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a b s t r a c t

Synchronization phenomena refer to the emergence of common temporal patterns
among clusters of interacting units in a complex network. In information transmission,
lasers’ synchronization plays a key role in facilitating information communication. This
paper is devoted to studying the synchronization of globally coupled identical laser
models via the linear and nonlinear forms of diffusive couplings. In this regard, the
master stability function and time-averaged synchronization error are employed as
the analytical and numerical approaches to examine complete synchronization. Apart
from the complete synchrony, the constructed networks are explored to find other
synchronization patterns and multistability. The results obtained from the master sta-
bility function analysis, which are further approved by the numerical outcomes, show
that when coupled through the linear diffusive function, the interacting laser models
achieve complete synchrony in a small value of the coupling parameter. However, in the
nonlinear case, complete synchronization cannot be attained. Moreover, multistability
can be observed in different network states, including cluster synchronization, chimera,
and solitary states.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In real-world applications, many systems can be found consisting of highly interconnected units, such as biological
ystems and the Internet network [1] or coupled mechanical systems [2]. Such interactive units can exhibit various
ollective dynamics. Nonetheless, collective behaviors gain significance when all or some units share a typical temporal
attern called synchronization [3]. Synchronization is a consequence of adding a forcing term to the systems or coupling
hem in a particular structure [4]. Thus, the emergence of the synchronization phenomena might lead to a specific process
r have a notable significance. For instance, from an information processing perspective, the synchronization of chaotic
ircuits brings high-rate and secure communications opportunities [5,6].
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Different types of synchronization have been defined based on experimental and practical observations as well
s simulated outcomes [7,8]. Complete synchronization, referring to the state wherein all interacting units form a
oherent cluster, is the most known type of synchronization [9]. In complex network analysis, complete synchronization
an be analyzed numerically and analytically through the master stability functions (MSFs) developed by Pecora and
arroll [10] in 1998. Due to the importance of complete synchronization emergence in complex networks, many studies
ave been conducted to examine the synchronization of dynamical systems in different fields [11–13]. Nevertheless,
efore reaching complete synchrony, different collective dynamics, including chimera [14,15], solitary state [16], cluster
ynchronization [17], phase synchronization [18], and lag synchronization [19], are feasible.
Chaotic dynamics in lasers have been primarily investigated in the last decades, including experimental investigations

nd numerical investigations on suitable models. For instance, Haken developed a mathematical single-mode laser model.
grawal [20] came up with a mathematical model of semiconductor lasers. Ciofini et al. [21] introduced the four-level CO2
aser model. Meucci et al. [22] proposed a CO2 laser model with minimal nonlinearity and feedback. After the seminal
aper on chaos synchronization [23], lasers continue to play a crucial role in showing how their synchronization can
e used in communicating information in both digital and analog forms [24]. Different studies have been elaborated
n the synchronization of laser models. For example, Sugawara et al. [25] experimentally and mathematically observed
ynchronization in a network of two lasers coupled in the master–slave configuration. More clearly, they studied the
ynchronization of two coupled CO2 laser models, one of which (slave) was driven by the output of the other (master).
he authors found the entrainment of chaos when there was a slight difference between the master and slave systems’
olutions. Employing the nonautonomous, periodically forced CO2 laser model, Mariño et al. [26] also gave evidence of
synchronization in a structure consisting of a master and a slave laser model. By calculating the synchronization error,
they found the criteria (the proper value of the coupling strength) for synchronizing two coupled periodically-forced CO2
laser models. DeShazer et al. [27] observed phase synchronization in an array of three chaotic lasers. According to their
results, to asses phase synchronization, the numerical measure plays an important role. The observation of in-phase and
anti-phase synchronization between two Semiconductor quantum dot lasers coupled through the beating of lasing modes
was reported by Hillbrand et al. [28]. They experimentally showed that both states could occur in the same configuration
by changing the damping losses. In the study conducted by Mihana et al. [29], the lag synchronization of three lasers
configurated in an undirected ring network was used as the basis of a decision-making operation. The three laser models
were unidirectionally coupled in their studied network with a predetermined time delay and different coupling strengths.
The emergence of cluster synchronization and chimera in a network of delay-coupled lasers was also reported by Zhang
et al. [30]. They mainly focused on the formation of synchronous and asynchronous clusters in random and power grid
networks. The formation of such synchronous clusters in a complex network of coupled lasers was also announced
by Kouomou and Woafo [31]. In this study, the authors considered a lattice (two-dimensional network configuration)
network of chaotic current-modulated semiconductor lasers coupled through linear diffusive functions and studied the
synchronization patterns in the constructed network. Röhm et al. [32] also found the chimera state in a fully connected
network of delay-coupled lasers. This study examined the formation of the synchronization patterns in a network of four
laser models.

The laser model investigated in the current study has had a tremendous impact since it highlighted both deterministic
chaos and multistability for the first time, recently proposed in [33]. Considering the enormous impact of multistability in
various fields, even very distant from laser physics, we believe that the synchronization in this model has a very general
character. In network analysis, the diffusive coupling functions in fully connected units are the most common example of
shift-invariant couplings [34]. Thus, this paper investigates the synchronization analytically using the MSF analysis and
numerically using the time-averaged synchronization error in a network of globally coupled laser models with linear and
nonlinear diffusive coupling functions. The built network is also explored in-depth to find other synchronization patterns
and multistability. In Section 2, the mathematical definition of the studied network is given in detail. Section 3 includes the
analytical and numerical results obtained as a consequence of applying linear and nonlinear diffusive coupling functions.
In the end, the conclusions are presented in Section 4.

2. The network model

Considering pairwise connections, the network of globally coupled oscillators can be expressed as

Ẋ i = F (X i) + ϵ

N∑
j=1

GijH(X i,X j), (1)

where i = 1, 2, . . . ,N , N is the network size, X i = [xi, yi] is the state vector, F (X i) describes the dynamics of the
system considered as the ith node of the network, ϵ is the coupling parameter, G is the connectivity matrix describing the
global/all-to-all network structure, and H(X i,X j) defines the coupling function. Note that Gij = 1 indicates that the ith
and jth oscillators are connected through a link. For any node, F (X i) follows the dynamics of the two-level laser model,
proposed by Meucci et al. [33], which is mathematically described as

F (X i) =

{
f (xi, yi) = −xi(1 + kI2m − yi)

, (2)

g(xi, yi) = −γ yi − αxyi + γ p0

2
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Fig. 1. (a) The phase portraits and (b) the temporal pattern of a single node dynamics described by the two-level laser model. The parameters are
set at k = 12, Γ = 0.0025, B0 = 0.1, m = 0.02, fmod = 0.005, and α = 0.002. The initial conditions are (x0, y0) = (1, 1) for the chaotic attractor
(shown in royal purple), and (x′

0, y
′

0) = (2, 1) for the limit cycle (shown in aqua blue). Each node exhibits a chaotic solution in coexistence with a
period-1 limit cycle in this set of parameters.

where x is a fast variable indicating the laser intensity, the term k0(1 + kI2m) is the decay rate of the fast variable x with
non-modulated cavity loss k0 and modulation depth k. Here, k0 = 1 is consiered. Also, Im = B0 + m sin(2π fmodt) is the
ime-dependent modulation sinusoidal signal with the bias of B0, the amplitude of m, and the frequency of fmod. On the
ther hand, y denotes the slow variable reflecting the population inversion with a decay rate γ . Moreover, p0 is the

normalized pump strength and α is the normalization factor of the fast variable x. Supposing the identical dynamics for
the network’s nodes, the model’s parameters are set at k = 12, γ = 0.0025, B0 = 0.1, m = 0.02, fmod = 0.005, and
α = 0.002, wherein the original system is bistable (the coexistence of a strange attractor and a period-1 limit cycle).
Fig. 1 demonstrates the phase portraits and the temporal pattern of a single node dynamics (the two-level laser model)
set at the aforementioned parameters with the initial condition of (x0, y0) = (1, 1) for the chaotic attractor (shown in
royal purple), and (x′

0, y
′

0) = (2, 1) for the limit cycle (shown in aqua blue).
In this paper, a network of globally coupled oscillators (N = 100) is considered under two types of coupling functions

H(X i,X j), including linear diffusive and nonlinear diffusive coupling functions.

3. Results

The constructed network, described in Network (1), is explored in terms of synchronization, chimera, and multistability
under two different coupling functions (linear and nonlinear). For each scenario, the synchronization is investigated
analytically, using the MSF formalism [35], and numerically using the time-averaged synchronization error described as

E =

⟨
1

N − 1

N∑
j=1
i̸=j

X j(t) − X i(t)
⟩

t

, (3)

where N is the network size, ⟨.⟩ is the symbol of time averaging, and ∥.∥ is the symbol of Euclidean norm.

3.1. Linear diffusive coupling function

In the first scenario, the oscillators are considered to be globally coupled through the linear diffusive function. Thus,
Network (1) can be rewritten as

Ẋ i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋi = −xi(1 + kI2m − yi)

+ϵ

N∑
j=1

Gij(xj − xi)

ẏi = −γ yi − αxyi + γ p0

. (4)

Hence, in this case, the coupling function H(X i,X j) reads

H(X i,X j) = [xj − xi, 0]. (5)

In order to analyze the synchronization of the studied network analytically, the MSF analysis is performed on Network
(4). In the synchronization manifold X (X = (x , y )), the state variables of all oscillators attain the same temporal
s s s s

3



M. Mehrabbeik, S. Jafari, R. Meucci et al. Communications in Nonlinear Science and Numerical Simulation 125 (2023) 107380

b

w
s

w

w

solution. Therefore, deeming X1 = X2 = · · · = XN−1 = XN = X s, and thus H(X i,X j) ≡ 0, the synchronization manifold
ecomes

F (X s) =

{
f (xs, ys) = −xs(1 + kI2m − ys)

g(xs, ys) = −γ ys − αxys + γ p0
, (6)

hich is similar to a single oscillator dynamics. To perform the MSF analysis, a small perturbation δX i is added to the
ynchronization manifold for each oscillator. Accordingly, we have δX i = X i − X s, where δX i = (δxi, δyi). Therefore, the
dynamics of the variational equations can be obtained through

δẊ i = DF (X s)δX i+

ϵ

N∑
j=1

Gij

[
∂H
∂X i

⏐⏐⏐⏐
(X s,X s)

δX i +
∂H
∂X j

⏐⏐⏐⏐
(X s,X s)

δX j

]
,

(7)

here DF (X s) is the Jacobian matrix of F (X s). Supposing H(X i,X j) as Eq. (5), the variational equation described in Eq. (7)
changes into

δẊ i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δẋi = Df (X s)δX i

+ϵ

N∑
j=1

Gij
(
δxj − δxi

)
δẏi = Dg(X s)δX i

. (8)

Assuming A as the diagonal matrix whose elements on the main diagonal are the degrees corresponding to each node,
the Laplacian matrix L satisfies L = A − G. Consequently, δẋi described in Eq. (8) can be written in terms of the Laplacian
matrix L as follows

δẋi = Df (X s)δX i + ϵ

N∑
j=1

Gijδxj − ϵ

N∑
j=1

Gijδxi

= Df (X s)δX i + ϵ

⎛⎝ N∑
j=1

Aijδxj −
N∑
j=1

Lijδxj

⎞⎠
−ϵδxi

N∑
j=1

Gij

= Df (X s)δX i + ϵ

⎛⎝(N − 1)δxi −
N∑
j=1

Lijδxj

⎞⎠
−ϵ(N − 1)δxi

= Df (X s)δX i − ϵ

N∑
j=1

Lijδxj.

(9)

The block diagonally coupled Eq. (9) can be expressed in block diagonally decoupled form by diagonalizing the
eigenvalues of the Laplacian matrix L. Hence,

δẊ i =

{
δẋi = Df (X s)δX i − ϵλiδxi
δẏi = Dg(X s)δX i

, (10)

here λi is the eigenvalues of the Laplacian matrix L. Assuming δX i : (δxi, δyi) → ζi : (ζ x
i , ζ

y
i ) and Ki = ϵλi as the

normalized coupling parameter, the variational equation becomes

δζ̇i =

{
δζ̇ x

i = fxζ x
i + fyζ

y
i − Kiζ

x
i

δζ̇
y
i = gxζ x

i + gyζ
y
i

. (11)

Since the considered network is homogeneous with global connections, we have λ1 = 0, and λ2 = λ3 = · · · = λN−1 =

λN = N . The maximum Lyapunov exponent (MLE) of Network (11) leads to the MSF (Ψ ). Generally, when Ψ < 0 for
all λi, where i = 2, . . . ,N , it can be concluded that the synchronization manifold X s is stable, which means that the
studied network can achieve synchrony. In our case, since λi = N for i = 2, . . . ,N , Network (4) can achieve synchrony
as soon as Ψ (K ) < 0 for λ2 = N . Fig. 2a demonstrates the MLE of the Network (11) for 0 ≤ K ≤ 0.05. Furthermore,
the time-averaged synchronization error is obtained numerically and shown in Fig. 2b. It should be noted that the initial
conditions are selected so that all oscillators behave chaotically in K = 0.
4
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Fig. 2. (a) The MSF and (b) the time-averaged synchronization error of Network (4), for 0 ≤ K ≤ 0.05. In this case, the two-level laser oscillators
are coupled via linear diffusive couplings in an all-to-all network configuration with N = 100. The oscillators achieve synchrony in K ≥ 0.0035. The
initial conditions are selected so that all oscillators exhibit chaotic behaviors in K = 0.

Fig. 3. (a) The spatio-temporal pattern, (b) the phase portraits, (c) the snapshot of the last sample, and (d) the time-series of N = 100 laser models
oupled via the linear diffusive coupling function in a global coupling network structure (Network (4)) for K = 4× 10−7 . In this coupling parameter
, the oscillators reach the chimera state.

Fig. 2 depicts that in the studied network (Network (4)), the coupled oscillators (through the linear diffusive coupling
unction) achieve complete synchrony as soon as the coupling parameter K reaches the critical value of Ks = 0.0035.
efore getting synchronous (0 ≤ K < 0.0035), Network (4) is investigated to find other synchronization patterns, such
s the chimera state, wherein the coherent cluster coexists with the incoherent one, solitary state, wherein all oscillators
ehave synchronously except for a few oscillators with a state different from the state of synchronous oscillators, and
luster synchronization, wherein some coherent synchronous clusters coexist. Fig. 3 represents that through the linear
iffusive coupling function in the global structure, the oscillators can become partially synchronized and reach the chimera
tate for K = 4 × 10−7. In the same framework, as shown in Fig. 4, another partial synchronization state, namely the
olitary state, is observed for K = 1 × 10−3. Furthermore, two-cluster synchronization is found for K = 2 × 10−3, which
s illustrated in Fig. 5.
5
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Fig. 4. (a) The spatio-temporal pattern, (b) the phase portraits, (c) the snapshot of the last sample, and (d) the time-series of N = 100 laser models
oupled via the linear diffusive coupling function in a global coupling network structure (Network (4)) for K = 1× 10−3 . In this coupling parameter
, the oscillators reach the solitary state.

Fig. 5. (a) The spatio-temporal pattern, (b) the phase portraits, (c) the snapshot of the last sample, and (d) the time-series of N = 100 laser models
oupled via the linear diffusive coupling function in a global coupling network structure (Network (4)) for K = 2× 10−3 . In this coupling parameter
, the oscillators reach the two-cluster synchronization state.

In dynamical system analysis, multistability refers to the concurrent coexistence of various attractors in a similar
arameter set [36]. Likewise, in network analysis, multistability denotes the coexistence of multiple manifolds/attractors,
ither synchronous or asynchronous, to which some network oscillators are attracted. Looking more closely at Fig. 3, it
6
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p

can be seen that the incoherent cluster contains different periodic attractors (some are period-1, and others are period-2).
Thus, the system is multistable in the chimera state. The multistability can also be found in the solitary state shown in
Fig. 4. It can be noticed that two oscillators behave chaotically and asynchronously whilst others behave periodically in a
synchronous period-2 manifold. The coexistence of two synchronous chaotic manifolds can be observed in the two-cluster
synchronization state demonstrated in Fig. 5.

3.2. Nonlinear diffusive coupling function

In the second scenario, the diffusive term is assumed to affect the modulation signal, which is more sensible in laser
hysics due to the stimulation of cavity losses. Thus, we have Im → Im + ϵ

∑N
j=1 Gij(xj − xi). Accordingly, Network (1) can

be modified as

Ẋ i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ẋi = −xi

(
1 + k

(
Im

+ϵ

N∑
j=1

Gij(xj − xi)
)2

− yi

)
ẏi = −γ yi − αxyi + γ p0

. (12)

The above-mentioned Network (12) can be simplified as

Ẋ i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi = −xi(1 + kI2m − yi)

−kxi

⎛⎝ϵ

N∑
j=1

Gij(xj − xi)

⎞⎠2

−2kImxiϵ
N∑
j=1

Gij(xj − xi)

ẏi = −γ yi − αxyi + γ p0

. (13)

Hence, in this case, the diffusive term impacts the network dynamics nonlinearly, and the coupling function H(X i,X j)
can be defined as two separate functions H1(X i,X j) with the strength of −kϵ2 and H2(X i,X j) with the strength of −2kImϵ

as

H1(X i,X j) = [xi(xj − xi)2, 0],
H2(X i,X j) = [xi(xj − xi), 0].

(14)

The synchronizability of Network (13) is examined using the MSF analysis, which is an analytical approach to
synchronization. Knowing the fact that X1 = X2 = · · · = XN−1 = XN = X s, in the synchronization state, we have
H1(X i,X j) = H2(X i,X j) ≡ 0, and similar to the previous case, the synchronization manifold becomes

F (X s) =

{
f (xs, ys) = −xs(1 + kI2m − ys)
g(xs, ys) = −γ ys − αxys + γ p0

, (15)

which is similar to the dynamics of an isolated decoupled oscillator. To implement the MSF analysis, a negligible
perturbation δX i, where δX i = (δxi, δyi), is rolled up to the synchronization manifold X s, where X s = (xs, ys). Therefore,
δX i = X i − X s. Consequently, the dynamics of the perturbation equations can be obtained through

δẊ i = DF (X s)δX i−

kϵ2
N∑
j=1

Gij[
∂H1

∂X i

⏐⏐⏐⏐
(X s,X s)

δX i +
∂H1

∂X j

⏐⏐⏐⏐
(X s,X s)

δX j

]
−

2kImϵ

N∑
j=1

Gij[
∂H2

∂X

⏐⏐⏐⏐ δX i +
∂H2

∂X

⏐⏐⏐⏐ δX j

]
.

(16)
i (X s,X s) j (X s,X s)

7
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Here, DF (X s) is the Jacobian matrix of F (X i) in the synchronization state X s. Considering the definition of H1(X i,X j)
and H2(X i,X j) given in Eq. (14), the perturbation equation presented in Eq. (16) turns into

δẊ i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δẋi = Df (X s)δX i

−2kImxsϵ
N∑
j=1

Gij
(
δxj − δxi

)
δẏi = Dg(X s)δX i

, (17)

where A is a diagonal matrix containing the nodes’ degree on its main diagonal, L is the Laplacian matrix obtained from
L = A − G. As a result, δẋi formulated in Eq. (17) can be rewritten in terms of the Laplacian matrix L as follows

δẋi = Df (X s)δX i

−2kImxsϵ
N∑
j=1

Gijδxj + 2kImxsϵ
N∑
j=1

Gijδxi

= Df (X s)δX i

−2kImxsϵ

⎛⎝ N∑
j=1

Aijδxj −
N∑
j=1

Lijδxj

⎞⎠
+2kImxsϵδxi

N∑
j=1

Gij

= Df (X s)δX i

−2kImxsϵ

⎛⎝(N − 1)δxi −
N∑
j=1

Lijδxj

⎞⎠
+2kImxsϵ(N − 1)δxi

= Df (X s)δX i + 2kImxsϵ
N∑
j=1

Lijδxj.

(18)

The aforementioned Eq. (18) is inherently in a block diagonally coupled form that can be simplified (block diagonally
decoupled) by diagonalizing the eigenvalues of the Laplacian matrix L as

δẊ i =

{
δẋi = Df (X s)δX i + 2kImxsϵλiδxi
δẏi = Dg(X s)δX i

. (19)

Here λi is the eigenvalues of the Laplacian matrix L. Letting δX i : (δxi, δyi) → ζi : (ζ x
i , ζ

y
i ) and considering Ki = ϵλi,

where K is the normalized coupling parameter, the perturbation equation reads

δζ̇i =

{
δζ̇ x

i = fxζ x
i + fyζ

y
i + 2kImxsKiζ

x
i

δζ̇
y
i = gxζ x

i + gyζ
y
i

. (20)

As mentioned above, due to homogeneity and all-to-all configuration, we have λ1 = 0, and λ2 = λ3 = · · · = λN−1 =

λN = N . Accordingly, the MLE of Network (20) results in the MSF (Ψ ). The negative sign of Ψ shows the stability of the
synchronization manifold.

Fig. 6a analytically shows that the oscillators coupled through the nonlinear diffusive coupling in an all-to-all network
design cannot get synchronous completely. Although the time-averaged synchronization error depicted in Fig. 6b tends
to reach zero as the coupling parameter K increases, it never touches the zero line. Our investigation reveals that as the
parameter K grows gradually, two synchronous clusters, including a fixed point and a periodic (period-1) manifold, are
formed (for 0.5 ≤ K ≤ 100). This two-cluster synchronization state can be observed in Fig. 7 for K = 95. The more the
parameter increments, the slighter the distance between the two manifolds.

Based on the definition of the network multistability mentioned above, the coexistence of a fixed point and a syn-
chronous periodic manifold can be observed in Fig. 7, representing the two-cluster synchronization. More investigations
on Network (13) reveal that in some negligible values of the parameter K , the chimera state can be observed, which
is shown in Fig. 8 (K = 1 × 0−3). Fig. 8 illustrates different coexisting chaotic attractors, including synchronous and

asynchronous clusters.

8
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Fig. 6. (a) The MSF and (b) the time-averaged synchronization error of Network (13), for 0 ≤ K ≤ 100. In this case, the two-level laser oscillators
re coupled via nonlinear diffusive couplings in an all-to-all network configuration with N = 100. The oscillators do not achieve synchrony in the
tudied interval of parameter K . The initial conditions are selected so that all oscillators exhibit chaotic behaviors in K = 0.

Fig. 7. (a) The spatio-temporal pattern, (b) the phase portraits, (c) the snapshot of the last sample, and (d) the time-series of N = 100 laser models
oupled via the nonlinear diffusive coupling function in a global coupling network structure (Network (13)) for K = 95. In this coupling parameter
, the oscillators reach the two-cluster synchronization state.

. Conclusions

Due to the importance of laser synchronization in information communication, this paper investigated the synchro-
ization of a network of coupled laser models with shift-invariant couplings. To accomplish this purpose, 100 identical
aser models were considered to interact in an all-to-all network configuration with diffusive coupling functions in two
cenarios: linear and nonlinear definitions. The laser model employed as the dynamics of the network units was recently
ntroduced in [33]. In each case, the analytical (through the MSF analysis) and numerical (using the time-averaged
ynchronization error) approaches were performed. The results showed that, in the linear case, the interacting laser
odels reach a common temporal pattern in a negligible value of the coupling parameter (K = 0.0035). However, the
tudied network exhibited rich dynamical properties as we found chimera, solitary state, and two-cluster synchronization
atterns before achieving complete synchrony. The recognized patterns were all multistable since there existed more than
9
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Fig. 8. (a) The spatio-temporal pattern, (b) the phase portraits, (c) the snapshot of the last sample, and (d) the time-series of N = 100 laser models
oupled via the nonlinear diffusive coupling function in a global coupling network structure (Network (13)) for K = 1 × 10−3 . In this coupling
arameter K , the oscillators reach the chimera state.

ne solution to the model. Unlike the linear case, in the nonlinear diffusive scheme, based on the MSF and synchronization
rror results, complete synchronization was unachievable. Yet, in a considerable range of the coupling parameter, the
oupled models become synchronous in two clusters, namely a fixed point and a periodic orbit. Also, in small values of
he coupling parameter K , multistable chimera patterns were observed.

In the presented paper, similar to Kouomou and Woafo [31], the laser models were bidirectionally and diffusively
oupled but in a one-dimensional global configuration. However, two types of diffusive coupling functions, namely, linear
nd nonlinear diffusive functions, were studied. As a result, in the nonlinear case, we found the formation of two clusters
n the higher coupling coefficient values. The formation of two synchronous clusters was also found in the linear case
n the lower value of the coupling parameter. This is also in line with the results reported by Röhm et al. [32], although
he effect of the delay was not involved in the present study. On the other hand, we found multistable chimera states in
oth studied cases. Unlike [27,29], we found neither lag synchronization nor phase synchronization patterns. However,
s a future study, the formation of various synchronization patterns can be examined by considering the network of
elay-coupled laser models or considering the master–slave configuration (similar to [25,26]).
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