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ABSTRACT

Collective risk social dilemmas are at the heart of the most pressing global challenges we are facing today, including climate change miti-
gation and the overuse of natural resources. Previous research has framed this problem as a public goods game (PGG), where a dilemma
arises between short-term interests and long-term sustainability. In the PGG, subjects are placed in groups and asked to choose between
cooperation and defection, while keeping in mind their personal interests as well as the commons. Here, we explore how and to what extent
the costly punishment of defectors is successful in enforcing cooperation by means of human experiments. We show that an apparent irra-
tional underestimation of the risk of being punished plays an important role, and that for sufficiently high punishment fines, this vanishes
and the threat of deterrence suffices to preserve the commons. Interestingly, however, we find that high fines not only avert freeriders, but
they also demotivate some of the most generous altruists. As a consequence, the tragedy of the commons is predominantly averted due to
cooperators that contribute only their “fair share” to the common pool. We also find that larger groups require larger fines for the deterrence
of punishment to have the desired prosocial effect.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147226

With worsening global climate change, how to reduce carbon
emissions has become a challenge, which is a collective risk
dilemma, displaying the contradiction between short-sighted
behavior and farsighted behavior of human beings. To avoid
the problem of second-order free-riding, we introduced costly

punishment with deterrence where all payers in the same group
pay for the punishment. In the carbon emission games, we quan-
titatively studied the role of deterrence in promoting cooperation.
When the risk of being punished is not large enough, players tend
to obviously underestimate the possibility of punishment, leading
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to the wide spreading of myopic behavior. This is why people tend
to do nothing in carbon emission games, making global warming
more and more serious. Only when the probability of being pun-
ished is high enough, the effective deterrent arises, where most
players become cooperators who only contribute a “fair share”
to the public pool, thus avoiding the tragedy of public of carbon
emissions. This provides important enlightenment for solving the
problem of collective risk dilemmas, such as carbon emissions.

I. INTRODUCTION

Social dilemmas are common in human society. For example, it
is well-known that human activities have already changed global cli-
mate through the emission of greenhouse gases, especially CO2, into
the atmosphere.1,2 If we do not reduce the release of these green-
house gases, much greater changes, such as global warming and
sea-level rise, will become inevitable consequences.3–6 To this end,
intergovernmental cooperation and coordination are necessary.7–10

A dilemma, thus, naturally poses itself: a severe reduction might
depress economy and lead to less short-term economic benefits,
whereas implementation of insufficient—or no—measures might
cause severe climate changes and huge economic losses in the mid
to long term.

To mimic this type of social dilemmas, a number of game
models stylizing the climate change problem with countries or
governments as players have been proposed during the past few
years.11–15 Typical examples include threshold public goods games
(PGGs), requiring minimal investment into a common pool;16 emis-
sion games, where each actor can only release a certain amount of
CO2 per year;17 climate negotiation games, which need a special
negotiation scenario;18 dynamic climate-change games, involving
stochasticity and scientific uncertainty19 and collective-risk social
dilemmas, where the investment aims to avert the risk of losing
more benefits due to climate change.20 Among these existing frame-
works, collective-risk social dilemmas have attracted most attention
both theoretically and experimentally.21–24 In this simple, paradig-
matic setup, subjects are divided into groups and repeatedly make
decisions of investment with a target goal in mind, which represents
the minimum amount the group needs to invest to avoid the unde-
sired outcome. In the present context, achieving the goal means that
the tragedy of commons, such as dangerous climate change impact,
could be mitigated; otherwise, the remaining individual wealth is at
stake and can be completely lost with a certain loss probability.

We then argue what are effective strategies to achieve the target
sum in collective-risk social dilemmas. Previous studies have shown
that punishment and reward may help enhance cooperation and
compliance.25–28 A recent research20 found particularly interesting
results: the higher the risk of losing the accumulated earnings is, the
easier it is to reach the collective target sum. Thus, climate change
mitigation is more likely to be achieved when the probability of mid-
and long-term climate impact is higher. Besides, free-riders or non-
cooperative players apparently have negative impact in achieving
a collective goal. Therefore, punishment to free-riders may be an
effective way to enhance the cooperation. Importantly enough, such
a strategic change in collective dilemmas can be mapped to actual
policies as recently discussed.13,29,30 When the enhanced cooperation

has outweighed the incurred cost of punishment, it is beneficial for
players to achieve the goal. Such a scenario has been observed in
experiments with a relatively long duration.31 Nevertheless, by now,
the effect of punishment remains largely unclear.32–34 For instance,
punishment in short repeated experiments (typically 10 rounds or
less) may enhance the cooperation but not the average payoff of the
group.31,35 Therefore, in this particular situation, costly punishment
may not be helpful to improve the probability of achieving the tar-
get sum. Furthermore, in such a situation, the total payoff could
be even negatively correlated with the use of costly punishment.35

We note, however, that it is unknown whether above conclusions
are also valid in a short repeated collective-risk dilemma game. To
our knowledge, it remains a challenge how to effectively achieve the
target sum in a short repeated experiment with costly punishment.

In this paper, we specifically investigate how costly punish-
ment influences individual investment in the collective-risk climate
dilemma game. To this end, we carry out a short (ten rounds) lab
experiment where subjects were divided into independent groups
of size M. Initially, all individuals had 20 monetary units (MU), and
each subject was able to contribute 0, 1, or 2 MU to her group. If after
10 rounds, the collective target of 10 · M was achieved, players keep
the money they saved. At variance with the traditional setup,20,36 we
introduced costly punishment: if there are free-riders—individuals
that invest 0 MU—with a probability p, referred to, henceforth, as
punishment risk, such subjects are fined with 3 MU. Moreover, pun-
ishment is not cost-free but has a cost of 1 MU that is evenly shared
by all group members. Note that in this way, whether to punish free-
riders or not is decided by punishing probability. Finally, if the group
does not reach the target amount, with loss probability 0.5 (the loss
probability is also 0.2 or 0.8 in some settings), all the individuals
lose their savings; otherwise, the remaining amount constitutes their
earnings. Through such a collective-risk game experiment, we are
able to investigate behaviors of players in scenarios where deterrent
of an uncertain punishing risk is present.

We further notice that the effectiveness of punishment is
accomplished through deterrence to players or subjective perception
of players to the punishing risk. Nevertheless, such an subjective esti-
mate could be different from the actual level of the risk.37 For very
effective deterrence, there is a chess maxim telling that “the threat is
stronger than its execution.” Indeed, in some cases, simulations have
shown that making a threat of punishment can reduce the need to
actually having to punish and improve cooperation.38 To examine
the efficiency of deterrence and how the punishment improves the
cooperation through deterrence, we asked for the players, every time
they acted as free-riders, whether they thought they will incur a fine.
Interestingly, we observe apparent irrational perception of the play-
ers who underestimate the risk to be punished. Besides, we also find
that deterrence effectively reduces the number of free-riders as well
as altruists. Our results show that costly punishment increases the
likelihood to collect the desired amount and, thus, plays a key role
in reaching the final goal. Besides, such a finding is much more pro-
nounced for a very high punishment risk where deterrence is largely
pronounced. We further uncover that the larger the group size is,
the harder it is to accomplish the collective target for even large val-
ues of the punishment risk. These results point to the existence of
a non-trivial tradeoff between enforcing measures and cooperative
multi-country governance in a climate change.
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II. RESULTS

We first examine the efficiency of deterrence, i.e., whether the
players respond rationally to a punishment risk in the game. The
results for the group size M = 5 are shown in Fig. 1. In Fig. 1(a),
we present the variation of the estimated punishment ratio, q, mea-
sured as the ratio between the number of times subjects believed
they will be punished and the number of times they opted to play
as free-riders as a function of the preset punishment risk p. As can
be clearly seen, the perceived risk is always below the diagonal, i.e.,
that most of the players are not risk-averse, that is, most of the
times that they did not contribute. They were willing to take the
risk—conjecturing that they would not be fined. The biggest differ-
ence between the risk-perception q and the actual risk p happens at
p ≈ 0.6. By conducting this kind of irrational behavior, these players
anticipate that their personal gains may be amplified. Such an under-
estimate implies that the efficiency of deterrence is possibly weak in
the current experimental setup with random enforcement of pun-
ishment. We note that a previous study indicated that a dynamically
concentrated sanction of the punishment as an alternative may help
improve the efficiency of deterrence.37 In the current study, how-
ever, the punishment is possibly very effective only when it takes
place with a high value of the punishment risk p. To verify this con-
jecture, in Fig. 1(b), we quantify the extent of deterrence for different
values of the punishment risk p, measured as the ratio between the
number of times subjects opted to play as non-zero contributors to
the target sum instead of free-riders in the presence of the punish-
ment risk and the total number of tests at given punishment risk p.
We observe that the extent of deterrence does not develop linearly
with the punishment risk p. For small values of p ≤ 0.6, the extent
of deterrence is stable at around 0.7. Thus, there is still an apprecia-
ble part of subjects who were willing to contribute none and took
the risk. However, when p ≥ 0.8, the ratio of this type of subjects
decreases sharply; i.e., almost all subjects were effectively deterred to
behave as none-zero contributors. Such a scenario is simultaneously
accompanied by a sharp decrease of the cost of the punishment in

the game, as shown in Fig. 1(c). We note, however, when the pun-
ishment risk p ≤ 0.6, the cost of the punishment increases slightly
for a larger value of p. This discovery seems consistent with previous
findings where the total payoff is negatively correlated with the use
of costly punishment.35

We then investigate how the cumulative investment in a game
evolves with the number of rounds for different values of the pun-
ishment risk p. In Fig. 2, we show results in both games in which the
final target was achieved (left panel) and games in which the final
target was not achieved (right panel), as a function of p for groups
of size M = 5. As can be seen in the figure, those games in which
the final amount required was reached are dominated by a steady
increase in the cumulative investments, without abrupt changes in
the shape of the curves, for both values of p. In fact, the slope
is roughly one, indicating that on average, individuals contributed
1 MU per player in each round of the game. The behavior for the
cases in which the final goal was not attained is, however, dependent
on p. When the punishment risk p is very low, e.g., p = 0.2, we found
that after five rounds, the players tend to contribute even less in the
presence of a punishment risk. This implies that the deterrence is
gradually relieved to the players. Nevertheless, as the punishment
risk increases, the average amount invested per round is higher
steadily. Interestingly enough, even for high values of p, it is most
of the times not enough. However, players do not stop contributing
to the PGG, though they invest less and less as they approach the last
round. Even if the probability of losing everything left at the end of
ten rounds is 1/2, the latter behavior is rooted in the need to avoid
additional losses that players might incur if they act as free-riders: as
fines are imposed with high probability, any eventual savings might
be taken out by the fine itself or by the cost of applying it after ten
rounds.

We further investigate whether the above results are valid for
different values of the group size M and how they affect the failure
probability of a game’s outcome. Figure 3 shows the cumulative
investments averaged over all the members of the group and the

FIG. 1. Dependence of (a) risk-perception q, (b) deterrence, and (c) the cost of the punishment on the punishment risk p. In (a), we show that the perception that the risk
to be punished, q, is lower than the likelihood of punishment p. The quantity of q is measured as the ratio between the number of times a player thought she was going to
be punished and the number of times the same subject played as a free rider. In (b), the extent of deterrence is measured as the ratio between the number of times subjects
opted to play as non-zero contributors to the target sum in the presence of the punishment risk and the total number of tests at given punishment risk p.
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FIG. 2. Evolution of the cumulative investment with the number of rounds. The two panels show the cumulative amounts contributed to the PGG as a function of the number
of rounds played for groups of sizeM = 5 and two values of the punishment risk p. The left panel displays how this quantity varies when considering only the games in which
the final target was achieved, whereas the right panel shows results averaged over games in which it was not. Interestingly, even in the case in which the target was almost
unreachable (left panel, p = 0.2), the players kept donating, which is a consequence of the punishment mechanism and that the loss probability was set to 0.5. Error bars
represent the standard error of the mean (SEM).

failure probability as a function of the size of the groups for four
different values of the punishment risk p after ten rounds. We also
show in panel (c) the same results displayed in (b) but represented
as a function of p for fixed values of the group sizes. The left (light
blue) bars in each set of Figs. 3(a) and 3(b) display results for p = 0,
which corresponds to the situation in which there is no punishment
to free-riders. Two features are worth highlighting: the number of
experiments for which the target amount was not achieved (failure
probability) is remarkably high, which in turn increases with the
size of the group; see also Fig. 3(c). This is a consequence of the
low amount contributed to the PGG in all cases, 7.5785 ± 0.390 02,
4.791 67 ± 0.327 73, and 4.025 ± 0.286 62 for M = 2, M = 5, and
M = 10, respectively. However, when the punishment (namely,
p > 0) comes into play, the fraction of failures starts to drop, leading
to an increase in the number of PGG in which the final target is

reached. Interestingly, this decrease of the fraction of failures is sig-
nificant only when the probability of being fined is large enough.

Indeed, for p ≤
M(1−p∗)

3M+1
(where p∗ is the loss probability, see Sec. IV),

the more rational strategy to maximize benefits is to free ride. As p
increases beyond this bound, adopting a fair-share strategy is the
best, as even a single defector would earn less. However, as it can
be seen in the figure, only for high values of p (beyond p = 0.8 in
our case), punishment has an impact on the players’ behavior. This
implies irrational perception of the players who initially underes-
timate the risk to be punished and is consistent with our previous
findings presented in Fig. 1. As for the dependence with the size
of the group, the same pattern with respect to the case p = 0 is
observed, as shown more explicitly in Fig. 3(c). The increase of aver-
age investment and the drop of failure probability both imply that
the deterrence due to the punishment is effective for different sizes

FIG. 3. Average investment and failure probability as a function of the group size M and p. Panels (a) and (b) show both quantities for four different values of the punishment
risk p, while panel (c) represents the fraction of failures as a function of p and M. In (a) and (b) and for all groups of histograms, the values of the punishment risk p are as
indicated. We found that punishment is effective only for high values of p, meaning that free-riders will be fined with a high probability. The dependence with the group size
shows that for all values of p < 1, the larger the size of the group is, the less amount is contributed and the harder it is to achieve the final goal. Error bars represent the
standard error of the mean (SEM).
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FIG. 4. Average investment of subjects and the failure rate of groups during ten rounds of a collective-risk dilemma game depending on punishment risk p for different loss
probability p∗. The values of loss probability risk p∗ are 0.2 [panel (a)], 0.5 [panel (b)], and 0.8 [panel (c)].

of groups. Nevertheless, only when p = 1, the probability of fail-
ure is measured to be 0 for the largest group in our experiments
(M = 10) and the average amount contributed increases with M
(10 ± 0.124 03, 10.15 ± 0.1163 and 10.25 ± 0.178 13 for M = 2,
M = 5, and M = 10, respectively). These findings, hence, suggest
that the larger the size of the groups is, the higher the punishment
to free riders should be for the final goal to be attained. Further-
more, the results above seem robust against different values of the
loss probability (Fig. 4).

It is interesting to observe the behavior of the failure rate for
different values of the loss probability p∗ while keeping small pun-
ishment risk p = 0.2 among panels (a)–(c) in Fig. 4. For example, as
p∗ grows from 0.2 to 0.5, it is shown that the failure rate decreases
from 0.6 to 0.35 with a minor increase of the average investment.
We believe that the key contributors of such behavior are free-riders

in the group. Our argument is the following. The free-riders usu-
ally give a higher priority on improving their own earnings than on
common interests. Nevertheless, when both p and p∗ are small, even
free-riders would feel that the danger of loss is small, and the pos-
sible loss may be largely avoided by cherishing common interests
when the result is on the margin. As long as such a strategy works, it
would effectively decrease the failure rate of groups and has a much
less effect on the average investment when p∗ increases. As shown
in panels (a) and (b), the strategy still holds when p∗ mounts to 0.5.
However, when p∗ continues growing, free-riders gradually feel that
the danger of loss is high enough; thus, for better personal benefits,
they focus more on their own earnings instead of common interests.
As a result, we observe a high failure rate of 0.3 with p∗ = 0.8 in
panel (c), although high p∗ enhances noticeably higher investment
from others.

FIG. 5. The distribution of classes of players as a function of the punishment risk p for different group sizes M. Increasing the punishment risk reduces the number of
free-riders in the game, but at the expense of a decrease in the number of maximal contributors. As a result, most of the players adopt a fair-share strategy, which, however,
is not enough to reach the final target in many of the games, as indicated by the fraction of failures in Fig. 3. The sizes of the groups are, from (a) to (c), M = 2, M = 5, and
M = 10, respectively.
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Next, we analyze individual behavior. We consider three differ-
ent possibilities: (i) selfishness, typifying free riders that contribute
0 to the PGG but obtain the largest benefit if the global target is
achieved; (ii) fairness, characterizing those individuals contributing
the fair-share of 1 MU; and (iii) altruism, describing the behavior of
those individuals that contribute the most (2 MU). Figure 5 shows
the distribution of the three behaviors as a function of the punish-
ment risk p for different group sizes. As it can be seen, regardless
of the group size, the number of free-riders decreases in general
when the punishment risk is nonzero and grows. Also, this trend is
more apparent when players mostly believe that they will be pun-
ished with a high punishment risk p. These results indicate that
the deterrence comes into play for p > 0 and forces free riders to
behave as fair-share investors to avoid punishments. The opposite
trend is observed concerning the number of subjects contributing
the fair-share. Interestingly enough, the deterrent effect of punish-
ment makes altruistic contributions to decrease as well. Admittedly,
the selfish and altruistic investments go hand-to-hand, namely, as
soon as the number of free-riders decreases due to the higher val-
ues of the punishment risk, the number of maximal contributions
does not remain constant but also decreases in favor of the fair-share
behavior. We argue that the altruists may have realized a bigger
probability of the goal achieved, thus strategically choose to con-
tribute less while not affecting the outcome. Indeed, as seen in Fig. 2
for the games in which the final goal was achieved, there is no abrupt
change in the amounts contributed in each round of those games,
which is a further indication that the fair-share strategy is quite sta-
ble as rounds go by. Also, for different group sizes, we do not observe
significant variations of the previous patterns, except for the largest
size M = 10 and p = 1, a scenario in which almost all players (87%)
contribute a fair amount. Note that the latter case shows the lowest
number of free-riders but also of an altruism level.

III. DISCUSSION

The results of the present collective-risk social dilemma exper-
iments have important implications. Even if our experimental setup
does not capture all the complexities of a collective governance prob-
lem, such as agreeing on measures to mitigate dangerous climate
changes, it certainly gives further insights into a class of dilem-
mas—the tragedy of commons39—that can provide hints to interpret
and shape the dynamics in dilemmas. Our findings show that pun-
ishment accomplished through appreciable deterrence could be an
effective mechanism to achieve global targets in the current con-
text. At the same time, however, we have shown that in order for
such an enforcing measure to be efficacious, it should be perceived
as almost certain; otherwise, its effects might be blurred. Hence, if
we realize that individuals, institutions, or the private sector are hes-
itant to provide a collective good without being enforced because
the short-term benefits of defection are higher, and then it follows
that international treaties should necessarily compel governments
to adopt measures aimed at overcoming those short-term incentives
to free ride.

In conclusion, and with all due caution, the present study
suggests that in climate negotiations, measures, such as imposing
economic sanctions to non-cooperative countries, might be effec-
tive. The results from our collective-risk games are robust against

different group sizes and/or different loss probabilities. With appre-
ciable deterrence, the behaviors of all players become convergent as
fair-share investors while maximizing the probability to achieve the
target sum.

Compared to the previous result available,20 our results are not
very different. Specifically, Ref. 20 reported, for groups of size six,
that with a loss probability of 1/2, only one out of ten groups reached
the target. That is the same result obtained in our experiment for
M = 5 and p = 0, the closest comparable setup.

IV. METHODS

A. Maximizing payoffs

As mentioned before, even with punishment in place, free-
riding could be the rational strategy to maximize benefits depending
on the value of the punishment risk p and of the loss probability p∗.
To see this, let us assume that all players behave in the same way. In
one scenario, where all players are free-riders, the target will never
be reached. In the second scenario, where all players adopt a fair-
share strategy, the target will always be attained. Thus, when is it
more profitable in terms of the likelihood to maximize benefits to
play as a free-rider or as a fair-sharer? The final expected payoff of
the free-riders in the first situation would be

5
f

(1) = 5i
−

N
∑

j=1

(

3p +
p

M

)

,

while in scenario two, it would be

5
f

(2) = 5i
−

N
∑

j=1

x,

where 5
f

(·) and 5i are, respectively, the final expected payoff and
the initial capital, M is the size of the group, N is the number of
rounds played, and x is the contribution to the common pool. Thus,

for defection to be better than a fair-share, the relation 5
f

(1) ≥ 5
f

(2)

should be verified, which leads to the condition (setting x = 1)

p ≤
M

3M + 1
.

As free-riders only collect their benefits with probability (1 − p∗),
the final condition for p is

p ≤
M(1 − p∗)

3M + 1
.

B. Experimental sessions

The experiments of collective-risk social dilemmas were con-
ducted from July 2013 to November 2013, and they involved a total
of 720 freshmen and sophomores (coming from different majors)
at Wenzhou University, China. Consent from the subjects was
obtained before starting the experiments and after they answered
a questionnaire. Each experimental session required the simulta-
neous participation of 20 subjects, who were randomly divided
into several groups (namely, the setup was completely anonymous).
Both the size M and the composition of the groups were kept con-
stant during the whole experiments. Within each group, subjects
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repeatedly played ten independent rounds of the game. Each subject
started with an initial endowment of 20 monetary units (MU). Each
experimental round consisted of the following steps:

• At each round, all the subjects were asked simultaneously
whether they would independently contribute 0 MU, 1 MU, or
2 MU to the climate account.

• After taking their investment decisions, every subject was shown
the following information during 30 s: (i) individual contribu-
tion (0 MU, 1 MU, or 2 MU), (ii) the collective investment of
his/her group in the current round, and (iii) the remaining gap
between the cumulative contribution and the required target
sum of the group.

Similar to previous experimental setups,20 the total investment
required for one group of size M to reach its target was set to
10 · M (equivalent to 1 MU per subject per round on average). If
the overall contribution after ten rounds was equal or greater than
the collective target, individuals could keep the money saved. On
the contrary, if the target sum was not reached, subjects could lose
all their savings with a loss probability that we set to 0.5 in most of
the sessions carried out.

Based on the above-mentioned basic setup of the collective-risk
dilemma game, we introduced costly punishment into the exper-
iments. Distinguishing from previous theoretical research studies
about pool- or peer-punishment in game theory,33 the implemen-
tation of punishment in the present work is directly related to
the performance of the group, and the cost of imposing a fine to
non-cooperators was evenly distributed among all group members,
regardless of their investment behavior, more specifically, if at any
round of the game, there exist non-cooperators—people that con-
tribute zero to the PGG. To avoid the problem of second order
free riders, the decision of the punishment is made based on the
environment, which is controlled by the probability p. The cost of
punishment is paid in the form of tax, implying that participants
may have to pay the cost even in the case of punishing them-
selves. Thus, a fine of 3 MU is imposed to all those selfish players
in the group who behave as free-riders with the probability p. At
the same time, the total cost of punishment, namely, 1 MU per
selfish player—since the cost of 1 MU is associated with each fine
applied—is equally distributed among the M players of the group.
In addition, there is no punishment with the probability of 1 − p.
Such kind of punishment can be called an “imperfect” punishment.

Finally, at the end of the experimental session, the remain-
ing monetary units (MU) were changed into real money. Earn-
ings—including the show-up fee—ranged from 20 to 40U, and the
conversion rate applied was 1 MU = 1U. The value of the show-up
fee in our experiment corresponds to the minimum earnings. Here,
the earnings of every participant include a fixed base salary and a
floating commission. Every participant could receive the base salary
as long as he/she has shown up, whereas the commission received
depends on his/her strategy as well as his/her partners’. The earnings
of participants are, thus, fluctuating, while the minimum is the base
salary. Altogether, the results reported here come from 232 groups
(120 groups of size M = 2, 64 of size M = 5, and 16 of size M = 10).
The instructions and questionnaires took 5–10 min, and the entire
game took 30–35 min for ten rounds. The average earning of all the
participants was 32.2U.
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