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a b s t r a c t

Synchronization phenomena refer to the emergence of common temporal patterns
among clusters of interacting units in a complex network. In information transmission,
lasers’ synchronization plays a key role in facilitating information communication. This
paper is devoted to studying the synchronization of globally coupled identical laser
models via the linear and nonlinear forms of diffusive couplings. In this regard, the
master stability function and time-averaged synchronization error are employed as
the analytical and numerical approaches to examine complete synchronization. Apart
from the complete synchrony, the constructed networks are explored to find other
synchronization patterns and multistability. The results obtained from the master sta-
bility function analysis, which are further approved by the numerical outcomes, show
that when coupled through the linear diffusive function, the interacting laser models
achieve complete synchrony in a small value of the coupling parameter. However, in the
nonlinear case, complete synchronization cannot be attained. Moreover, multistability
can be observed in different network states, including cluster synchronization, chimera,
and solitary states.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In real-world applications, many systems can be found consisting of highly interconnected units, such as biological
ystems and the Internet network [1] or coupled mechanical systems [2]. Such interactive units can exhibit various
ollective dynamics. Nonetheless, collective behaviors gain significance when all or some units share a typical temporal
attern called synchronization [3]. Synchronization is a consequence of adding a forcing term to the systems or coupling
hem in a particular structure [4]. Thus, the emergence of the synchronization phenomena might lead to a specific process
r have a notable significance. For instance, from an information processing perspective, the synchronization of chaotic
ircuits brings high-rate and secure communications opportunities [5,6].
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Different types of synchronization have been defined based on experimental and practical observations as well
s simulated outcomes [7,8]. Complete synchronization, referring to the state wherein all interacting units form a
oherent cluster, is the most known type of synchronization [9]. In complex network analysis, complete synchronization
an be analyzed numerically and analytically through the master stability functions (MSFs) developed by Pecora and
arroll [10] in 1998. Due to the importance of complete synchronization emergence in complex networks, many studies
ave been conducted to examine the synchronization of dynamical systems in different fields [11–13]. Nevertheless,
efore reaching complete synchrony, different collective dynamics, including chimera [14,15], solitary state [16], cluster
ynchronization [17], phase synchronization [18], and lag synchronization [19], are feasible.
Chaotic dynamics in lasers have been primarily investigated in the last decades, including experimental investigations

nd numerical investigations on suitable models. For instance, Haken developed a mathematical single-mode laser model.
grawal [20] came up with a mathematical model of semiconductor lasers. Ciofini et al. [21] introduced the four-level CO2
aser model. Meucci et al. [22] proposed a CO2 laser model with minimal nonlinearity and feedback. After the seminal
aper on chaos synchronization [23], lasers continue to play a crucial role in showing how their synchronization can
e used in communicating information in both digital and analog forms [24]. Different studies have been elaborated
n the synchronization of laser models. For example, Sugawara et al. [25] experimentally and mathematically observed
ynchronization in a network of two lasers coupled in the master–slave configuration. More clearly, they studied the
ynchronization of two coupled CO2 laser models, one of which (slave) was driven by the output of the other (master).
he authors found the entrainment of chaos when there was a slight difference between the master and slave systems’
olutions. Employing the nonautonomous, periodically forced CO2 laser model, Mariño et al. [26] also gave evidence of
synchronization in a structure consisting of a master and a slave laser model. By calculating the synchronization error,
they found the criteria (the proper value of the coupling strength) for synchronizing two coupled periodically-forced CO2
laser models. DeShazer et al. [27] observed phase synchronization in an array of three chaotic lasers. According to their
results, to asses phase synchronization, the numerical measure plays an important role. The observation of in-phase and
anti-phase synchronization between two Semiconductor quantum dot lasers coupled through the beating of lasing modes
was reported by Hillbrand et al. [28]. They experimentally showed that both states could occur in the same configuration
by changing the damping losses. In the study conducted by Mihana et al. [29], the lag synchronization of three lasers
configurated in an undirected ring network was used as the basis of a decision-making operation. The three laser models
were unidirectionally coupled in their studied network with a predetermined time delay and different coupling strengths.
The emergence of cluster synchronization and chimera in a network of delay-coupled lasers was also reported by Zhang
et al. [30]. They mainly focused on the formation of synchronous and asynchronous clusters in random and power grid
networks. The formation of such synchronous clusters in a complex network of coupled lasers was also announced
by Kouomou and Woafo [31]. In this study, the authors considered a lattice (two-dimensional network configuration)
network of chaotic current-modulated semiconductor lasers coupled through linear diffusive functions and studied the
synchronization patterns in the constructed network. Röhm et al. [32] also found the chimera state in a fully connected
network of delay-coupled lasers. This study examined the formation of the synchronization patterns in a network of four
laser models.

The laser model investigated in the current study has had a tremendous impact since it highlighted both deterministic
chaos and multistability for the first time, recently proposed in [33]. Considering the enormous impact of multistability in
various fields, even very distant from laser physics, we believe that the synchronization in this model has a very general
character. In network analysis, the diffusive coupling functions in fully connected units are the most common example of
shift-invariant couplings [34]. Thus, this paper investigates the synchronization analytically using the MSF analysis and
numerically using the time-averaged synchronization error in a network of globally coupled laser models with linear and
nonlinear diffusive coupling functions. The built network is also explored in-depth to find other synchronization patterns
and multistability. In Section 2, the mathematical definition of the studied network is given in detail. Section 3 includes the
analytical and numerical results obtained as a consequence of applying linear and nonlinear diffusive coupling functions.
In the end, the conclusions are presented in Section 4.

2. The network model

Considering pairwise connections, the network of globally coupled oscillators can be expressed as

Ẋ i = F (X i) + �

NX
j=1

GijH(X i;X j); (1)

where i = 1; 2; : : : ;N , N is the network size, X i = [xi; yi] is the state vector, F (X i) describes the dynamics of the
system considered as the ith node of the network, � is the coupling parameter, G is the connectivity matrix describing the
global/all-to-all network structure, and H(X i;X j) defines the coupling function. Note that Gij = 1 indicates that the ith
and jth oscillators are connected through a link. For any node, F (X i) follows the dynamics of the two-level laser model,
proposed by Meucci et al. [33], which is mathematically described as

F (X i) =

(
f (xi; yi) = −xi(1 + kI2m − yi)

; (2)

g(xi; yi) = −
 yi − �xyi + 
 p0

2
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Fig. 1. (a) The phase portraits and (b) the temporal pattern of a single node dynamics described by the two-level laser model. The parameters are
set at k = 12, � = 0:0025, B0 = 0:1, m = 0:02, fmod = 0:005, and � = 0:002. The initial conditions are (x0; y0) = (1; 1) for the chaotic attractor
(shown in royal purple), and (x′

0; y
′

0) = (2; 1) for the limit cycle (shown in aqua blue). Each node exhibits a chaotic solution in coexistence with a
period-1 limit cycle in this set of parameters.

where x is a fast variable indicating the laser intensity, the term k0(1 + kI2m) is the decay rate of the fast variable x with
non-modulated cavity loss k0 and modulation depth k. Here, k0 = 1 is consiered. Also, Im = B0 + m sin(2� fmodt) is the
ime-dependent modulation sinusoidal signal with the bias of B0, the amplitude of m, and the frequency of fmod. On the
ther hand, y denotes the slow variable reflecting the population inversion with a decay rate 
 . Moreover, p0 is the

normalized pump strength and � is the normalization factor of the fast variable x. Supposing the identical dynamics for
the network’s nodes, the model’s parameters are set at k = 12, 
 = 0:0025, B0 = 0:1, m = 0:02, fmod = 0:005, and
� = 0:002, wherein the original system is bistable (the coexistence of a strange attractor and a period-1 limit cycle).
Fig. 1 demonstrates the phase portraits and the temporal pattern of a single node dynamics (the two-level laser model)
set at the aforementioned parameters with the initial condition of (x0; y0) = (1; 1) for the chaotic attractor (shown in
royal purple), and (x′

0; y
′

0) = (2; 1) for the limit cycle (shown in aqua blue).
In this paper, a network of globally coupled oscillators (N = 100) is considered under two types of coupling functions

H(X i;X j), including linear diffusive and nonlinear diffusive coupling functions.

3. Results

The constructed network, described in Network (1), is explored in terms of synchronization, chimera, and multistability
under two different coupling functions (linear and nonlinear). For each scenario, the synchronization is investigated
analytically, using the MSF formalism [35], and numerically using the time-averaged synchronization error described as

E =

*
1

N − 1

NX
j=1
i̸=j



X j(t) − X i(t)


+

t

; (3)

where N is the network size, ⟨:⟩ is the symbol of time averaging, and ∥:∥ is the symbol of Euclidean norm.

3.1. Linear diffusive coupling function

In the first scenario, the oscillators are considered to be globally coupled through the linear diffusive function. Thus,
Network (1) can be rewritten as

Ẋ i =

8>>><>>>:
ẋi = −xi(1 + kI2m − yi)

+�

NX
j=1

Gij(xj − xi)

ẏi = −
 yi − �xyi + 
 p0

: (4)

Hence, in this case, the coupling function H(X i;X j) reads

H(X i;X j) = [xj − xi; 0]: (5)

In order to analyze the synchronization of the studied network analytically, the MSF analysis is performed on Network
(4). In the synchronization manifold X (X = (x ; y )), the state variables of all oscillators attain the same temporal
s s s s

3
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solution. Therefore, deeming X1 = X2 = · · · = XN−1 = XN = X s, and thus H(X i;X j) ≡ 0, the synchronization manifold
ecomes

F (X s) =

(
f (xs; ys) = −xs(1 + kI2m − ys)

g(xs; ys) = −
 ys − �xys + 
 p0
; (6)

hich is similar to a single oscillator dynamics. To perform the MSF analysis, a small perturbation �X i is added to the
ynchronization manifold for each oscillator. Accordingly, we have �X i = X i − X s, where �X i = (�xi; �yi). Therefore, the
dynamics of the variational equations can be obtained through

�Ẋ i = DF (X s)�X i+

�

NX
j=1

Gij

"
@H
@X i

����
(X s;X s)

�X i +
@H
@X j

����
(X s;X s)

�X j

#
;

(7)

here DF (X s) is the Jacobian matrix of F (X s). Supposing H(X i;X j) as Eq. (5), the variational equation described in Eq. (7)
changes into

�Ẋ i =

8>>><>>>:
�ẋi = Df (X s)�X i

+�

NX
j=1

Gij
�
�xj − �xi

�
�ẏi = Dg(X s)�X i

: (8)

Assuming A as the diagonal matrix whose elements on the main diagonal are the degrees corresponding to each node,
the Laplacian matrix L satisfies L = A − G. Consequently, �ẋi described in Eq. (8) can be written in terms of the Laplacian
matrix L as follows

�ẋi = Df (X s)�X i + �

NX
j=1

Gij�xj − �

NX
j=1

Gij�xi

= Df (X s)�X i + �

0@ NX
j=1

Aij�xj −
NX
j=1

Lij�xj

1A
−��xi

NX
j=1

Gij

= Df (X s)�X i + �

0@(N − 1)�xi −
NX
j=1

Lij�xj

1A
−�(N − 1)�xi

= Df (X s)�X i − �

NX
j=1

Lij�xj:

(9)

The block diagonally coupled Eq. (9) can be expressed in block diagonally decoupled form by diagonalizing the
eigenvalues of the Laplacian matrix L. Hence,

�Ẋ i =

�
�ẋi = Df (X s)�X i − ��i�xi
�ẏi = Dg(X s)�X i

; (10)

here �i is the eigenvalues of the Laplacian matrix L. Assuming �X i : (�xi; �yi) → �i : (� xi ; �
y
i ) and Ki = ��i as the

normalized coupling parameter, the variational equation becomes

��̇i =

(
��̇ xi = fx� xi + fy�

y
i − Ki�

x
i

��̇
y
i = gx� xi + gy�

y
i

: (11)

Since the considered network is homogeneous with global connections, we have �1 = 0, and �2 = �3 = · · · = �N−1 =

�N = N . The maximum Lyapunov exponent (MLE) of Network (11) leads to the MSF (	 ). Generally, when 	 < 0 for
all �i, where i = 2; : : : ;N , it can be concluded that the synchronization manifold X s is stable, which means that the
studied network can achieve synchrony. In our case, since �i = N for i = 2; : : : ;N , Network (4) can achieve synchrony
as soon as 	 (K ) < 0 for �2 = N . Fig. 2a demonstrates the MLE of the Network (11) for 0 ≤ K ≤ 0:05. Furthermore,
the time-averaged synchronization error is obtained numerically and shown in Fig. 2b. It should be noted that the initial
conditions are selected so that all oscillators behave chaotically in K = 0.
4
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Fig. 2. (a) The MSF and (b) the time-averaged synchronization error of Network (4), for 0 ≤ K ≤ 0:05. In this case, the two-level laser oscillators
are coupled via linear diffusive couplings in an all-to-all network configuration with N = 100. The oscillators achieve synchrony in K ≥ 0:0035. The
initial conditions are selected so that all oscillators exhibit chaotic behaviors in K = 0.

Fig. 3. (a) The spatio-temporal pattern, (b) the phase portraits, (c) the snapshot of the last sample, and (d) the time-series of N = 100 laser models
oupled via the linear diffusive coupling function in a global coupling network structure (Network (4)) for K = 4× 10−7 . In this coupling parameter
, the oscillators reach the chimera state.

Fig. 2 depicts that in the studied network (Network (4)), the coupled oscillators (through the linear diffusive coupling
unction) achieve complete synchrony as soon as the coupling parameter K reaches the critical value of Ks = 0:0035.
efore getting synchronous (0 ≤ K < 0:0035), Network (4) is investigated to find other synchronization patterns, such
s the chimera state, wherein the coherent cluster coexists with the incoherent one, solitary state, wherein all oscillators
ehave synchronously except for a few oscillators with a state different from the state of synchronous oscillators, and
luster synchronization, wherein some coherent synchronous clusters coexist. Fig. 3 represents that through the linear
iffusive coupling function in the global structure, the oscillators can become partially synchronized and reach the chimera
tate for K = 4 × 10−7. In the same framework, as shown in Fig. 4, another partial synchronization state, namely the
olitary state, is observed for K = 1 × 10−3. Furthermore, two-cluster synchronization is found for K = 2 × 10−3, which
s illustrated in Fig. 5.
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