
Communications in Nonlinear Science and Numerical Simulation 126 (2023) 107461

m
w
e
i

p
l
s
b

Contents lists available at ScienceDirect

Communications in Nonlinear Science and
Numerical Simulation

journal homepage: www.elsevier.com/locate/cnsns

Research paper

The impact of heterogeneous human activity on vegetation
patterns in arid environments
Li-Feng Hou a,b, Gui-Quan Sun a,b,∗, Matjaž Perc c,d,e,f,g

a Department of Mathematics, North University of China, Taiyuan 030051, Shanxi, China
b Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
c Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
d Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
e Alma Mater Europaea, Slovenska ulica 17, 2000 Maribor, Slovenia
f Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria
g Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea

a r t i c l e i n f o

Article history:
Received 9 October 2022
Received in revised form 16 July 2023
Accepted 22 July 2023
Available online 26 July 2023

Keywords:
Human activities
Spatial heterogeneity
Vegetation patterns
Optimal control

a b s t r a c t

Vegetation patterns have attracted increasing interest in recent years since they can be
used as a key indicator of ecosystem robustness. As one of the vital factors affecting
vegetation structures, human activities have been widely explored in the literature.
Nevertheless, the effects of spatiotemporal heterogeneity of human activities on veg-
etation patterns are far from being well explained. Here, we address this issue by
applying optimal control theory to the dryland vegetation-water model. We find that the
spatiotemporal heterogeneity of human activities leads to the transition from different
states to desired vegetation patterns, including the spot, labyrinth, and gap patterns, and
thus increases the diversity of pattern structures. The heterogeneity in human activities
is also found to promote the vegetation growth in low-rainfall areas, which in turn
effectively prevents vegetation desertification. Our robustness analysis fully supports
these findings. This work well quantitatively links human activities with ecosystems
robustness and helps provide new insights for biodiversity conservation.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The natural environment’s vegetation, an assemblage of various plant species and their ground cover, is essential to
aintaining ecosystem health. For instance, vegetation can slow down the greenhouse by reducing air pollution [1,2], as
ell as help arid areas conserve water and soil resources via reducing soil erosion. In addition to these direct impacts on
cosystems, vegetation is also capable of serving as an indicator of ecosystems degradation, which has attracted growing
nterest [3,4].

Vegetation usually displays even but regular spatial distributions, which are known as vegetation patterns. Vegetation
atterns have been observed all over the world so far in a wide variety of forms [5–7]. Such patterns are primarily formu-
ated through the interactions between vegetation and water resources [8,9]. To further investigate the mechanism behind
uch patterns, numerous dynamical models have been proposed, which are broadly categorized into univariate [10–12],
ivariate [6,13–15], and three-variable models [5,7,16] according to the number of variables taken into account. In
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general, the number of variables depends on whether or not the water dynamics and types of water are considered.
Accounting only for vegetation evolution, for example, Lefever and Lejeune established a univariate model to describe
the dynamics of terrestrial plant communities in arid areas [10]. Taking the water dynamics into account, Klausmeier
proposed a bivariate model, i.e., a vegetation-water model, and found that each component of the model is essential for
the formation of vegetation patterns [6]. Moreover, three-variable models can be developed by considering water types,
such as surface water and soil water [17], and are capable of characterizing complex interactions in the system as well as
revealing the critical role vegetation plays in maintaining the ecosystem’s health [5]. Along with the growing literature
on investigating vegetation formation [18–22], the mystery of complex mechanisms behind the vegetation patterns and
their comprehensive functions is being uncovered.

It has always been a research hotspot to explore the related factors affecting the formation of vegetation patterns
20,21,23], which are mainly divided into two categories: natural factors (such as temperature, rainfall, light, CO2, etc.)
nd human activities (such as grazing, felling, afforestation, etc.). Among them, human activities have three typical
haracteristics, namely purpose, dependence and knowledge, and are subject to the constraints of various policies and
egulations. In other words, the impact of human activities on vegetation in arid and semi-arid areas is controllable. Hence,
t is more practical to study the influence of human activities on vegetation patterns. At present, there are some studies
n this [24–27]. For example, Ge et al. established a vegetation-animal model based on the principle of phase separation
o study the effect of grazing on the formation of vegetation patterns [26]. Cao et al. illustrated that afforestation is
n effective means to prevent desertification and soil erosion, but improper afforestation will exacerbate environmental
egradation in ecologically fragile area [25]. We can see that most of these studies are based on single human activities,
hat is, only grazing or only afforestation. Obviously, these elements can be classified as human activities. Therefore, this
aper comprehensively considers a variety of human factors and takes human activities as an overall influencing factor
o study their impact on vegetation pattern structures.

Spatial heterogeneity refers to the heterogeneity and complexity of the spatial distribution of ecological processes and
atterns. It has attracted attention and application in various fields [28,29], especially in the field of ecology. For example,
andhi et al. studied the impact of terrain heterogeneity on the formation of vegetation patterns [30]. Bastiaansen et al.
sed spatial heterogeneity to study fragmented tipping [31]. However, there are few studies on the effect of spatial
eterogeneity of human activities on vegetation patterns. Obviously, due to the subjectivity of human activities, it is
ecessary to consider the impact of such spatio-temporal heterogeneity on vegetation. Based on this, this paper combined
ptimal control methods to reveal the impact of the spatial heterogeneity of human activities on the vegetation pattern.
Optimal control theory is a subject that studies and solves to find the optimal solution from all possible control

chemes. Currently, it has been successfully utilized to identify the most effective measures for disease prevention and
ontrol [32–34] as well as to study the impact of network topological changes on network patterns [35,36]. However,
his method is rarely applied in ecology. This paper will unravel the impacts of spatiotemporal heterogeneity of human
ctivities and link the heterogeneity to explicit pattern structures for different parameter conditions under the theoretical
ramework of the combination of optimal control and dryland vegetation model, so as to provide fresh perspectives on
urther understanding the interaction between human activities, ecosystem robustness, and biodiversity.

The rest of the paper is organized as follows. Section 2 provides the detail of the model and related analysis, of which
he objective functional and its corresponding optimal control problem are given in Section 2.3. The numerical results
hown in Section 3 then demonstrates how vegetation patterns are influenced by human activities with and without
patial heterogeneity. Section 4 finally comes to the conclusion and discussion.

. Mathematical model and analysis

.1. Model formulation

In an arid environment, water plays an important role in the growth of vegetation, which in turn affects the water
ynamics. Some existing models have taken into account this fact. For instance, Gilad et al. developed a three-variable
odel with multiple interactions between vegetation and water, including osmosis feedback, root-extension feedback,
nd soil moisture diffusion feedback [5]. Meron et al. proposed a simplified model by incorporating some realistic factors
nd the root characteristics of some vegetation [19]. Getzin et al. further proved that the spatial self-organization gives
ise to the fairy circles based on the simplified model [37]. All these models were based on the assumption that the
ater layer is thin. However, in some areas of an arid environment, the water layer is actually very thick [38]. Besides,
he impact of human activities on vegetation patterns has not been considered in these models. In view of these issues,
n this paper we integrate human activities into the extended version of the model by Gilad et al. [5] and propose the
ollowing model:⎧⎪⎨⎪⎩

∂tb = gbb(1− b)− b+ r +∇2b ≜ f1(b, w, h, r)+∇2b, in Q = Ω × (0, T )

∂tw = Ih− lww − gww + δw∇
2w ≜ f2(b, w, h, r)+ δw∇

2w, in Q
2 2

(1)
∂th = p− Ih− lhh+ δh∇ h ≜ f3(b, w, h, r)+ δh∇ h, in Q
2
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where

I = α
b+ qf
b+ q

, lw =
νw

1+ Rwb
, lh =

νh

1+ Rhb
,

nd

gb = w(1+ ηb)2, gw = γ b(1+ ηb)2.

In system (1), b(x, t) stands for the biomass of plants, w(x, t) represents the water within soil, and h(x, t) is the surface
ater. In the first equation, the gbb(1−b) term refers to vegetation growth driven by water absorption of vegetation, the b

term corresponds to the natural death of vegetation, and the r term is due to the effect of human activities on vegetation,
which can be either positive or negative. If r > 0, it corresponds to human activities that promote vegetation growth,
such as planting and forestation. If r < 0, it represents human activities that are detrimental to vegetation growth, such as
logging and grazing. In the second equation, the Ih term represents water that seeps into the soil, the terms lww and gww

epresent the loss of soil moisture caused by evaporation and water absorption of vegetation, respectively. In the third
quation, the p term represents the gain of surface water due to rainfall and the lhh term stands for the loss of surface
ater due to evaporation. Ω represents the spatial domain. Note that zero-flux boundary conditions are chosen in our
odel and the specific meaning of each parameter and the corresponding dimensionless transformation can be found in
efs. [5,19].

.2. Conditions for vegetation patterns in system (1) with homogeneous environments

In order for a comparison between the system with homogeneous human activities and the system with heterogeneous
uman activities, we first consider the simplest case where the human activities are spatially homogeneous and do not
hange over time. Therefore, in this case we assume the human activities parameter r is constant. In what follows, we
resent a analysis for the dimensionless model (1). It is easy to obtain the equilibrium point E∗(b∗, w∗, h∗) of system (1)
s follows:

w∗ =
−r + b∗

b∗(1+ ηb∗)2(1− b∗)
, h∗ =

p
J + lh

,

here b∗ is the solution of a unary seventh-degree equation, which is hard to derive analytically. In order to ensure the
ositivity of the equilibrium point E∗(b∗, w∗, h∗), the following conditions need to be met⎧⎨⎩

r < b∗ < 1, if 0 < r < 1,
1 < b∗ < r, if r > 1,
0 < b∗ < 1, if r < 0.

Furthermore, by assuming btx = b∗+α1 exp(λt) exp(ik•x), wt
x = w∗+α2 exp(λt) exp(ik•x), and ht

x = h∗+α3 exp(λt) exp(ik•
x), and linearizing the system (1) at the equilibrium point E∗(b∗, w∗, h∗), we can get the Jacobian matrix as

Jk =

⎛⎝a11 − k2 a12 0
a21 a22 − δwk2 a23
a31 0 a33 − δhk2

⎞⎠ ,

where the expression of aij(i = 1, 2, 3; j = 1, 2, 3) can be found in Appendix. Denote λk as the corresponding eigenvalue
of Jk.

By solving the characteristic equation of the above matrix, we can get the following dispersion relation:

λ3
+ c1(k)λ2

+ c2(k)λ+ c3(k) = 0,

where

c1(k) =(δw + δh + 1)k2 − a11 − a22 − a33,

c2(k) =(δhδw + δh + δw)k4 − (a11δh + a11δw + a22δh + a33δw + a22 + a33)k2 + a11a22+
a11a33 − a12a21 + a22a33,

c3(k) =δhδwk6 − (a11δhδw + a22δh + a33δw)k4 + (a11a22δh + a11a33δw − a12a21δh + a22a33)k2

− a11a22a33 + a12a21a33 − a12a23a31.

For a spatially uniform disturbance (i.e. k = 0), if the equilibrium point E∗(b∗, w∗, h∗) satisfies the following conditions:⎧⎨⎩
c1(0) = −a11 − a22 − a33 > 0,
c3(0) = −a11a22a33 + a12a21a33 − a12a23a31 > 0,

c1(0)c2(0)− c3(0) > 0,

3
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then the Routh–Hurwitz criterion can guarantee that all eigenvalues have negative real parts, thus making the equilibrium
point E∗(b∗, w∗, h∗) stable. Similarly, for a spatially inhomogeneous perturbation (i.e. k ̸= 0), if any of the aforementioned
conditions are not satisfied, it indicates that the characteristic equation has positive real part eigenvalues, so that the
equilibrium point E∗(b∗, w∗, h∗) is unstable and Turing branches occur. Obviously, c1(k) > 0 since c1(0) > 0 and δw ,
δh, k > 0. Therefore, we only need to determine the sign of c3(k) and c1(k)c2(k) − c3(k). Below, we will analyze them
separately,

Case 1. Analyze the sign of c3(k).
Let c3(k) = d3(k2) and e = k2, we get

d3(e) = g3e3 + g2e2 + g1e+ g0,

where g3 = δhδw , g2 = a11δhδw + a22δh + a33δw , g1 = a11a22δh + a11a33δw − a12a21δh + a22a33 and g0 = −a11a22a33 +
a12a21a33 − a12a23a31. The following analysis is performed on the polynomial d3(e):

(i) lime→+∞ d3(e) = +∞.
(ii) Calculate the first and second order partial derivatives of d3(e).

dd3(e)
de
= 3g3e2 + 2g2e+ g1,

d2d3(e)
de2

= 6g3e+ 2g2.

The two extreme points of d3(e) can be obtained by simple calculation as

e1,2 =
−g2 ±

√
g2
2 − 3g3g1

3g3
with g2

2 − 3g3g1 > 0.

Since g3 > 0, d3(e) is a concave function with an upward opening as e→∞. Also, we can obtain the relationship
between the two extremal points according to the properties of the cubic function

emax = e2 < e1 = emin.

(iii) if e1 > 0 and d3(emin) = d3(e1) < 0, then Turing instability occurs.

In summary, the conditions for Turing instability to occur are{
c1(0) > 0, c3(0) > 0, c1(0)c2(0)− c3(0) > 0,

g2
2 − 3g3g1 > 0, e1 > 0, d3(emin) = d3(e1) < 0.

Case 2. Analyze the symbols of c1(k)c2(k)− c3(k).
The analysis process of c1(k)c2(k)− c3(k) is similar to that of c3(k), so we will not elaborate further.
The difficulty of obtaining an analytical solution for the equilibrium point and the complexity of the model itself lead to

he fact that in linear stability analysis we can only give an approximate analytical framework and cannot give a detailed
ange of values for each parameter. Therefore, we resort to the numerical solution by using the parameter values given
n Table 1. In the case of r > 0, which means that human activities facilitate vegetation growth, we set r = 0.0002 and
hen the system (1) has the following three equilibrium points:

E∗0 (b
∗

0, w
∗

0, h
∗

0) = (0.0005, 0.6006, 0.7328);

E∗1 (b
∗

1, w
∗

1, h
∗

1) = (0.0277, 0.9668, 0.5674);

E∗2 (b
∗

2, w
∗

2, h
∗

2) = (0.1646, 0.8817, 0.2777).

oreover, it is easy to obtain that if r → 0 then b∗0 → 0, which corresponds to the desert state. In the case of r < 0,
hich means that human activities impede vegetation growth, we choose r = −0.0002 and then the system (1) has the

ollowing two equilibrium points:

E∗
′

1 (b∗1, w
∗

1, h
∗

1) = (0.0295, 0.9789, 0.5595);

E∗
′

2 (b∗2, w
∗

2, h
∗

2) = (0.1636, 0.8843, 0.2787).

Direct calculations indicate that the constant solution E∗0 is asymptotically stable in all circumstances. Thus, we hereafter
ainly focus on the stability analysis of the equilibrium points E∗1 (E∗

′

1 ) and E∗2 (E∗
′

2 ).
It is easy to show that E∗2 (or E∗

′

2 ) is stable under some suitable conditions. In this case, stationary patterns (Turing
patterns) will emerge if maxℜ(λk) > 0, for some k > 0 (see Fig. 1(a)). We can also show that E∗1 (or E∗

′

1 ) is always
unstable and thus one can conclude from Ref. [39] that transient patterns can emerge if 0 < maxℜ(λ0) < maxℜ(λk) (see
Fig. 1(b)).
4
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Table 1
Values of related parameters in model (1) [37].
p η α γ q νw

2.1 0.999 60 4.662 1.8018 0.75

νh Rw Rh f δw δh
2.25 0.3 0.8 0.01 820 25

Fig. 1. Dispersion diagram at equilibrium points E∗2 (E∗
′

2 ) and E∗1 (E∗
′

1 ) for different intensities of human activities. Panel (a) corresponds to the
case where stationary patterns (Turing patterns) appear whereas panel (b) corresponds to the case where transient patterns can emerge. Relevant
parameter values are given in Table 1.

2.3. System (1) with spatial heterogeneity: from the viewpoint of optimal control

Now we study system (1) with heterogeneous human activities. In this case, the human activities parameter r is not
a constant but rather a variable that depends on both time and space, namely, r = r tx . We use r = r tx as the control
parameter. Consider the following optimum control problem1

Omin = min
r∈Uad

O[b, w, h, r] =
a1
2

∫
Ω

[bTx − btarx ]
2dx+

a2
2

∫
Ω

[wT
x − wtar

x ]
2dx

+
a3
2

∫
Ω

[hT
x − htar

x ]
2dx+

c
2

∫ T

0

∫
Ω

(r tx )
2dxdt, (2)

subject to⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tb = f1(b, w, h, r)+∇2b, in Q

∂tw = f2(b, w, h, r)+ δw∇
2w, in Q

∂th = f3(b, w, h, r)+ δh∇
2h, in Q

∂nb = 0, δw∂nw = 0, δh∂nh = 0, on ∂Ω × (0, T )

b0x = b0(x), w0
x = w0(x), v0

x = v0(x), in Ω

(3)

where O[b, w, h, r] is the objective functional, a1, a2, a3 and c are positive constants. Additionally, btx, w
t
x and ht

x are called
state variables. btarx , wtar

x and htar
x are target patterns generated by model (1) under parameter values given in Table 1. The

set of admissible controls used to determine the control parameter r tx is specified by the following form:

Uad = {r ∈ L∞(Q ) : r1 ≤ r tx ≤ r2 a.e. in Q }. (4)

Theorem 2.1. If r∗ is a locally optimal solution to the optimal control problem (2)–(3), then there are corresponding states
(b∗, w∗, h∗) and adjoint states (u1, u2, u3) such that the state system (3), adjoint system (5) and variational inequality (6) are

1 There are two main reasons for including the variables of surface water and soil water in the target function. Firstly, since we consider the
interactions between vegetation, soil moisture and ground water in the model, the optimal solution we seek should be related to these three
variables. Secondly, it is revealed that human activities have impacts on rainfall, thereby affecting the surface water and soil water [40,41].
5
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established:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂tu1 = f1,bu1 + f2,bu2 + f3,bu3 +∇
2u1, in Q

− ∂tu2 = f1,wu1 + f2,wu2 + f3,wu3 + δw∇
2u2, in Q

− ∂tu3 = f1,hu1 + f2,hu2 + f3,hu3 + δh∇
2u3, in Q

∂nu1 = 0, δw∂nu2 = 0, δh∂nu3 = 0, on ∂Ω × (0, T )

u1
T
x = a1[b∗

T
x − btarx ], in Ω

u2
T
x = a2[w∗

T
x − wtar

x ], in Ω

u3
T
x = a3[h∗

T
x − htar

x ], in Ω

(5)

and ∫
Ω

∫ T

0
(cr∗ + u1)(r − r∗)dtdx ≥ 0, (6)

where

f1,b = −b∗w∗(1+ b∗η)2 − w∗(1+ b∗η)2(b∗ − 1)+ 2ηb∗w(1+ b∗η)(1− b∗)− 1,

f2,b = αh
q− qf

(b∗ + q)2
+

νwRww∗

(1+ Rwb∗)2
− γw∗(1+ ηb∗)2 − 2γ ηb∗w∗(1+ ηb∗),

f3,b =
νhRhh∗

(1+ Rhb∗)2
− αh∗

q− qf
(b∗ + q)2

,

f1,w = b∗(1+ ηb∗)2(1− b∗), f2,w =
−νw

1+ Rwb∗
− γ b∗(1+ ηb∗)2, f3,w = 0,

f1,h = 0, f2,h = α
b∗ + qf
b∗ + q

, f3,h = −α
b∗ + qf
b∗ + q

−
νh

1+ Rhb∗
.

roof. The strict proof for the necessary optimality condition can be found in Refs. [42–44]. Here, we formally derive the
onclusion of Theorem 2.1 by using the Lagrange multiplier method. The Lagrange function is constructed as follows:

L[b, w, h, r, u1, u2, u3] = O[b, w, h, r] +
∫ T

0

∫
Ω

[∂tb+ f1(b, w, h, r)+∇2b]u1dxdt

+

∫ T

0

∫
Ω

[∂tw + f2(b, w, h, r)+ δw∇
2w]u2dxdt +

∫ T

0

∫
Ω

[∂th+ f3(b, w, h, r)+ δh∇
2h]u3dxdt

−

∫ T

0

∫
∂Ω

∂nbu1dsdt −
∫ T

0

∫
∂Ω

δw∂nwu2dsdt −
∫ T

0

∫
∂Ω

δh∂nhu3dsdt

= O[b, w, h, r] +
∫ T

0

∫
Ω

∂tu1bdxdt +
∫

Ω

[b0xu1
0
x − bTxu1

T
x ]dx

+

∫ T

0

∫
Ω

∇
2u1bdxdt +

∫ T

0

∫
Ω

f1(b, w, h, r)u1dxdt −
∫ T

0

∫
∂Ω

∂nu1bdsdt

+

∫ T

0

∫
Ω

∂tu2wdxdt +
∫

Ω

[w0
xu2

0
x − wT

x u2
T
x ]dx

+

∫ T

0

∫
Ω

∇
2u2wdxdt +

∫ T

0

∫
Ω

f2(b, w, h, r)u2dxdt −
∫ T

0

∫
∂Ω

δw∂nu2wdsdt

+

∫ T

0

∫
Ω

∂tu3hdxdt +
∫

Ω

[h0
xu3

0
x − hT

xu3
T
x ]dx

+

∫ T

0

∫
Ω

∇
2u3hdxdt +

∫ T

0

∫
Ω

f3(b, w, h, r)u3dxdt −
∫ T

0

∫
∂Ω

δh∂nu3hdsdt. (7)

Given that (b∗, w∗, h∗, r∗) is the local optimal solution of the optimal control problem (2)–(3), for any smooth and
ufficiently small btx with b0x = 0, the directional derivative of Lagrange functional at (b∗, w∗, h∗, r∗, u1, u2, u3) satisfies:

0 = Lb[b∗, w∗, h∗, r∗, u1, u2, u3]b = a1

∫
Ω

[b∗Tx − btarx ]b
T
x dx

+

∫ ∫ T

∂tu1bdtdx−
∫

bTxu1
T
x dx+

∫ ∫ T

∇
2u1bdtdx
Ω 0 Ω Ω 0

6
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∫
∂Ω

∫ T

0
∂nu1bdtds+

∫
Ω

∫ T

0
f1,b(b∗, w∗, h∗, r∗)u1dtdx

+

∫
Ω

∫ T

0
f2,b(b∗, w∗, h∗, r∗)u2dtdx+

∫
Ω

∫ T

0
f3,b(b∗, w∗, h∗, r∗)u3dtdx. (8)

In light of the arbitrariness of btx, the adjoint system of u1 satisfies:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

∂u1

∂t
= f1,bu1 + f2,bu2 + f3,bu3 +∇

2u1, in Q

∂u1

∂n
= 0, on ∂Ω × (0, T )

u1
T
x = a1[b∗

T
x − btarx ], in Ω

(9)

where fi,b (i = 1, 2, 3) is the derivative of fi with respect to b.
Similarly, from Lw[b∗, w∗, h∗, r∗, u1, u2, u3]w = 0 and Lh[b∗, w∗, h∗, r∗, u1, u2, u3]h = 0, we can get:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−
∂u2

∂t
= f1,wu1 + f2,wu2 + f3,wu3 + δw∇

2u2, in Q

δw

∂u2

∂n
= 0, on ∂Ω × (0, T )

u2
T
x = a2[w∗

T
x − wtar

x ], in Ω

(10)

nd ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

∂u3

∂t
= f1,hu1 + f2,hu2 + f3,hu3 + δh∇

2u3, in Q

δh
∂u3

∂n
= 0, on ∂Ω × (0, T )

u3
T
x = a3[h∗

T
x − htar

x ], in Ω

(11)

here fi,w and fi,h (i = 1, 2, 3) are the derivatives of fi with respect to w and h, respectively.
Since the admissible control set is a closed convex set, the directional derivative of Lagrange functional along r − r∗

t (b∗, w∗, h∗, r∗) satisfies the following formula:

0 ≤Lr [b∗, w∗, h∗, r∗, u1, u2, u3](r − r∗)

=

∫ T

0

∫
Ω

cr∗(r − r∗)dxdt +
∫ T

0

∫
Ω

f1,r (b∗, w∗, h∗, r∗)(r − r∗)u1dxdt

+

∫ T

0

∫
Ω

f2,r (b∗, w∗, h∗, r∗)(r − r∗)u2dxdt +
∫ T

0

∫
Ω

f3,r (b∗, w∗, h∗, r∗)(r − r∗)u3dxdt, (12)

here r ∈ Uad and fi,r (i = 1, 2, 3) is the derivative of fi with respect to r . Since r is arbitrary, substituting the partial
erivative fi,r into Eq. (12) gives rise to the following variational inequality:∫ T

0

∫
Ω

(cr∗ + u1)(r − r∗)dxdt ≥ 0. (13)

dditionally, it can be obtained from the variational inequality (13) that

r∗ = P[r1,r2]{−
1
c
u1}, (14)

here P is the projection defined as:

P[r1,r2](r) = max{r1,min{r, r2}}. (15)

The proof is completed.

. Main results

.1. Method

In prior to showing the main results in this paper, we present the method used in our numerical simulations as well
s the setting of relevant parameters.
The optimal control problem given by Eqs. (2)–(3) involves the objective functional (2), the state system (3), and the

djoint system (5). In order to obtain the numerical solution to the optimal control problem, we derive the finite difference
quations of system (3) by employing the forward difference quotient in the time direction and the second-order central
7
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T

S

w
f

F

t
d
v
w

difference quotient in the space direction. The approximation of the function b at the point (xi, yj, tn) is denoted by bnij.
herefore, the discretization system of (3) is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

bn+1ij − bnij
∆t

=
bni+1,j − 2bnij + bni−1,j

(∆x)2
+

bni,j+1 − 2bnij + bni,j−1
(∆x)2

+ f1(bnij, w
n
ij, h

n
ij, r

n
ij ),

wn+1
ij − wn

ij

∆t
= δw

(
wn

i+1,j − 2wn
ij + wn

i−1,j

(∆x)2
+

wn
i,j+1 − 2wn

ij + wn
i,j−1

(∆x)2

)
+ f2(bnij, w

n
ij, h

n
ij, r

n
ij ),

hn+1
ij − hn

ij

∆t
= δh

(hn
i+1,j − 2hn

ij + hn
i−1,j

(∆x)2
+

hn
i,j+1 − 2hn

ij + hn
i,j−1

(∆x)2

)
+ f3(bnij, w

n
ij, h

n
ij, r

n
ij ).

(16)

imilarly, the adjoint Eq. (5) can be discretized by using backward Euler method in the time direction, giving⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
u1

n+1
ij − u1

n
ij

∆t
=

u1
n+1
i+1,j − 2u1

n+1
ij + u1

n+1
i−1,j

(∆x)2
+

u1
n+1
i,j+1 − 2u1

n+1
ij + u1

n+1
i,j−1

(∆x)2
+

g1(bn+1ij , wn+1
ij , hn

ij, r
n+1
ij , u1

n+1
ij , u2

n+1
ij , u3

n+1
ij ),

−
u2

n+1
ij − u2

n
ij

∆t
=δw

(
u2

n+1
i+1,j − 2u2

n+1
ij + u2

n+1
i−1,j

(∆x)2
+

u2
n+1
i,j+1 − 2u2

n+1
ij + u2

n+1
i,j−1

(∆x)2

)
+

g2(bn+1ij , wn+1
ij , hn+1

ij , rn+1ij , u1
n+1
ij , u2

n+1
ij , u3

n+1
ij ),

−
u3

n+1
ij − u3

n
ij

∆t
=δh

(
u3

n+1
i+1,j − 2u3

n+1
ij + u3

n+1
i−1,j

(∆x)2
+

u3
n+1
i,j+1 − 2u3

n+1
ij + u3

n+1
i,j−1

(∆x)2

)
+

g3(bn+1ij , wn+1
ij , hn+1

ij , rn+1ij , u1
n+1
ij , u2

n+1
ij , u3

n+1
ij ),

(17)

here g1 = f1,bu1 + f2,bu2 + f3,bu3, g2 = f1,wu1 + f2,wu2 + f3,wu3, g2 = f1,hu1 + f2,hu2 + f3,hu3. And the discretized system
or the objective functional O[b, w, h, r] (2) can be written as:

Ô =
1
2

N∑
i,j=0

[a1(bMij − btarij )2 + a2(wM
ij − wtar

ij )2 + a3(hM
ij − htar

ij )2] +
∆t
2

N∑
i,j=0

M−1∑
n=0

(crnij )
2. (18)

inally, we discretize the gradient of the objective function in the direction r − r∗ defined by variational inequalities (6)

∇rOn
= crn + u1

n. (19)

The meanings and values of some of the parameters involved in the discrete process are as follows: M = T/∆t is the
otal number of time steps, T is the time scale, ∆t is the time step, N = X/∆x+1 is the number of spatial nodes in a single
irection, X is the spatial scale in a single direction, and ∆x is the spatial step size. In our numerical experiments, these
alues are set to T = 1, ∆t = 0.001, X = 300, and ∆x = 3. In addition, we assume the Neumann boundary condition as
ell as the initial condition featuring random disturbance around the equilibrium point E∗1 (E∗

′

1 ) or E∗2 (E∗
′

2 ).
The goal in the optimal control problem is to find the minimum objective function (2). For such complex nonlinear

problems, we apply the widespread gradient projection method (for details, see Ref. [45]). A schematic illustration of the
algorithm for implementing the gradient projection approach is presented in Table 2. To get good agreement between
the control pattern bTx and the target pattern btarx , we choose a1 = a2 = a3 = 1, and c ≪ 1 (e.g., c = 10−10). The target
pattern btarx , wtar

x and htar
x is generated from the numerical results of the state Eq. (3).

3.2. Vegetation patterns with homogeneous human activities

In the case of homogeneous human activities, we treat the parameter r as a constant and investigate the impact
of positive human activities (r > 0) and negative human activities (r < 0) on the structure of vegetation patterns,
respectively.

Fig. 2 displays the structure of vegetation patterns for varying levels of positive human activities under different initial
conditions. For the initial condition of random perturbations at equilibrium point E∗2 , stationary patterns of vegetation
distribution can be observed (see Fig. 2(a1)-(c1)); in contrast, transient patterns are found if the initial condition is set by
random perturbations at the equilibrium point E∗1 (see Fig. 2(a2)-(c2)). Moreover, it is shown from Fig. 2 that for either
of the two initial conditions, the increase of positive human activities intensity does not lead to a phase transition in the
vegetation pattern. This implies that positive human activities can maintain the pattern structure of vegetation.

Given the continuing presence of certain human activities that do harm to the vegetation growth, it is of great
significance to investigate how negative human activities affect vegetation patterns. Fig. 3 shows the structure of
vegetation patterns under the influence of negative human activities with different initial conditions. When the initial
condition is chosen as random perturbations around E∗

′

we obtain stationary patterns as demonstrated in Fig. 3(a )-(c ).
2 1 1

8
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Table 2
Algorithm for the gradient projection method.
Step: Process

1: initialization
2: Select initial guess for r0 , initial step size λ = 1, relErrorTol = 5.0e− 2, k := 0. Solve

the state variables (b0, w0, h0) in system (3), adjoint variables (u0
1, u

0
2, u

0
3) in system

(5). Calculate the relative error b0 and bT : relError0 =
∥b0

T
x−b

tar
x ∥L2(Ω)

∥btarx ∥L2(Ω)
.

3: Set maxcycle = 5000.

4: end initialization
5: main cycle

6: while relErrork > relErrorTol&& k < maxcycle do
7: oldr ← rk , old∇rO← ∇rOk;

8: k← k+ 1;

9: update control: rk = P[r1,r2](r
k−1
− λ∇rOk−1);

10: update state variables (bk, wk, hk) by Eq. (16);

11: update adjoint variables (u0
1, u

0
2, u

0
3) by Eq. (17);

12: update objective functional Ôk by Eq. (18);

13: update ∇rOk by Eq. (19); update relErrork;

14: if |Ôk
− Ôk−1

| < 10−10 or |relErrork − relErrork−1| < 10−10 or λ < 10−5 do
15: break;
16: end if

17: if Ôk > Ôk−1 do
18: k← k− 1;

19: λ← λ/2;

20: rk ← oldr;

21: ∇rOk
← old∇rO;

22: end if
23: end while
24: end main cycle

However, when the initial condition is chosen as random perturbations around E∗
′

1 we discover transient patterns as
llustrated in Fig. 3(a2)-(c2). Besides, it is shown from Fig. 3 that as the strength of negative human activities increases
i.e., with the parameter value changing from r = −0.005 to r = −0.01 and to r = −0.0134), the structure of vegetation
patterns evolves gradually from stripe to spot, and the gap between vegetation increases.

Fig. 4 showcases the changes of the average and maximum biomass of vegetation patterns caused by human activities.
In the case of positive human activities (such as afforestation), the average biomass of vegetation in the steady state
is proportional to the intensity of human activities, but the maximum density of vegetation displays a downward trend,
indicating that the spatial distribution of vegetation is rather uniform. Conversely, in the case of negative human activities
(such as logging and grazing), the vegetation biomass decreases with the intensity of negative human activities. Negative
human activities will lead to the increase of vegetation isolation. Furthermore, it is found from Fig. 4 that in both cases
of positive and negative human activities, the final average vegetation density of the pattern structure generated by the
initial random perturbations near the equilibrium point E∗1 (or E∗

′

1 ) is always lower than that generated by the initial
andom perturbations near the equilibrium point E∗2 (or E∗

′

2 ).

.3. Vegetation patterns with heterogeneous human activities

In the case of heterogeneous human activities, we treat the parameter r as a variable depending on both time and
pace, namely, r = r tx .
The effects of heterogeneity of human activities on vegetation patterns are exhibited in Fig. 5, where the structure

f vegetation patterns is presented for different rainfalls. As shown in the first row of Fig. 5, in the absence of human
ctivities (i.e., uncontrolled), the structure of vegetation patterns changes from the spot–stripe mixed pattern to the gap
attern, then to the hole pattern, and to the uniform state, correspondingly, as the value of the rainfall intensity p increases
rom 1.8375 to 2, then to 2.1, and to 2.2. The first column in Fig. 5 corresponds to the given target patterns, including the
pot pattern (top), the labyrinth pattern (middle) and the gap pattern (bottom). It follows from Fig. 5 that when human
ctivities are heterogeneously distributed in space, different original pattern structures for different rainfalls (as shown in
he first row in Fig. 5) eventually evolve into the given target pattern structure. In particular, under appropriate intensities
9
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p
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Fig. 2. The structure of vegetation patterns for positive human activities under different initial conditions. For the results in the first row (stationary
atterns) the initial condition is set by random perturbations at the equilibrium point E∗2 , whereas for the results in second row (transient patterns)
he initial condition is assumed with random fluctuations at the equilibrium point E∗1 . The value of human activities parameter is set to r = 0.0002
or (a1) and (a2), r = 0.0012 for (b1) and (b2), and r = 0.0022 for (c1) and (c2), respectively. The remaining parameters are the same as in Table 1.

Fig. 3. The structure of vegetation patterns for negative human activities under different initial conditions. In panels (a1)-(c1), stationary patterns
ppear for the initial condition of random perturbations around E∗

′

2 , while in panels (a2)-(c2), transient patterns emerge for the initial condition of
random perturbations around E∗

′

1 . The value of negative human activities is set to r = −0.005 for (a1) and (a2), r = −0.01 for (b1) and (b2), and
r = −0.0134 for (c1) and (c2), respectively. The remaining parameters are the same as in Table 1.
10
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i

c

Fig. 4. Schematic diagram of the average and maximum biomass of vegetation at the steady state for different levels of human activities intensity:
(a) r > 0, corresponding to positive human activities; (b) r < 0, standing for negative human activities. The black squares and red triangles represent
nitial conditions of random disturbances near equilibrium points E∗2 (or E∗

′

2 ) and E∗1 (or E∗
′

1 ), respectively.

of heterogeneous human activities, the vegetation pattern can evolve from the spot–stripe mixed pattern, the gap pattern,
the hole pattern and the uniform state to given target patterns (see the second, fourth and sixth rows of Fig. 5). Moreover,
the spatiotemporal heterogeneity of human activities can lead to the emergence of a regular pattern structure (see the
last column of Fig. 5). Therefore, given the robustness (or vulnerability) of a certain kind of vegetation pattern structure,
we can control the system to converge to or evolve away from such a pattern structure through appropriate human
activities, thereby preventing the vegetation from desertification. In other words, our results can be well combined with
the robustness of the ecosystem to provide guidance and suggestions for ecological protection. Furthermore, we show
the distribution of human activities intensity and vegetation with iteration times under different initial states, taking the
transition to the labyrinth pattern as an example. The simulation results show that the different initial states have no
significant effect on the pattern transition (Fig. 6 and Fig. 7).

Fig. 8 reports the spatiotemporal average of human activities for different rainfalls when the vegetation pattern reaches
such given target patterns as the spot, labyrinth, and gap patterns. In particular, it is found from Fig. 8 that the average
intensity of human activities required for the vegetation to evolve to the spot pattern is higher than the one that is
required for the vegetation to reach the labyrinth pattern, which in return is higher than that required to generate the
gap pattern. Moreover, it is revealed that a higher rainfall implies a larger average intensity of human activities is needed
for the vegetation to reach a fixed target pattern.

In order to better demonstrate that the desired pattern structure can be obtained through the influence of the
heterogeneity of human activities, we use the relative error relError and the target functional value O[b∗, w∗, h∗, r∗] to
haracterize the robustness of the result, with the relative error expressed as follows:

relError =
∥bTx − btarx ∥L2(Ω)

∥btarx ∥L2(Ω)
.

The variation of the relative error and target functional with the iteration count for different target patterns is showed
in Fig. 9, from which we can see that the relative error approaches 0 as the iteration count increases, indicating that the
results we obtain match nicely with the target pattern (see the first row in Fig. 9). From the evolution of the objective
functional, we conclude that it is convergent as the iteration count increases. What is more, we can obtain the time
(or cost) required for the system to evolve from the initial pattern to the target pattern (see the second row in Fig. 7).
Compared with homogeneous human activities, heterogeneous human activities can enrich the dynamics of the system
by inducing more complicated dynamical properties with wide potential applications. Typically, heterogeneous human
activities can be readily managed with simple approaches to make the vegetation pattern transform to the desired state.

4. Conclusion and discussion

It can be argued that human activities have great impacts on vegetation dynamics. However, a systematic understand-
ing of the impacts of the spatiotemporal heterogeneity of human activities on vegetation patterns is still lacking. In this
11
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Fig. 5. Effects of spatial heterogeneity of human activities on vegetation pattern structures. The first row is the vegetation pattern structure under
different rainfall intensity (which is marked by the parameter p) without the influence of human activities (uncontrolled). The first row presents
three types of given target patterns including the spot pattern (top), the labyrinth pattern (middle) and the gap pattern (bottom). The third, fifth
and seventh rows represent the spatial distribution of human activities rTx for generating the given target pattern. The remaining part corresponds
to the corresponding vegetation pattern structure for different rainfalls when human activities are considered (controlled). The related parameters
are as follows: a1 = a2 = a3 = 1, and c = 10−10 . Other parameters are the same as in Table 1.

paper we address this issue by studying the dryland vegetation-water model via the aid of optimal control theory. To gain
a good comparison and to underscore the effects of heterogeneity in human activities on vegetation dynamics, we split
our study into two steps.

In the first step, the effects of positive and negative human activities on vegetation patterns are investigated in the case
when the human activities are constant. The results show that increasing the intensity of positive human activities (such
as afforestation) does not lead to the transformation between different types of vegetation pattern, but it will increase
the average biomass of vegetation, which is beneficial to the growth of vegetation. Conversely, increasing the intensity of
negative human activities (such as grazing and logging) will induce the gradual transformation from the stripe pattern to
12
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Fig. 6. The impact of spatial heterogeneity of human activities on the vegetation pattern structure at different iteration times. Without the
influence of human activities heterogeneity, vegetation exhibits a mixed spatial distribution of spots and stripes (uncontrolled). Under the influence
of spatiotemporal heterogeneity of human activities, vegetation gradually transforms into a labyrinth distribution (target). The initial state are
b0 = b∗ + 10−4randn in Ω , w0 = w∗ + 10−4randn in Ω , h0 = h∗ + 10−4randn in Ω , where randn is a random number with a standard normal
distribution. The related parameters are as follows: p = 1.8375, a1 = a2 = a3 = 1, and c = 10−10 . Other parameters are the same as in Table 1.

he spot pattern, and decrease the average biomass of vegetation. Additionally, it is found that the structure of vegetation
atterns (either transient or stationary) depends on the initial condition (see Figs. 2 and 3).
In the second step, the effects of spatiotemporal heterogeneity of human activities on vegetation patterns are studied by

he method of optimal control. Firstly, we establish the necessary conditions for the existence of the solution to the optimal
ontrol problem. Secondly, we uncover that the heterogeneity of human activities will enrich the vegetation dynamics
y inducing phase transitions between different vegetation patterns, especially the transitions from the spot-strip mixed
attern, the gap pattern, the hole pattern and the uniform state to the given target pattern. Besides, we find that under
ppropriate human activities, each type of desired pattern structures can be obtained, implying the heterogeneity of
uman activities increases the diversity of pattern structure. Moreover, vegetation patterns generated in the case of high
ainfalls for homogeneous circumstances can be obtained even in the case of low rainfalls for heterogeneous circumstances
see Figs. 5). Therefore, the heterogeneity of human activities facilitates the vegetation growth in low-rainfall regions,
hereby reducing the desertification of vegetation. Furthermore, it is revealed that a regular vegetation pattern can emerge
rom a heterogeneous distribution of human activities with appropriate intensities.

It is well known that even simple spatial inhomogeneities can lead to spatiotemporal effects in reaction–diffusion
ystems, so the study of spatiotemporal heterogeneity has received much attention. For example, Benson et al. [28]
onducted a very detailed branching analysis of reaction–diffusion systems with diffusion coefficients D(x) = D + ηx2
n the limit of η→ 0, showing that small heterogeneity can yield rich dynamical properties. Some scholars have shown
hat the heterogeneity contained in pattern formation systems can induce spatiotemporal oscillations [29]. In contrast to
revious work on heterogeneity, this paper combines optimal control theory with a dryland vegetation water model to
eveal the impact of spatio-temporal heterogeneity in human activities on vegetation pattern structures. It is shown that
patio-temporal heterogeneity of human activities can induce rich pattern structures. In summary, this paper presents a
eneral framework for studying the effects of spatiotemporal heterogeneity from the perspective of optimal control.
The results of this paper provide new insights for ecological management of dryland as well as biodiversity conserva-

ion. As is known to all, a poor rainfall is a typical feature of dryland, and the rainfall is the key element for vegetation
rowth. Obviously, it is difficult to promote vegetation growth by improving such natural conditions as the rainfall and
unlight. Our results show that under the influence of the spatiotemporal heterogeneity in human activities, the pattern
13
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Fig. 7. The impact of spatial heterogeneity of human activities on the vegetation pattern structures at different iteration times. The initial state are
b0 = b∗ + 10−2randn in Ω , w0 = w∗ + 10−2randn in Ω , h0 = h∗ + 10−2randn in Ω .

Fig. 8. The spatiotemporal average intensity of human activities required for the vegetation to reach the target patterns for different rainfalls. The
required intensity of human activities is directly proportional to the rainfall when the target pattern remains constant. The average human activities
required for the three types (i.e., spot, labyrinth and gap) of target patterns to be generated are sorted in the order of Spot>Labyrinth>Gap.
14
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Fig. 9. The variation of relative error and objective function with the iteration count k for different target patterns. The first row is the relative error

ith
∥bk

T
x−b

tar
x ∥L2(Ω)

∥btarx ∥L2(Ω)
and the second row is the objection functional Ok

[b∗, w∗, h∗, r∗]. (a)(d) The target pattern is a spot pattern; (b)(e) The target

attern is a labyrinth pattern; (c)(f) The target pattern is a gap pattern.

tructure can change even if the rainfall is very low. Therefore, it is feasible to improve vegetation growth by regulating
uman activities. Existing studies have shown that the spot pattern is an early warning signal of desertification [13]. In
his sense, we can adopt strategies to control the vegetation to evolve to other pattern structures, thus effectively avoid
he occurrence of desertification. Meanwhile, Bertolini et al. shows that the labyrinth pattern is a relatively stable pattern
tructure [46]. For such a reason, we can provide suggestions for administrating human activities to induce the vegetation
o evolve to this pattern structure, and then improve the stability of vegetation systems.
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Appendix. Elements of Jacobian matrix of system (1) without spatial effects

a11 =2w∗b∗(1− b∗)(1+ ηb∗)− w∗(b∗ − 1)(b∗η + 1)2 − w∗b∗(1+ ηb∗)2 − 1,

a12 =− (b∗ − 1)(1+ ηb∗)2b∗,

a21 =
αh∗

q+ b∗
−

αh∗(qf + b∗)
(q+ b∗)2

+
νwRww∗

(1+ Rwb∗)2
− γw∗(b∗η + 1)2 − 2b∗γ ηw∗(b∗η + 1),

a22 =−
νw

1+ Rwb∗
− γ b∗(1+ ηb∗)2 < 0,

a23 =
α(qf + b∗)
q+ b∗

> 0,

a31 =−
αh∗

q+ b∗
+

αh∗(qf + b∗)
(q+ b∗)2

+
νhRhh∗

(1+ Rhb∗)2
,

a33 =−
α(qf + b∗)
q+ b∗

−
νh

1+ Rhb∗
< 0.
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