
three forms of institutional incentives under the condition of the
same efficiency ratio of corresponding incentives.29 Note that only
in this way can we unbiasedly evaluate the cost-efficiency of global
exclusion, institutional rewards, and punishment. In future studies,
it deserves to make much more efforts to further investigate this
topic. Besides, numerous empirical studies have shown the existence
of antisocial incentives, such as antisocial punishment and antisocial
rewards.30,31 Motivated by the experimental results, several theoret-
ical works have studied the evolutionary dynamics of cooperation
when both prosocial and antisocial incentives are present and have
shown that antisocial incentives will, at least, weaken the positive
effects of prosocial incentives on the evolution of public cooperation
in the well-mixed population.32–34 However, whenever the interac-
tion range of individuals is limited, network reciprocity can restore
(or even promote) the effectiveness of prosocial incentives by escap-
ing from the adverse effects of antisocial incentives.35,36 Thus, we
expect that similar results can be obtained if antisocial global exclu-
sion is also presented in our model. Finally, we also expect global
exclusion can play a positive role in other types of multi-player social
dilemma games, such as the multi-player snowdrift game and the
multi-player stag-hunt game, as well as in structured populations, as
it does in the present model. Works along this line are in progress.
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APPENDIX: ADVANCED STABILITY ANALYSIS OF THE HOMOGENEOUS D STATE

Because xC = 1 − xGE − xD, Eq. (10) can be simplified as
{

ẋGE = xGE {(1 − xGE) [E (PGE) − E (PC)] − xD [E (PD) − E (PC)]} , (A1a)

ẋD = xD {(1 − xD) [E (PD) − E (PC)] − xGE [E (PGE) − E (PC)]} , (A1b)

where

E (PGE) − E (PC) = rp (xGE)
(N − 1) xD(1 − xGE)

N−2

N
− cGE (A2)

and

E (PD) − E (PC) = 1 −
r

N
− rp (xGE)

(

1 −
(N − 1) (1 − xGE)

N − 1 + 1

N

)

. (A3)

Let
{

f (xGE, xD) = xGE {(1 − xGE) [E (PGE) − E (PC)] − xD [E (PD) − E (PC)]} , (A4a)

g (xGE, xD) = xD {(1 − xD) [E (PD) − E (PC)] − xGE [E (PGE) − E (PC)]} , (A4b)

one can then obtain the Jacobian matrix of the evolutionary system,

J =

[

∂f(xGE ,xD)

∂xGE

∂f(xGE ,xD)

∂xD

∂g(xGE ,xD)

∂xGE

∂g(xGE ,xD)

∂xD

]

, (A5)

where






























































∂f (xGE, xD)

∂xGE

= − (1 − 2xGE) cGE − xD

(

1 −
r

N

)

+
N − 1

N
xDr

[

p (xGE) + xGEp′ (xGE)
]

, (A6a)

∂f (xGE, xD)

∂xD

= xGE

(

N − 1

N
rp (xGE) − 1 +

r

N

)

, (A6b)

∂g (xGE, xD)

∂xGE

= xD

{

cGE − N−1
N

(1 − xGE)
N−3rp (xGE) [(N − 1) (1 − xGE − xD) + xD]

+ N−1
N

rp′ (xGE)
[

(1 − xGE)
N−2 (1 − xGE − xD) − (1 − xD)

]

}

, (A6c)

∂g (xGE, xD)

∂xD

= (1 − 2xD)

(

1 −
r

N

)

+ xGEcGE +
N − 1

N
rp (xGE)

[

2xD − 1
+(1 − xGE)

N−2 (1 − xGE − 2xD)

]

. (A6d)

For the pure D state, the elements of Jacobian matrix is thus given by






























































∂f (xGE, xD)

∂xGE

∣

∣

∣

∣

(1,0,0)

= −cGE − 1 +
r

N
+

N − 1

N
rp (xGE = 0) , (A7a)

∂f (xGE, xD)

∂xD

∣

∣

∣

∣

(1,0,0)

= 0, (A7b)

∂g (xGE, xD)

∂xGE

∣

∣

∣

∣

(1,0,0)

= cGE −
N − 1

N
rp (xGE = 0) , (A7c)

∂g (xGE, xD)

∂xD

∣

∣

∣

∣

(1,0,0)

= −1 +
r

N
. (A7d)

Therefore, the two eigenvalues of the Jacobian matrix at (1, 0, 0) are equal to











λ1|(1,0,0) = −1 +
r

N
< 0, (A8a)

λ2|(1,0,0) = −cGE − 1 +
r

N
+

N − 1

N
rp (xGE = 0) , (A8b)

respectively. From Eq. (A8), one can find that the linearization method fails to determine the stability of the pure D state if cGE ∈ [0, r − 1)

and p (xGE = 0) =
N(cGE+1)−r

(N−1)r
, or if cGE = r − 1 and p (xGE = 0) = 1. In the following, we aim to analyze the stability of the homogeneous D

state by applying the center manifold theorem in these two critical cases.37
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For the first case, i.e., cGE ∈ [0, r − 1) and p (xGE = 0) =
N(cGE+1)−r

(N−1)r
, the Jacobian matrix at the fixed point (1, 0, 0) becomes

J|(1,0,0) =

[

0 0
r
N

− 1 r
N

− 1

]

, (A9)

the eigenvalues of which are 0 and r
N

− 1, respectively. Let M be a matrix whose columns are the eigenvectors of J|(1,0,0); i.e.,

M =

[

−1 0
1 1

]

. (A10)

Take T = M−1 = M, we have

TJ|(1,0,0)T
−1 =

[

0 0
0 r

N
− 1

]

. (A11)

The change of variables
[

y
z′

]

= T

[

xGE

xD

]

=

[

−xGE

xGE + xD

]

(A12)

puts the system into the form






















































ẏ = y















(

1 + y
)

[

rp
(

−y
) (N−1)(z′+y)(1+y)

N−2

N
− cGE

]

−
(

z′ + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















, (A13a)

ż′ =
(

z′ − 1
)















y

[

rp
(

−y
) (N−1)(z′+y)(1+y)

N−2

N
− cGE

]

−
(

z′ + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















. (A13b)

Let z′ = z + 1, the above equation set becomes






















































ẏ = y















(

1 + y
)

[

rp
(

−y
) (N−1)(z+1+y)(1+y)

N−2

N
− cGE

]

−
(

z + 1 + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















= 0 × y + g1

(

y, z
)

, (A14a)

ż = z















y

[

rp
(

−y
) (N−1)(z+1+y)(1+y)

N−2

N
− cGE

]

−
(

z + 1 + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















=
( r

N
− 1

)

z + g2

(

y, z
)

, (A14b)

where






















































g1

(

y, z
)

= y















(

1 + y
)

[

rp
(

−y
) (N−1)(z+1+y)(1+y)

N−2

N
− cGE

]

−
(

z + 1 + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















, (A15a)

g2

(

y, z
)

= z















1 − r
N

+ y

[

rp
(

−y
) (N−1)(z+1+y)(1+y)

N−2

N
− cGE

]

−
(

z + 1 + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















. (A15b)

From Eq. (A15), on can find that


















g1 (0, 0) = 0;
∂g1

∂y
(0, 0) = 0;

∂g1

∂z
(0, 0) = 0, (A16a)

g2 (0, 0) = 0;
∂g2

∂y
(0, 0) = 0;

∂g2

∂z
(0, 0) = 0. (A16b)
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According to above equation set, the center manifold theorem tells us that there exists a constant δ > 0 and a continuously differentiable
function h

(

y
)

, defined for all
∥

∥y
∥

∥ ≤ δ, such that z = h
(

y
)

is a center manifold for the evolutionary system described by Eq. (A14). In this
case, the motion of the system in the center manifold is described by the following differential equation:

ẏ = y















(

1 + y
)

[

rp
(

−y
) (N−1)(h(y)+1+y)(1+y)

N−2

N
− cGE

]

−
(

h
(

y
)

+ 1 + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















. (A17)

Then, we have the center manifold equation,

∂h
(

y
)

∂y
y















(

1 + y
)

[

rp
(

−y
) (N−1)(h(y)+1+y)(1+y)

N−2

N
− cGE

]

−
(

h
(

y
)

+ 1 + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















− h
(

y
)















y

[

rp
(

−y
) (N−1)(h(y)+1+y)(1+y)

N−2

N
− cGE

]

−
(

h
(

y
)

+ 1 + y
)

[

1 − r
N

− rp
(

−y
)

(

1 −
(N−1)(1+y)

N−1
+1

N

)]















= 0 (A18)

with boundary conditions

h (0) = 0;
∂h

∂y
(0) = 0. (A19)

Let us start to try h
(

y
)

= O
(
∣

∣y2
∣

∣

)

≈ 0. Then, the reduced system is

ẏ = y
(

1 + y
)

[

−cGE − 1 +
r

N
+ rp

(

−y
)

(

1 −
1

N

)]

+ O
(
∣

∣y3
∣

∣

)

.

(A20)

Because p
(

−y
)

≥ p (0) =
N(cGE+1)−r

(N−1)r
holds, the origin of the reduced

system is unstable. Consequently, the origin of the full system is
unstable, which indicates that the homogeneous D state is unstable
in this case. In a similar manner, one can also show that the pure D
state at cGE = r − 1 and p (xGE = 0) = 1 is stable.
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