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a b s t r a c t 

Many tissues are gap-junction-coupled syncytia that support cell-to-cell communication 

via propagating calcium waves. This also holds true for pancreatic islets of Langerhans, 

where several thousand beta cells work in synchrony to ensure proper insulin secretion. 

Two emerging functional parameters of islet function are the location of wave initiator re- 

gions and the velocity of spreading calcium waves. High-frequency confocal laser-scanning 

imaging in tissue slices is one of the best available methods to determine these mark- 

ers, but it is limited to two-dimensional cross-sections of an otherwise three-dimensional 

islet. Here we show how mathematical modeling can significantly improve this limita- 

tion. Firstly, we analytically determine the shape of velocity profiles of spherical excitation 

waves in the focal plane of a homogeneous three-dimensional space. Secondly, we intro- 

duce a mathematical model consisting of coupled excitable cells that considers cellular 

heterogeneities to approach more realistic conditions by means of numerical simulations. 

We demonstrate the effectiveness of our approach on experimentally recorded waves from 

an islet that was stimulated with 9 mM glucose. Furthermore, we show that calcium waves 

were primarily triggered by a specific region located 30 μm bellow the focal plane at the 

periphery of the islet. Additionally, we show that the velocity of the calcium wave was 

around 80 μm/s. We discuss the importance of our approach for the correct determination 

of the origin and velocity of calcium waves from experimental data, as well as the pitfalls 

that are due to improper procedural simplifications. 
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1. Introduction 

Already in 1883, Ca 2 + ions were identified as an essential and ubiquitous intracellular messenger [1] . More than a century

later, the search for molecular and cellular mechanism of Ca 2 + signaling are still ongoing. A major breakthrough in the quest

was the development of Ca 2 + -sensitive dyes and imaging techniques that helped to elucidate the role of Ca 2 + ions as a

most versatile secondary messenger regulating processes as diverse and universal as fertilization, cell cleavage, development,

contraction, secretion, and cell death [2–5] . Since Ca 2 + is a simple ion with binding sites on a plethora of target molecules,

it cannot serve as a signal merely by its presence or specific binding. Instead, the information it carries is encoded in spatial

and temporal patterns, which take the form of intracellular oscillations and waves [6,7] . Intercellular Ca 2 + waves of different

shapes, directions and frequencies, that are mediated by different mechanisms are crucial for the coordinated function of

coupled cells in a number of different tissues [7–9] . 

In the strict sense, the term intercellular Ca 2 + waves is reserved for non-excitable cells where the waves occur on a

temporal scale of several seconds, and spread between a few, tens, or hundreds of cells with a velocity of around 10-30

μm/s, consistent with the diffusion of messengers [10] . In the broader sense, a number of electrically excitable cells are

coupled via gap junctions and depolarization waves spreading between cells are often followed by Ca 2 + increases in these

cells, giving the appearance of Ca 2 + waves. Typically, these waves occur on a temporal scale of 1 second or less, encompass

up to thousands of cells and are typically faster ( > 30 μm/s), do not show delays, and rely mechanistically on depolarizing

electrical currents [6,7,9] . 

Nevertheless, irrespective of the cell type intercellular waves have the same crucial task, i.e., to help cells overcome

differences in their sensitivity and produce a synchronized response [7] . One of the most fascinating aspects of intercellular

Ca 2 + dynamics is that local activity in a population of heterogeneous cells embedded in a changing and noisy environment

can be organized into complex and rather regular spatiotemporal patterns, which facilitate the transfer of information. Not

only are these structures physiologically important, they are also theoretically appealing and challenging to understand.

As a result, numerus computational models have been developed to support experimental endeavors and to elucidate the

underlying mechanisms. For instance, previous studies have utilized models and simulations to identify the key intercellular

messengers [11] , to investigate the role of intercellular topology [12,13] , to explore dynamical transitions and synchronization

behavior [14,15] , assess the velocity of signal propagation [16] , to evaluate the effect of noise and cellular heterogeneity

[17–19] , and, of course, to investigate how they are regulated by mechanical and biochemical factors to maintain essential

physiological functions [20] . Models have been developed for networks of non-excitable cells, such as endothelial [12] and

epithelial [11] cells, keratinocytes [21] , acinar cells [22] , hepatocytes [23] , and astrocytes [24] , to name only a few examples.

From the perspective of complexity, numerical simulations of coupled excitable cells are an even more challenging task.

Computational studies of Ca 2 + waves have plenty in common with the study of wave propagation in other excitable models,

such as the Hodgkin-Huxley or FitzHugh-Nagumo models, and can predict very complex spatiotemporal patterns [25–27] .

Until today, cell-specific models to study the collective Ca 2 + activity have been mostly designed for various types of smooth

muscle cells [28–32] and insulin-secreting beta cells from pancreatic islets of Langerhans [33–38] . 

The latter is a particularly interesting system to study intra- and intercellular Ca 2 + signaling. A typical mouse islet is

around 100 μm in diameter and consists of around 10 0 0 cells of at least five different types, with the insulin secreting beta

cells being the most prevailing in the islet core and representing around 60-80 % of all cells. In terms of composition and

size, islets are highly heterogeneous, with some comprising only a few cells and some having diameters well above 500 μm

[39] . Cells communicate with each other through different mechanisms; with gap-junctional coupling probably being the

main synchronizing mechanism for depolarization and Ca 2 + waves [40,41] . These microorgans are biologically highly com-

plex [42,43] , accessible to advanced modelling, experimental, and analytical approaches [44–46] , and their disruption leads

to type 2 diabetes mellitus, which is increasingly becoming an important public health problem [47,48] . When exposed

to stimulatory glucose concentrations, mouse beta cells in isolated islets and pancreatic tissue slices exhibit a multimodal

oscillatory pattern. The slow oscillatory component with a period of several minutes is believed to reflect glycolytic oscil-

lations, whereas the superimposed fast component resembles a glucose-dependent electrical activity with a frequency of

several oscillations per minute [49] . Both slow and fast oscillations are well synchronized between different beta cells of the

same islet, predominantly by gap-junctional coupling through Connexin36, even though other means of intercellular com-

munication probably contribute to intercellular Ca 2 + wave generation as well [38,42,43,45,50–52] . The collective activity of

slow oscillations has not yet been resolved conclusively and is probably driven by diffusion of the metabolic intermediate

glucose-6-phosphate [53,54] . Synchronous behavior of fast oscillations is receiving much more attention from the scientific

community and is governed by electrical depolarization, resulting in the appearance of Ca 2 + waves that propagate across

the islets [55–59] . 

Motivated by the fact that well-organized collective activity is a prerequisite for proper hormone secretion, in silico ap-

proaches are increasingly becoming an integral part in islet research [60–62] . Multicellular models incorporating either sin-

gle cellular type (beta cells) or three cellular types (alpha, beta, and delta cells) are of paramount importance for exploring

their synchronous behavior, Ca 2 + wave propagation, and heterologous cell communication within the islet tissue [34,63–68] .

In recent years, particular emphasis has been given to the incorporation of the well-known beta cell heterogeneity into beta

cell models, as it has been shown to profoundly affect dynamical transitions and intercellular activity [14,69,70] . Studies

utilizing a combination of experimental findings, advanced analyses, and computational models have revealed that Ca 2 + 

waves originate from specific and rather randomly distributed subregions with elevated excitability [36,65,71] . Moreover,
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recent research suggests that the multifaceted heterogeneity also includes cell-to-cell variability and a heterogeneous nature

of intercellular interactions. Both must be included in computational models, in order to firmly reproduce experimentally

observed collective beta cell behavior [36,37,72] . 

Several experimental studies have investigated the extent and mechanism of synchronicity between fast Ca 2 + oscillations

in beta cells. In isolated islets, the oscillations from different parts of the islets were found to be phase-shifted for up to 2

seconds [73] . Considering the characteristic size of the islets (100 μm), it could thus be estimated that the velocity of signal

transmission was around 50-100 μm/s. Additionally, it was reported that the direction of the waves might change from one

oscillation to another [73] . Moreover, similar results were obtained in clusters of beta cells [74] , isolated mouse [75] and

human [76] islets and in islets in vivo [77–79] , but, remarkably, neither of the studies explicitly mentioned intercellular

Ca 2 + waves. Similar values were also obtained with electrophysiological experiments [80] . A more explicit Ca 2 + imaging and

simulation study by Aslanidi et al. [33] provided first convincing evidence for depolarization front-dependent Ca 2 + waves,

quantified the relationship between gap junctional coupling, membrane conductance, and wave velocity, and concluded

that the predicted wave velocities are typically between 30 and 100 μm/s in glucose-stimulated islets. Later, Benninger et al.

[34] provided a decisive piece of evidence for the dependence of Ca 2 + waves on gap junctions and depolarization in isolated

islets and that a genetic disruption of connexin 36 slows and disrupts Ca 2 + waves. The estimated wave velocities were

between 20 and 200 μm/s and the observed directions of spreading were not always the same. Interestingly, Cappon and

Pedersen [69] also demonstrated numerically that the wave velocity is a function of the average gap junctional conductance,

which holds true also in ensembles of heterogeneous networks of beta cells. 

We would like to conclude this brief review of previous findings by pointing out some promising recent studies that as-

sessed the velocity of Ca 2 + waves in vivo in zebrafish islets, islets transplanted into the anterior chamber of the eye, and in

exteriorized pancreata, some even in all three dimensions (3D) [79,81–83] . However, according to the available information,

none of the studies so far primarily addressed the problem of true wave origin and velocity in 3D tissue and the abovemen-

tioned studies were limited by rather low temporal resolutions. More precisely, both tissue slices and islets are 3D. Imaging

methods to detect Ca 2 + waves enable one to detect Ca 2 + changes predominantly in the stronger stained periphery of iso-

lated islets and in the part of the islet closer to the objective in the case of a camera-based system, or in an approximately

5 μm thick focal plane in case of confocal microscopy. Thus, velocities calculated by simply dividing the distances between

wave origins and ends by phase lags are probably imprecise estimates. Moreover, true origins and ends of waves could lie

outside the recorded area. Finding true wave-initiating regions is especially important in the light of recent findings that

pacemakers might exhibit metabolic features different from follower cells and other specialized cells [41,43,82,84] . Typically,

pacemakers are found at the periphery of islets, which may be the result of peripheral cells being exposed to glucose sooner

than other cells in some experimental settings, a true biological heterogeneity in some metabolic parameters, being coupled

to fewer neighboring cells, or due to a combination of these factors [33–36,72] . However, sometimes they appear to be lo-

cated more centrally, but this could also be an experimental artefact. Finally, understanding the spreading of waves in 3D

could also help us resolve some previous findings of complete synchronicity between cells as well as the findings that some

cells, called hub cells, are strongly synchronized with many other cells [85] . 

The main goal of this study was therefore to investigate how the Ca 2 + wave velocity can be computed based on multi-

cellular Ca 2 + imaging and to determine the distribution of wave origins in 3D space. To this end, we combined theoretical

models and simulations with experimental observations. With respect to the latter, we limit ourselves to tissue slices and

confocal microscopy, but one shall easily extrapolate our findings to other models and modes of recording. We resorted

to theoretical models to gain quantitative insight as our and other experimental setups do not yet make the observation

of intracellular Ca 2 + changes possible in 3D. In particular, we first considered the spread of spherical excitation waves in

homogeneous 3D space to determine analytically the shapes of velocity profiles in the focal plane. Then, we built multicel-

lular models of coupled excitable cells to examine this issue by means of numerical simulations, also in the scenario which

included realistic physiological determinants, such as cellular heterogeneity. Finally, we used the acquired insights from

theoretical and numerical models to analyze experimental data and to determine the Ca 2 + wave velocity and the spatial

distribution of wave initiators within the islet. 

2. Materials and methods 

2.1. Numerical model of wave propagation in a homogeneous excitable lattice 

For numerical simulations of excitation wave propagation in a homogeneous lattice of coupled cells, we utilized the two-

dimensional Rulkov iterative map, a phenomenological model of excitable cellular oscillators. It was first proposed by Rulkov

[86] for modelling of spiking-bursting neural behavior but it lends itself well for modeling of other types of excitable cells,

including beta cells [72] . It consists of two iterative equations: 

u i, j,k ( n + 1 ) = 

αi, j,k 

1 + u i, j,k ( n ) 
2 

+ v i, j,k ( n ) + g K i, j,k , (1)

v i, j,k ( n + 1 ) = v i, j,k ( n ) − σu i, j,k ( n ) − χ, (2)
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where u i, j, k ( n ) and v i, j, k ( n ) are, respectively, the slow and the fast dynamical variable at iteration step n for the cell at the

given grid location i,j,k = 1,….,17. The ( x,y,z ) coordinates for each cell were then determined by mapping the ( i,j,k ) grid system

to the unit cube with equidistant grid spacing 1/17. In a biological sense, the variable u i, j, k ( n ) mimics the membrane poten-

tial and the variable v i, j, k ( n ) emulates the dynamics of gating variables. Both are considered as dimensionless quantities. Of

special importance are the parameter αi, j, k which defines the dynamical regime [72,86] , and the last term of Eq. (1) which

represents the diffusive intercellular coupling between neighboring cells ( K i, j, k ). The latter is realized by a finite difference

scheme using a 19-point stencil: 

K i, j,k = 

1 

8 

[
u i +1 , j,k +1 + u i −1 , j,k +1 + u i +1 , j,k −1 + u i −1 , j,k −1 + u i +1 , j+1 ,k + u i −1 , j+1 ,k + u i +1 , j−1 ,k 

+ u i −1 , j−1 ,k + u i, j+1 ,k +1 + u i, j−1 ,k +1 + u i, j+1 ,k −1 + u i, j−1 ,k −1 + 4 

(
u i +1 , j,k + u i −1 , j,k + u i, j+1 ,k 

+ u i, j−1 ,k + u i, j,k +1 + u i, j,k −1 

)
−36 u i, j,k 

]
. (3) 

It should be noted that by applying this finite difference approximation, we formally treat the lattice as a discretization

of continuous excitable media. No-flux boundary conditions were applied at the edges. With 17 cells along each axis we

used 4913 cells. It should be noted that both the model and the experimentally used islet are larger than average islets,

but in good agreement with each other. This size was chosen for easier visualization and better quantification of phase lags

and velocity profiles. The value of parameter αi, j, k was the same for all cells ( αi, j,k = 1 . 98 ), putting them into an excitable

regime, except for cells which were chosen as so-called pacemakers. These chosen cells were placed at the bottom of the

system at the middle of the xy plane as specified by indices (8 ≤ i, j ≤ 10) and (0 < k ≤ 3) with αi, j,k = 2 . 1 , thereby

exhibiting oscillatory dynamics leading to initiation of propagating waves. Other system parameters were χ = σ = 0 . 001

and g = 0 . 007 . 

2.2. Numerical model of wave propagation in a heterogeneous network of cells 

To build a biologically more relevant tissue architecture, we constructed the network by assigning each cell a random set

of coordinates in a unit cube while considering the restraint that two cells cannot be closer to each other than a predefined

threshold distance ( d th = 0 . 05 ). The number of cells was the same as in the lattice network ( N = 4913). Once all cells were

placed in the network connections between cells were established. If the coordinates of a pair of cells were within a prede-

fined radius r , there were considered connected. This radius was determined iteratively to ensure that the average number

of connections in the system is biologically relevant, i.e. around 8 [38,69,87–89] . To simulate the dynamics of each node we

utilized again the Rulkov oscillator model [86] , similarly as described above: 

u i ( n + 1 ) = 

αi 

1 + u i ( n ) 
2 

+ v i, ( n ) + g 
∑ 

j 

C i, j 

[
u j ( n ) − u i ( n ) 

]
, (4) 

v i ( n + 1 ) = v i ( n ) − σu i ( n ) − χ. (5) 

The last term in Eq. (4) represents the coupling between the i -th cell to all its neighbors and the parameter C i, j describes

the coupling strength between the i -th and j -th cell. Pancreatic beta cells exhibit different facets of heterogeneity [60] . We

incorporated this important aspect into our model by randomly distributing C i, j between 0.8 and 1.2 in order to simulate

heterogeneity of intercellular coupling while the coupling parameter was set to g = 0.02. Moreover, to account for cell-to-cell

variability of electrical excitability, the values αi were randomly assigned from the interval between 1.98 and 1.99, except

for the pacemaker cells, where we set αi = 2 . 1 . The pacemakers were again set approximately at the middle of the xy plane

at the bottom of the system in the region (0.47 ≤ x, y ≤ 0.53) and (0 ≤ z ≤ 0.1). 

2.3. Experimental methods 

Acute 140 μm thick pancreatic tissue slices sized 1-3 mm 

2 were prepared from a 13 week old male NMRI mouse employ-

ing the same tissue extraction and preparation steps as well as solutions as published previously [90,91] . All experiments

were conducted in strict accordance with the national and European recommendations concerning experimental animals.

For confocal functional multicellular Ca 2 + imaging (fMCI), slices were transferred into a bath chamber at 37 °C continuously

perfused with carbogen-bubbled (5% CO 2 , 95% O 2 ) extracellular solution (ECS) mounted on Leica TCS SP5 AOBS Tandem II

upright confocal microscope system using a Leica HCX APO L water immersion objective (20 x, NA = 1.0). Fluorophore Oregon

green BAPTA-1 (OGB-1) was excited with 488 nm argon laser and the fluorescence detected with Leica HyD hybrid detector

in the range of 50 0–70 0 nm (all from Leica Microsystems GmbH, Wetzlar, Germany). Images were acquired from a 5 μm

thick optical layer approximately 20 μm below the cut surface to avoid imaging from the most damaged layer [91] . The

resolution was set to 8-bit 256 × 256 pixels @ 10 Hz allowing discrimination of individual Ca 2 + oscillation at single cell

resolution. Prior to and following time series acquisition, a reference high-resolution image (1024 × 1024 pixels) was taken

to account for potential motion artefacts during off-line analysis. The stimulation protocol consisted of non-stimulatory 6

mM glucose in ECS for the first 2 minutes, followed by 9 mM glucose in ECS persisting for 40 minutes. A representative

slice with 207 beta cells was selected for further analyses; 22 cells were excluded from further analysis due to not-sufficient

signal-to-noise ratio. 
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2.4. Data processing 

All recorded time series were first band-pass filtered to remove noise, baseline drift and to extract the fast component

of Ca 2 + oscillations. The frequency band of interest was chosen by visual assessment between 0.06 Hz and 1.0 Hz. After fil-

tration the time series were smoothed by a standard sliding-window algorithm and binarized cellular activity was extracted

for each cell. The extracted binarized cellular signals were the foundation for further analysis. Numerical simulations yielded

binarized signals by simply thresholding the amplitude of the fast component variable. If the amplitude of the fast compo-

nent exceeded a predetermined value of ( u i (n ) = −0 . 4 ) the cell was deemed active. No additional pre-processing steps were

required for data obtained from numerical simulations. 

Individual Ca 2 + waves were detected by analyzing the binarized signals of all cells. Cells i and j were deemed to be part

of the same event if the following criteria were met: ∣∣T i − T j 
∣∣ < T th , 

d i, j < R 

wave 
th , 

where T i and T j are the activation times of the i -th and j -th cell, T th is a pre-set threshold time, d i, j is the Euclidian distance

between the i -th and j -th cell and R wave 
th 

is a pre-set threshold distance between cells, similarly as described previously [36] .

The threshold time was set to T th = 0 . 5 s for experimental data and T th = 200 (a.u.) for numerical simulation data, and the

threshold distance was set to R wave 
th 

= 40 μm for experimental data and R wave 
th 

= 0 . 06 (a.u.) for numerical simulation data. If,

for example, cells i and j were close enough together (condition ii) and cell i activated just slightly before cell j (condition

i), it was deemed that the signal travelled from cell i to cell j and the two cells were thus considered to be part of the same

event. With this algorithm we detected the activation sequences of all cells in the islet (experimental data) and all cells in

a chosen slice of the numerical model (at a chosen z coordinate). 

3. Results 

3.1. Theoretical considerations 

3D excitation waves in pancreatic islets can be experimentally assessed only in 2D cross-sections, but they can be trig-

gered anywhere outside this focal plane. Here we examined the shape of wave velocity profiles in one plane as a function of

the wave origin location. We derived a simple theoretical model of 3D wave propagation using the following assumptions: 

i) The origin of the wave is directly beneath the first detected activity in the observed (focal) plane. With this we assume

that the tissue is homogeneous and isotropic, thereby leading to ideal spherical geometry of the excitation wavefront,

which hits the focal plane first directly above the initiating region. 

ii) Wave front propagation velocity is uniform and constant. This reflects the scenario of cells being packed tightly together

forming a perfect regular lattice, with each of them having the same coupling strength. 

ii) Waves propagate outwards from the point of origin in the form of concentric spheres and do not produce reflections

when they hit the edge of the system. This reflects authentic behavior in excitable tissue, as the excitation waves dimin-

ish once they arrive at the boundaries. 

It should be noted that assumptions i) and ii) symbolize a very simplified description of the real tissue, but are nonethe-

less at this stage required for the theoretical formulation. In continuation, we will therefore address the more realistic

scenario with numerical simulations. 

Once the wave front, which originates from ( x or , y or , z or ), hits the observed (focal) plane it propagates outwards from the

point of impact ( x or , y or , z 
′ ) in the form of concentric circles, as presented in Fig. 1 A and Supplementary video 1. The wave

front hits point ( x ′ , y ′ , z ′ ) in the observed plane once the wave front has travelled the distance L . Considering assumptions i)

and ii), we can express the travelled distance ( L ) of the wave front as: 

L = ct, (6)

where c is the constant wave front velocity and t is time. Furthermore, we can express the travelled distance in terms of

the coordinates of the projected wave front onto the observed (focal) plane as: 

L = 

√ 

r ′ 2 + z ′ 2 , (7)

where r ′ is the radial distance from the point of impact on the observed plane Fig. 1 A) and can be expressed as r ′ =√ 

x 
′ 2 + y 

′ 2 . By equaling Eqs. (6) and ( (7) , considering z ′ as a constant, and taking the time derivative, we derive: 

v 
(
r ′ 
)

= 

c 

r ′ 
√ 

r ′ 2 + z ′ 2 , (8)

where v ( r ′ ) is the wave front propagation velocity on the observed plane as a function of the radial distance from the point

of impact. It can be noticed that if r → 0 then v → ∞ and if r → ∞ then v → c . Velocity profiles as a function of the radial

distance from the impact point are presented in Fig. 1 B and C, for different depths z ’. 
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Fig. 1. A) A schematic representation of propagating concentric spherical waves emanating from the point of origin (red dot) at coordinates x or , y or and 

z or with a wave-front velocity c. L is the travelled distance of the wave in time t . Observed (focal) plane at coordinate z ’ above the point of origin and 

starting point of the wave on this plane (yellow dot) with coordinates x or , y or and z ’ . Shown is the projection of the 3D wave front onto the 2D plane 

(circle – white) at a radius r ’ and projected wave velocity v ( r ) at coordinates x ’ , y ’ and z ’ . B) Surface plots showing the spatial profile of the normalized 

wave velocities ( v ( r ’)/ c ) on multiple observed (focal) planes. C) The circularly-averaged velocity profiles as a function of the radial distance ( r’ ) for observed 

(focal) planes at different z coordinates ( z = 0.2, z = 0.4, z = 0.6, z = 0.8 and z = 1.0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eq. (8) describes the wave propagation velocity in the observed plane as a function of the radial distance, however, if

the values of the wave propagation velocity profile are known we can calculate the height of the observed plane above the

point of origin. We can do this by rearranging Eq. (8) and expressing z ′ as: 

z ′ = 

r ′ 
c 

√ 

v ( r ) 2 − c 2 . (9) 

Using Eq. (9) , our first assumption and the calculated velocity profiles along the observed plane, we can calculate the point

of origin of each detected wave. 

4. Numerical results 

4.1. Excitation wave propagation in a 3D lattice of homogeneous excitable cells 

Firstly, we simulated the excitation wave propagation in a 3D lattice of excitable cells to examine how the wave behavior

matches theoretical considerations. The coordinates of the grid element ( i,j,k ) were uniformly placed within a unit cube, with

the lattice distance 1/17. The arrangement is visualized in Fig. 2 A. The dynamics of the ( i,j,k ) grid element was governed by

the Rulkov map model, as described in the Methods section. Pacemaker cells were placed at the bottom of the system in

the middle of the xy (ij) plane. The arrangement is visualized in Fig. 2 A. Temporal traces from these two cells are shown in

the upper panel of Fig. 2 B, whereas the lower panel in Fig. 2 B features the onsets of oscillations of all cells, color-coded in

accordance with their relative activation time within the given wave (red cells activated first and blue cells activated last).

The cells are indexed with respect to their distance from the center, i.e., first-responder. The monotonic inclination of points

indicates that the excitation signal was a regular concentric wave traveling from the center to the boundary, as we describe

in more detail bellow. 

Propagation of an excitation wave in the chosen plane ( z ≈0.82, k = 14) of the 3D lattice is visualized in Fig. 3 in the

form of subsequent snapshots at equally spaced iteration steps ( n = 0, n = 6, n = 12 and n = 18), whereby the grey dots reflect

inactive cells, while red and orange cells reflect newly active and previously active cells, respectively. It can be inferred that

the wave propagated faster in the initial moments after impact compared to later iteration steps, which corresponds well

to theoretical predictions presented in section Theoretical considerations. This observation is further corroborated by the

Supplementary Video S2. 

To assess the differences between the velocity profiles in different planes of the 3D lattice, we analyzed cellular activity

in different planes above the initiating region. The resulting activation profiles are shown in the upper panels of Fig. 4

for z ≈0.06 ( k = 2), z ≈0.41 ( k = 7), and z ≈0.82 ( k = 14). Evidently, the wave front propagates much faster when the planes are

further away from the origin of the wave, as predicted theoretically. The velocity profiles were calculated by dividing the

planes into 6 (or 5) concentric circular sectors of width 0.12 (or 0.14) with the center in the middle where the first cells

responded (black cross), as presented in the upper panels in Fig. 4 . Each cell was assigned to a sector based on its radial

distance from the starting point and the activation time for each sector was determined as an average of all cells within

a given sector. Considering these average activation times and the distances between sectors, the velocity profile v ( r ) was

calculated (see Methods for details). As expected, the velocity profile in a given plane is a monotonically decreasing function

of the radial distance converging to wave velocity c , which was measured to be c = 0.0024 (a.u.) in the pacemaker plane. In

particular, the actual wave front velocity was determined on the basis of the time required for the wave front to travel from

the origin at the center to the edge in the second lowermost plane. 
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Fig. 2. A) The 3D lattice network of excitable cells. Pacemaker cells are shown at the bottom of the xy (ij) plane in black, cells in the chosen “focal” plane 

( z ≈0.82, k = 14) are shown in grey, and all other cells are shown as light grey spheres. The first- and last-responding cells in the chosen plane are shown as 

red and blue spheres, respectively. There were N = 17 cells placed within the unit interval along each axis. B) Time series of the first (red) and last (blue) 

responding cells in the observed plane, upper panel, and raster plot of the activation sequence of all cells in the chosen slice for all detected events sorted 

in accordance with the distance from first responder r i cm (red cells activated first and blue cells activated last). The light grey line in the lower panel shows 

the mean field signal of all cells in the chosen plane. 

Fig. 3. Snapshots of excitation wave propagation in the 3D lattice (upper panels) and in the chosen plane at z ≈0.82 ( k = 14) (lower panels) for iteration 

steps n = 0 (A), n = 6 (B), n = 12 (C), and n = 18 (D) after the wave front hit the observed plane. Active cells in the 3D lattice are shown in black, inactive cells 

are shown in light grey, newly active cells in the chosen plane are shown in red and previously active cells are shown in orange. 

 

 

 

 

 

 

 

 

 

4.2. Excitation wave propagation in a heterogeneous network of excitable cells 

To simulate the cellular behavior in a biologically more relevant architecture of the beta cell network in pancreatic islets,

we utilized a random geometric network to model intercellular interactions. Besides topological heterogeneity, we incorpo-

rated in our model cellular variability in terms of variable cell-to-cell coupling strengths and excitability levels, to account

for the well-known beta cell heterogeneity (see Introduction and Materials and Methods). The spreading of the excitation

wave initiated by the pacemaker region located at the bottom in the center of the xy plane is visualized in Fig. 5 as a se-

ries of equally spaced snapshots ( n = 0, n = 6, n = 12 and n = 18). Similar as in the lattice model of coupled homogeneous cells,

the wave propagated along the observed plane faster just after it hit the plane, but in this case, the wave front was rather

distorted due to the abovementioned heterogeneities. 

In Fig. 6 we present cellular activation profiles for three different slices located at z = 0.05, z = 0.25, and z = 0.5, and the

corresponding velocity profiles v ( r ). Because of the integrated heterogeneities, the activation and velocity profiles were no
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Fig. 4. Cellular activation profiles in different planes of the 3D lattice (upper panels) at z ≈0.06 ( k = 2) (A), z ≈0.41 ( k = 7) (B) and z ≈0.82 ( k = 14) (C) with 

indicated wave starting locations (black crosses) and circular sectors (grey circles). Activation times of cells in each plane are color-coded, as indicated by 

the color bar. Lower panels feature their corresponding velocity profiles v ( r ), i.e., velocities determined on the basis of average activation times in circular 

sectors and the distance from the origin. Dashed lines indicate the actual wave front propagation velocity ( c ), as determined in the pacemaker plane 

( c = 0.0024 a.u.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

longer as smooth as in the homogeneous lattice model, but the behavior was found to be qualitatively the same. The wave

propagation was again found to be the fastest around the central area where the wave first hit the cross-section and this

effect is more pronounced if the vertical distance from the wave origin is larger. Most importantly, towards the periphery

of each plane, i.e., with increasing r , the wave propagation velocity in the slice invariably converged to the actual average

velocity of the wave, which was determined in the pacemaker plane to be c = 0.0029 (a.u.). In particular, the actual wave

front velocity was determined on the basis of the time required for the wave front to travel from the origin at the wave

initiators located in the center to the edge in the slice located between 0.05 < z < 0.1. The value was determined on the basis

of the average of 5 different waves. A dynamic representation of the systems behavior is given in the Supplementary Video

S3. 

Next, we verified if the wave origin could be extracted in this model with incorporated heterogeneities. While in the 3D

lattice of homogeneous cells the excitation waves were very regular and hence the pacemaker region could be determined

very precisely, here, the waves are less coherent. To determine the origin of the wave we used the information about the

average wave velocity c along with the x and y coordinate of the first responding cell(s) in the observed slice. The z coor-

dinate was then determined by Eq. (9) . In particular, to improve accuracy the vertical position of the initiator region was

determined on the basis of the average over all 5 pairs of values of r ’ and v ( r ’). The results showing the inferred initiator

regions for multiple waves are presented in Fig. 6 D. Evidently, the extracted origins (green dots) are scattered around the

actual initiator region (dark grey dots, i.e. pacemaker cells), but the origins could be determined quite precisely despite the

erratic wave patterns caused by the heterogeneities. For the same reason, the extracted wave velocities are not always the

same, as presented in Fig. 6 E. The values are based on 50 different waves and are scattered around the mean value with a

relative standard deviation of 16 %. 

4.3. Analysis of experimental data 

Fig. 7 A shows a high-resolution image of the pancreatic tissue slice with the black line indicating the islet of Langerhans

and cyan dots the positions of individual beta cells. We exported the Ca 2 + time series of each cell and detected the onsets

of individual oscillations. These data were further used to extract individual Ca 2 + waves (see Materials and Methods). In the

upper panel of Fig. 7 B we show Ca 2 + traces of the first- and last-responding cell in a detected Ca 2 + wave and in the lower
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Fig. 5. Snapshots of excitation wave propagation in a heterogeneous network of coupled cells (upper panels) and in the xy projection of the chosen 

segment 0.48 ≤ z ≤ 0.52 (lower panels) for iteration steps n = 0 (A), n = 6 (B), n = 12 (C) and n = 18 (D) after the wave front hit the observed slice. Active cells 

in the 3D network are shown in black, inactive cells are shown in light grey, newly active cells in the chosen slice are shown in red and previously active 

cells are shown in orange. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

panel we present a raster plot of cellular activations for 4 subsequent Ca 2 + waves. How the Ca 2 + waves propagate across

the islets is visualized in the Supplementary Video S4. 

In the recording, 89 large scale waves were detected in which at least 45 % of all cells participated. For these events, we

calculated the activation profiles and the corresponding average wave front propagation velocities as well as the origins of all

waves. We used a similar approach as for the analysis of simulated data. For each wave, circular sectors were placed over the

islet with the center at the first responding cell, as illustrated in Fig. 8 A-C. The average activation time in an individual sector

was then determined by all activation times in the given sector and of the neighboring sectors. This overlap was required

to smooth the data, since due to a relatively small number of cells per sector and inherent noise the extracted profiles

were quite erratic in some waves. Afterwards, profiles were visually inspected and those that were deemed unsuitable were

discarded (15 wave profiles). In these waves, the velocity profiles were not decreasing functions of the distance from the

impact point and contained multiple peaks. Most probably, distorted profiles are a consequence of multiple wave sources

that triggered within a narrow time frame. As a result, we observe a superposition of multiple waves in the focal plane. We

discuss this issue in more detail in the final section. 

After selection, we used the remaining 74 wave profiles to calculate the wave velocity and the wave initiator regions. It

should be noted that in some velocity profiles the values between sectors were rather similar, thereby indicating a constant

velocity of wave propagation. Therefore, for waves in which the difference between the minimum and maximum values

were less than 10 %, the origin was identified in the focal plane (6 waves). Activation profiles for 3 different waves from

different depths are presented in Fig. 8 (upper panels), along with their velocity profiles, which specify the calculated ve-

locity between two sectors in dependence on the distance from the wave impact point r (lower panels). The origin of the

first wave ( Fig. 8 A) was in or slightly below the observed plane, because the velocity profile is nearly constant. For the

second wave ( Fig. 8 B) the velocity profile is a moderately decreasing function of r , thereby indicating that the initiating

region was further below the focal plane. In the case of the third wave ( Fig. 8 C) the detected velocity in the first sectors

was significantly higher, thereby indicating that the wave originated from a deeper location within the islet. In Fig. 9 A, the

exact locations of these three waves are marked with colored stars. 

In Fig. 9 A the reconstructed positions of wave initiators are presented (green stars). The tissue slice is positioned at z = 0

in the xy plane and beta cells are colored in accordance to their average activation time throughout all waves. The xy position

of wave origin was determined based on the location, where the wave hit the focal plane. If multiple cells became activated

simultaneously, the center of mass of all first responders was selected as the origin. The z position was obtained by Eq. (9) ,

whereby the average wave velocity c was obtained as the average of the last two points in the velocity profiles (see dotted

lines in Fig. 8 ), where we assume that the detected wave velocity roughly corresponds to the actual velocity. It turned out

that a great proportion of waves originated from the same islet area located about 20 to 40 μm below the surface ( Fig. 9 B).

Moreover, a large part of the waves was triggered from the periphery of the islet. To provide a rough quantification of this

observation we calculated the locations of triggered waves as a function of the distance from the islet center in the slice

( Fig. 9 C). The latter was determined as the center of mass of all beta cell positions. In Fig. 9 D the distribution of extracted

velocities is shown for all 74 waves. The values are dispersed between 60 μm/s and 100 μm/s around the mean value of

82 μm/s. Noteworthy, 85 % of the values are between 70 μm/s and 90 μm/s. The dispersion is due to multiple factors,

with wave front imperfections due to cellular heterogeneity and morphological distortions of islets being probably the most
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Fig. 6. Cellular activation profiles in different cross-sections in the heterogeneous network of cells (upper panels) at z = 0.05 (A), z = 0.25 (B) and z = 0.5 (C) 

with indicated starting points (black crosses) and circular sectors (grey circles). The width of each slice was 0.05. The activation times of individual cells 

are color-coded, as indicated by the color bar. Lower panels feature their corresponding velocity profiles v ( r ), i.e. velocities determined on the basis of the 

average activation times in circular sectors and the average distance from the origin. Dashed lines indicate the actual wave front propagation velocity ( c ), 

as determined in the pacemaker plane. Upper left panel (D) features the average extracted wave origin position from five analyzed waves (red dot). Dark 

grey dots signify pacemaker cells, colored dots represent cells in the observed slice and are colored in accordance with their average activation time. Other 

cells are shown in light grey. The lower left panel (D) shows the extracted wave origins (green dots) from 50 detected waves. Other three panels show the 

xz, xy and yz cross-sections of the pacemaker region, respectively. In panel (E) the distribution of extracted wave front velocities ( c ) from all 50 waves. 
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Fig. 7. A) High-resolution image of the pancreatic tissue slice. The black curve signifies the islet of Langerhans and cyan dots indicate individual beta cells. 

The red and blue dots show the first- and last-responding cells in the given wave, respectively. B) The upper panel shows recorded Ca 2 + signals of the red 

and blue cells indicated in panel A with red and blue dots. The lower panel features the activation sequence of cells of 4 subsequent Ca 2 + waves. Each dot 

represents the onset of an oscillation and is colored according to its relative activation time. The dots are sorted by their distance ( r i cm ) from the starting 

point of the particular wave. 

Fig. 8. Experimentally measured color-coded activation sequence of beta cells in the tissue slice (upper panels) with indicated wave impact regions (black 

cross) and concentric sectors used for the wave velocity calculation after averaging (grey circles). Cells are color-coded in accordance with their relative 

times of activation, as specified by the color bar. In the lower panels, the corresponding velocity profiles are shown. The dashed line indicates the global 

average wave front velocity c (see text for details). Note that the colors of dots in lower panels (magenta, dark red and grey) correspond to the colors of 

determined wave origins in Fig. 9 . 
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Fig. 9. A) Reconstructed wave initiation regions in the pancreatic islet. The focal plane is placed at z = 0 and the cells in the observed plane are color- 

coded in accordance with their average activation rank throughout all 74 waves. Reconstructed wave origins are designated with green stars, except for 

the three selected waves shown in Fig. 8 , where the origins are marked with magenta, dark red and grey. Light grey dots and stars at the bottom are the 

xy projections of beta cell positions and wave initiator regions, respectively. B) Distribution of calculated depths of wave origins for all detected events. C) 

Distribution of distances of wave origins from the center of the islet D) Distribution of calculated Ca 2 + wave velocities from all detected events based on 

the last 2 points in the distribution. E) Comparison of detected Ca 2 + wave velocities with our method (violet) and the directly estimated velocity on the 

basis of the distance and time delay of the first and last sector of the given wave (cyan). Whiskers indicate the 10th and 90th percentile, the box indicates 

the 25th and 75th percentile and the line indicates the median value. ∗∗∗ p < 0.001. 

 

 

 

 

 

 

pronounced ones, as we address in more detail in the discussion. Nevertheless, the shape of the distribution is quite similar

to those we obtained with the heterogeneous multicellular model (see Fig. 6 E). To be precise, in both cases the values of

velocities were distributed normally with a comparable relative standard deviation (16% for the heterogeneous model and

11% for the experiment). Finally, we compared our calculated values of Ca 2 + waves with those which were obtained by a

more naïve approach employed in previous studies, where the distances between the first and the last activated sector are

divided by the corresponding time lag. Both approaches are compared quantitatively in Fig. 9 E. Evidently, the simplified

estimation of wave velocity yields not only a much broader dispersion of values, but also overestimates the actual Ca 2 + 

wave velocity by more than 30 %. 
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5. Discussion 

The combination of a theoretical model, numerical simulations, and experimental data analysis enabled us to quantita-

tively assess the difference between real Ca 2 + wave velocities and velocities estimated from signals recorded in an optical

plane during fMCI in mouse islets of Langerhans from acute pancreatic tissue slices. The first main finding is that the wave

velocities determined from cells at the beginning and end of a wave in the optical plane overestimated more precisely com-

puted values by approximately 30 % or 25 μm/s. The discrepancy was higher for waves originating from a deeper region,

whereas for waves that ware triggered close to the focal plane, the obtained values did not significantly differ from values

calculated by our framework. We believe that this fact has great practical value for all researchers studying Ca 2 + waves in

3D cell systems, i.e., isolated islets, beta cell organoids, islets in vivo , as well as other tissues. Second, the estimated position

of the wave-initiating region was only rarely in the recorded plane, but also practically never below 140 micrometers, which

is the slice thickness [91] . The wave initiators were in most cases 10-50 micrometers below the optical plane, which cor-

responds to 1 to 5 cell layers if we consider the typical size of beta cells. Of course, these findings apply to this particular

recording only. A simultaneous 3D calcium imaging would be the method of choice to detect the wave initiators directly

and independent of numerical calculations, an endeavor currently not available in technical terms. To assess the positions

of initiating cells more precisely within current technical limitations of imaging techniques, measurements of the 3D islet

morphology with an extracellular fluorescent dye concurrent with 2D calcium imaging shall provide an interesting outline

for future endeavors. It should also be noted that even if the pacemakers, as judged by looking at the recorded plane only,

appear to be in the same part of the islet, in reality, they may lie at different depths and this can be revealed by differences

in velocity profiles in the recorded plane, with the deeper-lying ones having steeper velocity profiles. 

As we previously showed mathematically and experimentally, some waves are localized and thus they never reach the

optical plane at which the function is recorded [36] . Therefore, confocal fMCI can only capture global events and local events

that reach the optical plane or are initiated in it, thus overestimating the proportion of global events among all events.

However, it is reasonable to speculate that the properties of undetected local waves do not differ significantly from the

properties of the detected ones. A possible future solution to the above problem is rapid 3D fMCI using fast galvo scanners

or adaptive optics. 

Since the main focus of this study was to introduce the concept on the basis of which the wave origin and velocity

can be firmly estimated, we did not analyze many islets from many different mice in this study, and we also used a sin-

gle stimulatory concentration of glucose. In the future, a larger number of islets of different sizes, different concentrations

of glucose, other physiological and pharmacological secretagogues, and islets from mice and humans with diabetes shall

be used. This could help us get a clearer picture of the normal and pathological range of wave velocities, their depen-

dence on islet size and secretagogue dose, and changes in the number and stability of pacemaker regions with disease.

This is of especial importance in the light of recent findings suggesting that cells with specialized roles, such as pacemaker

cells, could be preferential targets for diabetogenic insults, together with intercellular connectivity supporting Ca 2 + waves

[82,84,89,92–94] . In the mathematical model employed in this study, we did not completely account for all heterogeneities

in beta cell function, i.e., differences in metabolism, ion channel densities, and coupling. One possible upgrade of the model

presented in this paper would be to incorporate these features. To this end, a more comprehensive biophysical beta cell

model could be applied instead of the phenomenological Rulkov model [45] . Additionally, in the present model, we did not

completely account for the full complexity of the islet tissue. More specifically, islets comprise many non-beta cells, en-

dothelial cells organized into a complex vessel network, immune cells, and other mesenchymal constituents [43] . Some of

these elements could be accounted for by a more realistic beta cell syncytium, possibly extracted from experimental struc-

tural recordings. It should be noted that the proposed approach could be applied to other multicellular systems exhibiting

calcium waves as well, unless their structure is very anisotropic, such as in the myocardium. 

Furthermore, the velocities extracted from experimental data were quite distorted and therefore an adjacent averaging

procedure was required to improve the presentation. This is most probably a consequence of the genuine islet morphol-

ogy, because of which the Ca 2 + wave fronts are not fully coherent circular structures. Moreover, we excluded 15 out of 89

Ca 2 + waves from the analysis, because the cellular activation sequence was completely erratic. This could be due to the

aforementioned heterogeneity in the islet structure, resulting in intense wave distortions, or due to nearly simultaneous

wave initiations from different regions. Especially at higher stimulation levels it might occur more often that global calcium

waves are superpositions of multiple waves triggered by different regions of elevated excitability. Since we do not know the

positions of origins neither the time lag between the initiations, the actual velocity can in this case not be extracted from

the activation profiles. Moreover, the conductance of ATP-dependent ion channels is one of the main regulators of beta cell

activity and in realistic conditions, it depends on the cellular metabolism and therefore changes with time. This can, for

example, cause that a subpopulation of cells slightly below the focal plane does not get activated in a given calcium event,

which would gradually affect the course of the wave front and the resulting velocity profiles. Utilizing more comprehensive

multi-component cellular models that take into account multiple facets of beta cell heterogeneity would be a good approach

to assess such realistic complex spatiotemporal activity patterns. This would lead to a better understanding of why some

experimentally measured activation profiles are more distorted as predicted by our theoretical model and therefore not suit-

able for such analyses. In a more ambitious scenario, a comprehensive computational model could even provide us valuable

information how and at which extent realistic physiological determinants affect the observed activation profiles and this

information could be then used to further elaborate the measured results. Finally, as mentioned at the beginning, beta cells
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display a rather complex oscillatory Ca 2 + activity, composed of slow metabolic oscillations, fast bursts, superimposed on the

slow oscillations, as well as ultrafast spikes that are superimposed on the bursts and probably correspond to individual ac-

tion potentials. While our work, similarly as most of the literature in this field, focused on bursts, both the slower metabolic

oscillations and the faster spikes could be analyzed using our approach. Such an analysis holds promise to reveal whether

the cells that initiate the bursts are also the ones starting the metabolic waves and possibly spiking, as well as to clarify the

relationship between pacemakers and hubs [41,84,95] . 

At present, it is not clear whether human islets behave in a qualitatively and quantitatively similar manner. There is

evidence for important differences between the two species [96,97] but also for similarities in the most important structural

and functional aspects [76,98] . These have been reviewed in detail recently and are beyond the scope of this work [39,43] .

However, it is crucial to keep in mind that for greater translational relevance of research findings human islets should be

used in future studies whenever practically feasible. 
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