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ABSTRACT

We study collective failures in biologically realistic networks that consist of coupled excitable units. The networks have broad-scale degree dis-
tribution, high modularity, and small-world properties, while the excitable dynamics is determined by the paradigmatic FitzHugh–Nagumo
model. We consider different coupling strengths, bifurcation distances, and various aging scenarios as potential culprits of collective failure.
We find that for intermediate coupling strengths, the network remains globally active the longest if the high-degree nodes are first targets for
inactivation. This agrees well with previously published results, which showed that oscillatory networks can be highly fragile to the targeted
inactivation of low-degree nodes, especially under weak coupling. However, we also show that the most efficient strategy to enact collective
failure does not only non-monotonically depend on the coupling strength, but it also depends on the distance from the bifurcation point to
the oscillatory behavior of individual excitable units. Altogether, we provide a comprehensive account of determinants of collective failure in
excitable networks, and we hope this will prove useful for better understanding breakdowns in systems that are subject to such dynamics.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0149578

Biological networks are remarkably robust to failures of their
individual units. But, each network still has a breaking point at
which its collective function deteriorates to uselessness. This may
manifest as a disease or loss of function that is often difficult to
reverse. It is, therefore, important to determine when such col-
lective failures occur in order to enact measures to avoid them,
if at all possible. In our research, we determine these conditions
for a general class of biologically realistic networks that consist
of heterogeneous excitable units. These units are subject to aging
in various ways and in different fractions of the whole network.
We show that the ratio of inactive excitable units, the coupling
strength among them, and their distance to the bifurcation point,
all affect collective aging and the transition to collective failure.
We hope that these insights will improve our understanding of

different physiological determinants that affect the robustness
and fragility of realistic excitable networks, such as populations
of muscle and endocrine cells or neuronal ensembles.

I. INTRODUCTION

Sustained oscillatory rhythms are a hallmark of biological sys-
tems and manifest themselves at different timescales and levels of
biological organization. Intrinsic rhythmic activity typically arises
from many nonlinear regulatory mechanisms and feedback pro-
cesses and is crucial for ensuring physiological functions.1 On the
tissue level, the oscillatory behavior is often regulated by large
networks of interacting cells. Intercellular communication is the
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basis for the occurrence of synchronization or phase-locked dynam-
ics, which, together with the responses to environmental per-
turbations, facilitates the collective rhythm that is essential for
normal function2–4 However, under certain conditions, such as
during pathogenesis, individual cells are subjected to malfunc-
tion and become inactive. This leads to an interesting dynamical
phenomenon known as aging transition.5 Investigating how a net-
worked system operates dynamically, when segments of the system
malfunction, is not only theoretically appealing but also of high rel-
evance for the evaluation of the robustness of the biological network
to perturbations and malfunctions.

The phenomenon of the aging transition was originally
reported by Daido and Nakanishi for a system of globally coupled
limit-cycle oscillators in which the fraction of inactive oscillators
was progressively increased.6,7 The notion of a non-trivial transition
toward a macroscopically inactive state due to the deactivation of
individual microscopic constituents has stimulated further research
and studies on the aging transition have been further elaborated
to locally coupled8,9 and heterogeneous ensembles of oscillators,10–13

as well as to specific coupling schemes14,15 that can include time-
delays16,17 or repulsive interactions.18 Furthermore, along with the
advances in network science, the scope of studying aging transi-
tions has been extended to various network structures. In complex
networks, the degrees of oscillator nodes, i.e., the number of con-
nections to other oscillators, are heterogeneous, which not only
highly affects the transition dynamics of the aging network but
also puts forward different strategies with which the oscillators
get inactivated.19 While, in general, the collective activity of het-
erogeneous networks is highly vulnerable to hub removal,20 under
specific circumstances such as weakly weighted networks with weak

interactions, the macroscopic activity is highly fragile to targeted
inactivation of low-degree nodes.21,22 This result does not only high-
light a perhaps counterintuitive discrepancy between structural and
dynamical robustness of a network but also indicate that aging
transition on complex networks is a multifactorial phenomenon.
Specifically, further research has shown that edge weights,20,23 the
topology of the network,24,25 heterogeneity,12 as well as a multilay-
ered structure of interactions26,27 profoundly affect the deterioration
of macroscopic oscillatory behavior.

While the majority of earlier works was focused solely on
limit-cycle oscillators, the scope has later shifted also to populations
composed of oscillatory and excitable elements. In this scenario,
the silenced self-oscillatory units are poised in an excitable state so
that, for example, the oscillatory behavior is lost in a saddle-node
bifurcation28–30 Such a composition of oscillatory and excitable units
has many possible applications, particularly, in biology and neuro-
science. In this vein, Ratas and Pyragas studied a globally coupled
network of integrate-and-fire neurons, which are canonical exam-
ples of class I neurons. They reported that this setup offers rich
dynamical behavior,31 including non-intuitive phenomena at certain
parameter regions, where a decrease of active neurons can enhance
macroscopic oscillations.32 Moreover, Tanaka et al.10 have shown
that in networks of coupled oscillators, population heterogeneity
enhances dynamical robustness of the neuronal dynamics in a net-
work of Morris–Lecar models coupled through electrical synapses,
irrespective of the type of bifurcation. Very recently, Biswas and
Gupta studied aging transitions in a random network of Rulkov
neurons. They have shown that the interplay between the coupling
strength and the network density determines how the neuronal
dynamics deteriorates as the fraction of inactive neurons increases

FIG. 1. Left: Characteristic biological network architecture generated by the modulated Barabási–Albert model in the Euclidean space. Right: The corresponding degree
distribution along with the main network parameters: average degree (〈k〉), average clustering coefficient (〈c〉), average shortest path lengths (〈l〉), small-worldness parameter
(sw), and modularity (Q). The degree distribution was computed from 100 different networks with size N= 300 and indicates a broad-scale character.
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and that under certain conditions, the transition can be abrupt.33

Further research has revealed that a heterogeneous distribution of
connections strengths between neurons,23 the presence of mixed
attractive and repulsive coupling,15 or multilayered interactions gov-
erned by ephaptic coupling34 are also important determinants in
shaping the dynamical robustness of the macroscopic neuronal
activity.

Nonetheless, there are still many open questions and unex-
plored issues regarding the dynamical robustness of coupled
excitable oscillators. In the present study, we, therefore, focus on
studying the degradation of macroscopic neuronal activity in bio-
logically realistic networks of heterogeneous excitable elements.
To simulate interactions between oscillators, we utilize a spatially
embedded network model that yields a heterogeneous architecture
with small-world characteristics, as such topological structures are
omnipresent in various biological systems including ensembles of
excitable cells.35,36 The dynamics of individual nodes are driven
by the FitzHugh–Nagumo model as it represents a paradigmatic
example of excitable dynamics. In our simulations, the oscillators
are progressively placed from the oscillatory to the excitable state.
We differentiate between three scenarios of aging, random and
by degree, where either the high-degree nodes or the low-degree
nodes are first to be made inactive. We explore how the interplay

between the ratio of inactive oscillators, the coupling strength, and
the distance from the bifurcation point affect the aging transition
and demonstrate that the route to diminished macroscopic oscilla-
tions is characterized by non-trivial and interesting behavior. Our
findings, therefore, provide new insights into how different phys-
iological determinants can affect the robustness and fragility of
realistic networks of excitable elements.

II. MATHEMATICAL MODEL AND ANALYSIS

A. Coupled FitzHugh–Nagumo oscillators

We analyze a system of N = 300 coupled FitzHugh–Nagumo
oscillators, whereby the dynamics of the ith oscillator is described
with the following dimensionless equations:37,38

ẋi = ai



xi −
xi

3

3
+ yi + K

∑

j∈Si

(xj − xi)



 , (1a)

ẏi = −(xi + byi − Ji)/ai. (1b)

In Eq. (1), xi mimics the membrane potential and yi is a recov-
ery variable, Ji plays the role of external stimulus, the variables ai and
bi are proportional, respectively, to the ratio between inductance and

FIG. 2. The global oscillation amplitudeM as a function of the inactivation ratio p for selected sets of parameters (different coupling strengths K and distances from bifurcation
σ ) and strategies of placing the oscillators from the oscillatory to the excitable regime, as indicated by different colors. Notably, for smaller distances from bifurcation, the
aging transition is remarkably affected by the interplay of the coupling strength and the strategy used to inactive excitable units. Conversely, if the oscillators are placed further
away from the bifurcation, the network activity does not only deteriorate faster but also the collective failure appears to always occur first when the high-degree nodes are
first targets for inactivation.
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capacitance and to the cell membrane, K is the coupling strength,
and Si defines the subset containing neighbors of the ith oscillator.
A single uncoupled oscillator can be characterized with a thresh-

old value εi =
3a2

i −2a2
i bi−b2

i

3a3
i

√

a2
i − bi for parameter Ji.39 For values of

Ji ∈ [−εi, εi], the equilibrium point is unstable, and the system is in
an oscillatory regime. For outside values of Ji, the equilibrium point
is stable and the system falls into a fixed point. Ji < −εi corresponds
to a constant negative value of variable xi and the system is said to
be in an excitable state, while for Ji > εi, the system is in excitation
block with a constant positive value of xi.40 In our simulations, Ji is
initially fixed for all oscillators and set to 0, whereas during aging, the
parameter is set to the excitable regime, i.e., Ji < −εi, as explained
further in continuation. To mimic heterogeneity of oscillators, cell-
to-cell variability is introduced by randomly distributing parameter
ai for each oscillator from values 3 to 5, whereby higher values of
ai correspond to longer oscillation periods and a slight increase in
the peak amplitude. The range of ai was selected so that the oscil-
lation frequencies range in approximately ±15% from the mean.
Parameter bi is constant and set to 1. The system of equations was
numerically solved with the Runge–Kutta method of second order
and a time step of dt = 0.01. The initial conditions were chosen
randomly from the interval [1.25, 1.75].

B. Network model

To model the interactions between the excitable oscilla-
tors, we make use of the modulated Barabási–Albert model in
Euclidean space.41 In addition to the original preferential attachment
mechanism,42 the model incorporates weighing of probabilities for
connections with physical distances between nodes. The network
growth starts with m0 points randomly distributed on a unit square
with m = 2 < m0 connections among them. In every subsequent
iteration, one node is introduced with randomly chosen coordinates.
Then, the new node establishes m connections with its predecessors
i with an attachment probability,

5i ∼ kiI
α
i , (2)

where ki and Ii are the degree and the Euclidean distance to the
ith predecessor, respectively. Parameter α in Eq. (2) weighs the
role of inter-nodal distance and thereby affects the network topol-
ogy. In our study, we use α = −3.0, which generates a network that
is characterized by a broad-scale degree distribution, high mod-
ularity (Q = 0.67), and small-world characteristics. The latter are
reflected by a rather high clustering coefficient (〈c〉 = 0.23) and a
short average path length (

〈

l
〉

= 4.2), which yields a high value of
the small-worldness parameter (sw = 20 � 1). Importantly, such

FIG. 3. Color-coded values of critical inactivation parameter values p at which the global amplitude of oscillations M falls below 20% (upper row) and 80% (lower row) as
a function of the coupling strength (K) and the distance from the bifurcation point (σ ), separately for the three different aging strategies. Note that for intermediate coupling
strengths the excitable network’s macroscopic oscillations disappear at higher fractions of inactivated elements. In this regime, the network seems to be in certain ranges
more dynamically resilient to targeted inactivation of high-degree nodes than random inactivation or inactivation of peripheral nodes.
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topological features are found in a plethora of biological systems
at different scales of organization, including intercellular and neu-
ronal networks.36 In Fig. 1, we show a typical network structure
along with the corresponding degree distribution and main net-
work parameters. Notably, the degree distribution deviates from the
power-law distribution, and thus the network can be characterized
as a broad-scale or a weakly scale-free network.43,44

C. Aging in a network of excitable elements and

evaluating the collective network activity

The oscillators are arranged in two subsets, inactive and active,
with their sizes being p ∗ N and (1 − p) ∗ N, respectively, where p
is the ratio of inactive oscillators. By increasing the ratio of inactive
oscillators by setting the external stimulus J outside the oscillatory
regime, the system then undergoes an aging transition. An individ-
ual oscillator is considered inactive if its parameters are changed so
that its solution, if the oscillator was uncoupled, becomes a fixed
point. We define Ji = −σεi if the ith oscillator is in the inactive set
and Ji = 0 if it is in the active set. A parameter σ is introduced to
specify how far from the bifurcation point (oscillatory regime) the
oscillator is placed. Higher values of σ indicate a larger distance
from the bifurcation and thereby a stronger degree of inactivation.
To quantify the global oscillatory activity of the network M, we

compute the root mean square amplitude on the variable x. M is

then defined as M =
√

〈(X − 〈X〉)2 〉, where X =
∑N

i=1 xi/N is the
sum over all oscillators at time t and the angle brackets signify an
average over time T. To minimize the effect of any transient phe-
nomena on amplitude M, the traces for first t = 200 were discarded.
The results presented in the paper were obtained by averaging M
over up to 80 different realizations of network configurations and
initial conditions for each set of parameters.

III. RESULTS

In our study, we systematically investigated how the global
amplitude M changes as a function of the ratio of inactive oscil-
lators p, coupling strength K, and aging strength σ . Additionally,
in our simulations, we considered and compared three aging sce-
narios. Random inactivation of nodes and two scenarios where the
oscillators were made inactive progressively in either decreasing
(hub nodes first) or increasing (peripheral nodes first) order of their
degree ranks. We start by showing in Fig. 2 how the global oscillatory
activity deteriorates as a function of inactivated oscillators for differ-
ent sets of parameters and strategies. For weak coupling (K = 0.02),
M decreases rather continuously, whereby the fastest deactivation
is attained when high-degree nodes are targeted first and the slow-
est when the low-degree nodes are preferentially placed before the

FIG. 4. The color-coded differences between the critical p values at which the global network activityM falls below 20% (upper row) or 80% (lower row) as a function of K and
σ for the three different combinations: random inactivation minus targeted inactivation of high-degree nodes (left column), random inactivation minus targeted inactivation of
low-degree nodes (middle column), and targeted inactivation of low-degree nodes minus targeted inactivation of high-degree nodes (right column). Note that the color-bars
are different for each panel. Negative values in each plot indicate that for the subtracted strategy type the network displays a greater dynamical robustness.
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bifurcation. These differences become more pronounced if the dis-
tance to the oscillatory regime is larger (σ = 8). Interestingly, as
the coupling increases (K = 0.056), the network remains intact for
a higher fraction of inactivated oscillators if hubs are targeted first,
but only if the oscillators are not placed far from the bifurcation.
Remarkably, when the coupling is further increased (K = 0.19), the
sequence changes completely so that the excitable network loses its
dynamic integrity the fastest when the peripheral nodes are targeted
first, but again only for smaller displacements from the oscillatory
regime (σ = 2.5). Finally, if the coupling is very strong (K = 0.64),
targeting the high-degree nodes is the most effective way to abolish
global network activity, irrespective of the distance from the bifur-
cation point. Apparently, with increased coupling, the transitions
do not only become steeper but can also display non-trivial behav-
ior, particularly for intermediate values of coupling, which will be
further and more systematically investigated in continuation.

In Fig. 3, we present the color-coded values of fractions p at
which the global network amplitude M falls below 20% (upper row)
and 80% (lower row) of its initial value (p = 0) as a function of
the coupling strength (K) and the distance from the bifurcation
point (σ ). It can be noticed that the network’s dynamical activity
strongly depends on the strategy with which individual compo-
nents are deteriorated and that particularly the coupling strength

affects the aging transition in an interesting manner. Specifically,
for intermediate coupling strengths, macroscopic oscillations in the
excitable network vanish at higher fractions of inactivated elements
than in the cases of a weak or strong coupling regime, which is most
pronounced when the hub nodes are inactivated first. In these cir-
cumstances, the network seems to be dynamically more robust to
targeted inactivation also when compared to random inactivation,
or when peripheral nodes are put below the bifurcation point first.
This has been noticed already in Fig. 2 and will be further explored
in continuation. Moreover, the parameter σ reflecting the distance
from bifurcation has in principle a more monotonous role, but the
analysis reveals that the most interesting behavior can be noticed
only if the oscillators are not put too deep into the excitable regime.

To assess how the strategy of inactivations with regard to the
coupling strength and the distance from the bifurcation affects
the excitable network dynamics in further detail, we show in Fig. 4
the color-coded differences between the critical p values presented
in Fig. 3. Specifically, we subtracted the values of fractions of inacti-
vated oscillators at which the amplitude of macroscopic oscillations
falls below 80% or 20% for the three different combinations: (i) ran-
dom inactivation minus targeted inactivation of high-degree nodes
(left column), (ii) random inactivation minus targeted inactiva-
tion of low-degree nodes (middle column), and (iii) the difference

FIG. 5. The amplitude of individual oscillatorsMi for different values of coupling (K), distances from bifurcation point (σ ), fractions of inactivated oscillators (p), and strategies
used to place oscillators from the oscillatory to the excitable state: at random (left column), high-degree nodes first (middle column), low-degree nodes first (right column).
Red and green dots denote inactivated and unaffected oscillators, respectively. Note that the indices of oscillators i correspond to their node degree ranks, so that i= 300
stands for the oscillator with the highest number of connections. Evidently, if peripheral nodes are targeted, their amplitude immediately drops close to zero. In contrast, if
hub nodes are disabled first, their amplitude remains almost normal due to their coupling with many other normally active oscillators.
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between targeted inactivation of low-degree and high-degree nodes
(right column). Negative values in these plots indicate that the sub-
tracted strategy is more favorable in terms of the dynamical robust-
ness of the excitable network. Please note that the color-scales differ
in each panel. The interesting patterns in these panels indicate that
the examined parameters indeed affect the aging transition in a non-
trivial way, especially when the oscillators are not kicked too far from
the oscillatory regime. This in combination with intermediate values
of coupling strengths results in counterintuitive behavior and speci-
fies thereby the parameter regions where the differences between the
structural and dynamical robustness are the most pronounced.

Finally, to gain more mechanistic insight, we assess how for
specified sets of parameters, the amplitudes of individual oscilla-
tors Mi in the network change when they are targeted at random
or when the high-degree or low-degree nodes are inactivated first.
Results for two intermediate values of coupling strength (K = 0.056
and K = 0.19) and for selected sets of parameters that correspond
to the second and third panels in Fig. 2 are shown in Fig. 5. When
peripheral nodes are put in the excitable regime first (right column,
upper row), their amplitude immediately drops close to zero. In con-
trast, when hub nodes are targeted first, their amplitude remains
nearly normal, as they are coupled to many other oscillators that
are normally active. Moreover, when oscillators are disabled by ran-
dom, most often peripheral nodes are affected, which, in turn, leads
to the deterioration of their activity. For that reason, this strategy
is less advantageous than targeted inactivation of high-degree oscil-
lators and only slightly more favorable than targeted inactivation of
low-degree oscillators (see Fig. 2, the second panel in the upper row).
Conceptually, very similar behavior is noticed at the higher coupling
value (lower row, K = 0.19), except that due to stronger interaction
the amplitude of individual oscillators drops close to zero at higher
fractions of inactivated units. The results presented in Fig. 5 explain
the counterintuitive notion that the network’s dynamical robustness
can be the greatest when preferentially hub nodes are inactivated.

IV. CONCLUSIONS

The loss of the macroscopic oscillatory activity in different
classes of networks due to the failure of its microscopic constituents
is a vibrant topic in the scientific community and has many prac-
tical applications in physical, biological, and engineering systems.
It is, therefore, of paramount importance to investigate how dif-
ferent circumstances affect the macroscopic activity when some of
the microscopic dynamical units lose their self-oscillatory behavior
due to breakdowns. This issue is particularly relevant in biologi-
cal systems research, where the collective function often arises from
the interactions of individual oscillatory units that can progressively
malfunction under pathological conditions. In this paper, we aimed
to further investigate aging transitions in a realistic biological net-
work constituted by heterogeneous excitable elements. This setting
can be used to describe a plethora of biological systems, such as neu-
ronal ensembles, populations of cardiac and other smooth muscle
cells, multicellular syncytium formed by pancreatic endocrine cells,
social systems, etc.45–50 In our study, we numerically investigated
how different physiological determinants affect the transition to a
macroscopically inactive state. Specifically, the interplay between
the distance from bifurcation, coupling strength, and the strategy

of targeting the oscillators in the network was found to profoundly
affect the aging transition, whereby under specific circumstances
even a counterintuitive and non-trivial behavior could be noted.
Perhaps, the most striking observation is that for some intermedi-
ate coupling strengths, the network remains its global activity for
the highest fraction of inactivated units when the high-degree nodes
are targeted first. This goes in hand with previous observations that
oscillatory networks can be highly fragile to targeted inactivation of
low-degree nodes, but only under specific circumstances, such as
weak coupling.21,22 We studied this phenomenon in further detail
and revealed that the most efficient strategy to inactivate the net-
work does not only non-monotonically depend on the coupling
strength but is also crucially affected by how far from the bifurcation
point individual oscillators are poised. Notably, we also found that
within reasonable limits, the observed behavior does not depend on
the network size.

The distance from a bifurcation point and the coupling
strength have both important implications for real excitable sys-
tems. The distance from the oscillatory regime affects the switching
behavior of the system and the sensitivity to perturbations and can,
therefore, play a critical role in determining the stability of neuronal,
cardiac, or hormonal rhythms.51 Experimentally, the degradation of
the collective activity in ensembles of excitable cells is often studied
by means of optogenetic silencing.52,53 By these means, the degree of
hyperpolarization, which resembles how far from the active state a
cell is poised, can be tuned, representing thereby a relevant factor
to consider when studying such perturbations of the global activity
in tissues. Moreover, the coupling strength between excitable cells
can change under various physiological and pathophysiological con-
ditions. Changes in the extracellular conditions can, for example,
regulate the expression or activity of gap junctions, which can, in
turn, modulate intercellular interactions on different timescales.54,55

Changes in coupling between excitable cells also occur during patho-
genesis, such as in neurodegenerative diseases, epileptogenic activ-
ity, and diabetes56–58 As a result, the nature of the aging transition in
excitable tissues during aging, or disease progression, when individ-
ual cells lose their self-oscillatory behavior due to malfunction can
also be influenced by the associated changes in cell-to-cell interac-
tions. The strategy how individual cells are targeted also has a strong
biological meaning. Random targeting refers to malfunctions with-
out any specific criteria, such as random mutations or damage of
cells. On the other hand, preferential targeting involves selecting
a subset of cells with specific characteristics. Hub cells often have
higher metabolic demands and can be more susceptible to the accu-
mulation of oxidative damage. In addition to their high degree of
connectivity and their involvement in multiple cellular pathways,
this can make them more vulnerable to stressors, insults, or apop-
tosis. In this regard, theoretical as well as experimental studies on
networks of excitable beta cells have shown that targeting certain
subpopulations of cells can much more affect the function of the
multicellular syncytium than others.52,59,60 Furthermore, in certain
physiological processes, such as cell competition or neuronal devel-
opment, the elimination of peripheral elements is favorized before
the central ones. Apparently, targeting of different types of cells in
the multicellular networks may have distinct consequences for tis-
sue function during the onset of age-related or other diseases.52,61,62

Finally, heterogeneity is another genuine characteristic of biological
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networks. In real excitable networks, individual components are
not identical but heterogeneous in their activities and responses.63,64

This aspect has also been included in our computational model by
introducing randomness to one of the parameters, which has led to
variability in intrinsic oscillation frequencies.

In sum, in our study, we have shown that aging transition in a
network of coupled excitable oscillators is a dynamical phenomenon
that is influenced by many factors. Our systematic analyses indicate
that the degradation of macroscopic activity is governed in a non-
trivial manner by the interplay between the coupling strength, the
distance from the bifurcation point, and the type of strategy used
to place the oscillators from the oscillatory to the excitable regime.
Our findings thus provide novel insights into the understanding
of the dynamical robustness in specific biological networks and, in
addition, point out possible future experimental studies in excitable
tissues in which these concepts could be further investigated by
optogenetic silencing or photoablation.
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