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Higher-order interactions shape collective dynamics, but how they affect transitions betweendifferent
states in swarmalator systems is yet to be determined. To that effect, we here study an analytically
tractable swarmalator model that incorporates both pairwise and higher-order interactions, resulting
in four distinct collective states: async, phase wave, mixed, and sync states. We show that even a
minute fraction of higher-order interactions induces abrupt transitions from the async state to the
phase wave and the sync state. We also show that higher-order interactions facilitate an abrupt
transition from the phase wave to the sync state bypassing the intermediate mixed state. Moreover,
elevated levels of higher-order interactions can sustain the presence of phase wave and sync state,
evenwhenpairwise interactions lean towards repulsion. The insights gained from these findings unveil
self-organizing processes that hold the potential to explain sudden transitions between various
collective states in numerous real-world systems.

The dual interplay between swarming and synchronization is in the heart of
swarmalation phenomena which is commonly used to delineate the collective
behaviors of entities called swarmalators. With ever-growing advancements
and discoveries in multi-agent system studies, it has been observed that there
are numerous systems where entities aggregate in space and synchronize over
time. Such systems, both natural andman-made, are appropriate examples of
swarmalator systems that exhibit simultaneous swarming and synchroniza-
tion effects. Japanese tree frogs1, magnetic domain walls2, swarming robots3,
magnetotactic bacteria4, vinegar eels5, Quincke rollers6, Janus particles7 are few
examples where swarmalation effects are encountered.

Although the two fields synchronization8,9 and swarming10–12

have been extensively explored over the last few decades, studies on
their combined effect began not very long ago. In the seminal work of
Vicsek et al.13, particles moved inside a bounded region, and their
directions were influenced by the neighboring particles lying inside a
unit radius. Despite being novel to illustrate the phase transition
from a desynchronized to a synchronized state, the Vicsek model
places little focus on the spatial position and structures of the par-
ticles. Later, depending on the spatial movement of the particles,
synchronization phenomena were studied by the introduction of
mobile agents or moving oscillators14–16. Here also, the effect of
spatial position and internal dynamics is unidirectional: the position

of the particles influences their internal dynamics, but not the other
way round. The pivotal works that laid the platform for the swar-
malator systems were carried out by Tanaka et al.17 and Isawa
et al.18,19 while studying the movement and dynamics of chemotactic
oscillators. The movements of these oscillators are mediated by the
surrounding chemical. In 2017, O’Keeffe et al.20 proposed a simple
mathematical model of swarmalators where they move in the two-
dimensional plane with Kuramoto-like oscillator dynamics. Five
long-term collective states for position aggregation and phase
synchronization, viz., static sync, static phase wave, splintered phase
wave, active phase wave, and static async were reported in this study.
The spatial attraction between two swarmalators was affected by their
relative phase, and the spatial distance between them influenced
the phase coupling. Adopting this central idea of mutual influence of
the spatial position and phase, this model has further been studied
with different interaction functions21–24, coupling schemes25–27,
external forcing28, large particle limit29,30, etc.31,32 A plethora of new
collective states has been found which in turn made the researchers
interested in delving deeper into the study of such systems. However,
mathematical analysis in terms of the solvability of the models or
analytical properties of the emerging states was lacking in most of
the cases.
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To address this problem, O’Keeffe et al.33,34 came up with a 1D swar-
malator model which looked like a pair of coupled Kurmaoto equations,

_xi ¼ vi þ
J
N

XN
j¼1

sinðxj � xiÞ cosðθj � θiÞ; ð1aÞ

_θi ¼ ωi þ
K
N

XN
j¼1

sinðθj � θiÞ cosðxj � xiÞ; ð1bÞ

where xi and θi represent the position on a 1D ring and the phase of the ith

swarmalator, respectively, for i = 1, 2,…,N. vi, ωi are the velocity and
internal frequency, and J,K are the inter-element coupling strengths. Being
similar to the Kuramoto model, this model was analytically tractable.
Analyses of the emerging states had been possiblewhen themodel is studied
with nonidentical velocities and frequencies34, distributed couplings35,
random pinning36,37, thermal noise38, phase lags39, etc.

All these prior research on swarmalators has predominantly focused
on a thorough exploration of their behavior within the framework of
pairwise interactions among the constituent entities of the system. More
precisely, the spatial andphasedynamics that dictate the interactions among
swarmalators have been exclusively governed by the presence of pairwise
connections that link them together. Nevertheless, a natural question arises
whether the connectionsbetween swarmalators are solely described through
pairwise interactions or whether there exists higher-order (group) interac-
tions among them. A higher-order interaction means that more than two
individuals are necessary for the interaction; for instance, the presence of a
third individual can change the interaction among two individuals. We
suspect that there must be swarmalators systems where beyond pairwise
interactions are present. For example, inmanynatural swarmalator systems,
such as nematodes and biological microswimmers, individuals seem to
interact with a group of neighboring individuals simultaneously. A clue
comes from the presence of higher-order interactions in microbial
communities40–42,where thepresenceof a third species affects the interaction
between two species40,42,43, resulting in rich collective behavior. Therefore,
the reliance on a hypothesis rooted solely in pairwise interactions proves
inadequate in capturing a wide array of pertinent scenarios and thus
necessitates the introduction of group interactions in the study of
swarmalators.

Recent advances in physics and other communities have drawn
specific attention to the significance of interactions among dynamic
units that extend beyond the pairwise realm. Notably, three- and
four-way interactions have come to the forefront, revealing their
pivotal role in shaping collective behaviors44–47. As a result, the field
of network science has shifted its focus toward comprehending
higher-order structures to more accurately capture the diverse
interactions that exist beyond conventional pairwise connections48–51.
These intricate interactions are frequently encoded within simplicial
complexes52–54, delineating various levels of simplex structures within
the network. An assemblage of 1-simplices (edges/links), 2-simplices
(filled triangles), and so on constitute the intricate framework of the
simplicial complex, reflecting the essence of these higher-order
interactions.

In this context, the impact of higher-order interactions on the
domain of synchronization has been the subject of thorough inves-
tigation in recent years55–64. These studies have unveiled that the
incorporation of higher-order interactions among dynamic units has
the potential to give rise to a plethora of new collective phenomena.
However, the influence of higher-order interactions on the realm of
swarmalators, which is indissolubly linked to the field of synchro-
nization, remains an unexplored territory to date, and therefore, it is
imperative to investigate this uncharted territory.

Motivated by this, in this paper, we propose a model of swarmalators
that encompasses both pairwise and higher-order interactions, notably
three-body interactions among the swarmalators. These interactions are

intricately woven into a simplicial complex framework at the microscopic
level. Our proposedmodel extends the 1D swarmalatormodel [Eq. (1)] on a
ring to the framework that incorporates higher-order interactions among
the phase and space dynamics of the swarmalators and thus analytically
tractable using the generalized Ott-Antonsen (OA) ansatz65 in the ther-
modynamic (N→∞) limit. Similar to the pairwise model, the present
model also displays a diverse range of dynamics, featuring four distinct
collective states: async, phase wave, mixed, and sync states. We aim to
understand how higher-order interactions influence the formation and
characteristics of these distinct collective states. Due to the introduction of
higher-order interactions, several significant phenomena arise that are
absent when swarmalator interactions are limited to only pairwise con-
nections. Our observations highlight that the inclusion of higher-order
interactions leads to abrupt transitions from the async state to the phase
wave state and the sync state, contingent on the specific configurations of
coupling strengths.We also observe that stronger higher-order interactions
can give rise to the persistence of phase wave and sync states, even in cases
where pairwise couplings are negative (i.e., repulsive). Furthermore, our
findings also reveal that substantial higher-order couplings can facilitate a
direct emergence of the synchronized state from the phase wave state,
bypassing the intermediate mixed state.

Results
Model
We consider an ensemble of N swarmalators subjected to two- and three-
body interactions, embedded in a simplicial complex at the microscopic
level, where the instantaneous position and phase of the ith swarmalator are
represented by ðxi; θiÞ 2 ðS1;S1Þ. For the sake of simplicity, we restrict our
analysis to interactions of up to three bodies. When decoupled, each
swarmalator is characterized by a set of natural velocity and frequency
(vi,ωi), drawn from a specific distribution gv,ω. For the sake of pedagogy, we
here choose the intrinsic frequencies to be drawn from a Lorentzian dis-
tribution, gv;ωðxÞ ¼

Δv;ω

πðx2þΔ2
v;ωÞ
, with zero mean and half-width Δv,ω. The

evolution of the swarmalators under the impression of pairwise and triadic
interactions is then given by,

_xi ¼ vi þ
J1
N

XN
j¼1

sinðxj � xiÞ cosðθj � θiÞ

þ J2
N2

XN
j¼1

XN
k¼1

sinð2xj � xk � xiÞ cosð2θj � θk � θiÞ;
ð2aÞ

_θi ¼ωi þ
K1

N

XN
j¼1

sinðθj � θiÞ cosðxj � xiÞ

þ K2

N2

XN
j¼1

XN
k¼1

sinð2θj � θk � θiÞ cosð2xj � xk � xiÞ;
ð2bÞ

where (J1,K1) and (J2,K2) are the pairwise and triadic coupling strengths
associated with the spatial and phase interactions, respectively. Note
that when (J2,K2) = (0, 0), it coincides with the conventional
evolution equation of swarmalators over a ring34. Therefore, analogous
to the pairwise swarmalators model over a ring, Eq. (2b) incorporates
position-dependent synchronization in swarmalators. To achieve syn-
chrony, we employ the well-known Kuramoto sine terms45,66. These terms
play a crucial role in minimizing phase differences between individual
swarmalators as they interact paiwisely via links and in a group of three
through 2-simplices (hyperedges), respectively. The associated distance-
dependent cosine terms K1

ij ¼ K1 cosðxj � xiÞ and K2
ijk ¼ K2 cosð2xj �

xk � xiÞ amplify the coupling intensity among the individual swarmalators
interacting in groups of two and three, respectively. Therefore,
the synchrony is position-dependent. Here, similar to the pairwise model,
we take the distance metric as a function of cosine, i.e., dðxÞ ¼ cosðxÞ33. On
the other hand, Eq. (2a) serves as a counterpart of Eq. (2b) and captures
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phase-dependent swarming behavior. In this case, the sine terms minimize
the distancesbetween the swarmalators, leading them to aggregate or swarm
together. The pairwise term sinðxj � xiÞ encapsulates the attractive forces
governing interactions between swarmalators in pairs, and the triadic term
sinð2xj � xk � xiÞ signifies the attraction between swarmalators engaged in
interactions within a group of three through 2-simplices. The associated
cosine terms J1ij ¼ J1 cosðθj � θiÞ and J2ijk ¼ J2 cosð2θj � θk � θiÞ, similar
to Eq. (2b), bolster the coupling between the swarmalators, but this time
based on their phase similarity. One can also interpret both Eqs. (2a) and
(2b) as models that represent synchronization on the unit torus with both
pairwise and three-body interactions. Hence, the model provides a more
general framework for swarmalators by considering beyond pairwise
interactions. It is worth highlighting our deliberate choice in representing
the triadic interaction terms as functions of the form f(2xj− xk− xi). This
specific form has been selected with the strategic aim of simplifying the
theoretical analysis. It is essential to acknowledge that an alternative
representation exists, namely f(xj+ xk− 2xi)

67,68 for triadic interactions.
While this alternative form manifests qualitatively similar behavioral
outcomes, it introduces additional intricacies that may complicate
theoretical analyses.

In order to simplify the model, we convert the trigonometric function
to complex exponentials and introduce new variables ξi = xi+ θi and
ηi = xi− θi, which eventually provide,

_ξi ¼ vi þ ωi þ
1
2i
½Hþ

1 e
�iξi � ðHþ

1 Þ
�eiξi � þ 1

2i
½H�

2 e
�iηi � ðH�

2 Þ�eiηi �;
ð3aÞ

_ηi ¼ vi � ωi þ
1
2i
½H�

1 e
iξi � ðH�

1 Þ�eiξi � þ
1
2i
½Hþ

2 e
�iηi � ðHþ

2 Þ
�eiηi �;

ð3bÞ

where i ¼ ffiffiffiffiffiffiffi�1
p

and

H ±
1 ¼ J ±1 Z

þ
1 þ J ±2 Z

þ
2 ðZþ

1 Þ�;

H ±
2 ¼ J ±1 Z

�
1 þ J ±2 Z

�
2 ðZ�

1 Þ�;
ð4Þ

with J ±m ¼ Jm ±Km
2 (m = 1, 2) and

Z ±
m ¼

XN
j¼1

emiðxj ± θjÞ ¼ S±
m e

iψ ±
m : ð5Þ

Here Z ±
1 ðS±

1 Þ indicates the order parameters associated with the
conventional swarmalator model that quantifies the space-phase order of
the system20,33,34. When the correlation between phase and space is perfect
(i.e., xi = ± θi+C0, for some constant C0), the value of the order parameter
S±
1 is equal to 1.While, when θi and xi are uncorrelated, the value of S±

1 is 0.
Therefore the order parameters S±

1 measure the degree of correlation
between the space (xi) and phase (θi) variables, with S±

1 ranging from 0 (no
correlation) to 1 (perfect correlation). On the other hand, Z ±

2 ðS±
2 Þ can be

interpreted as neworder parameters that comeup as a result of higher-order
interactions, analogous to the higher-order Kuramoto phase models45,67. In
our present study, we focus only on the evolution of conventional order
parameters Z ±

1 ðS±
1 Þ.

Numerics
Now, the coupling dependency of order parameters Z ±

1 ðS±
1 Þ in Eqs. (3) and

(5) indicate that depending on the values of coupling strengths, several
combinations for order parameters ðSþ1 ; S�1 Þ can be achieved, which even-
tually leads to the emergence of different collective states. We, therefore,
start by integrating the Eqs. (2a) and (2b) for the calculation of the order
parameters Sþ1 ; S

�
1 with N = 105 swarmalators and the half-widths of Lor-

entzian distribution Δv =Δω = 1. The results show that depending on the
values of coupling strengths, four distinct stable states emerge in the system,
which can be classified by the dyad ðSþ1 ; S�1 Þ as follows:
(i) The first state is referred to as the “Async” state, denoted by ðSþ1 ; S�1 Þ ¼

ð0; 0Þ state. In this state, the swarmalators are uniformly distributed in
phase and space, as demonstrated in Fig. 1a. There is no space-phase
order among the swarmalators and so ðSþ1 ; S�1 Þ≈ ð0; 0Þ [see Fig. 1e].

(ii) “Phase waves” or (S, 0) or (0, S) state [Fig. 1b, f]: In this state the
swarmalators develop abandorphasewave,where the spatial positions
xi andphase angles θi are related as xi ≈∓ θi, depending onwhether it is
(S, 0) or (0, S) state, respectively. In the (ξ, η) coordinate system, the
swarmalators are partially locked in either ξi or ηi and drift in the other
variable.

Fig. 1 | Distinct collective states. a–d Scatter plots of all the four states in (x, θ)
plane. e–h Time evolution of order parameters Sþ1 ðS�1 Þ, depicted in blue (red). a and
e represent the async state for a choice of coupling strengths (J1,K1, J2,K2) = (7,−1, 8, 9),
b and f correspond to the phase wave state with (J1,K1, J2,K2) = (1, 6.5, 5, 9), c and g are
associated with the mixed state for (J1,K1, J2,K2) = (9, 1.8, 6.5, 5.5), and the sync state is

delineated in d, h for (J1,K1, J2,K2) = (9, 5, 6.5, 5.5). All the results are generated by
integrating Eqs. (2a) and (2b) using Julia Tsit5 adaptive differential equation solver76

withN = 105 swarmalatorswhose intrinsic velocity and frequencyhavebeendrawnfrom
the Lorentzian distribution with zero mean and half-width Δω =Δv = 1.
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(iii) The third state is referred to as the “Mixed state”, denoted by
ðSþ1 ; S�1 Þ ¼ ðS0; S00Þ, where S0 ≠ S00 ≠ 0 (Fig. 1g). In this state, the swar-
malators form a band where clusters of correlated swarmalators are
observed to move together, as depicted in Fig. 1c.

(iv) The fourth state is knownas “Sync” state, denoted by (S, S), where S ≠ 0
[Fig. 1h]. In this state, the swarmalators are partially locked in both ξi
and ηi. Formost initial conditions, two clusters of locked swarmalators
emerge spontaneously, as depicted in Fig. 1d. However, one can also
observe a single cluster of locked swarmalators for some initial
conditions.

Analysis
Next, in order to analyze all these four states, we employ the Ott-Antonsen
(OA) ansatz65 in the thermodynamic (N→∞) limit and derive the
expressions for order parameters in each state. In the N→∞ limit, the
collective states of the swarmalators can be definedby a continuous function
ρ(v,ω, ξ, η, t) as,

ρ � 1
N

XN
j¼1

δðv � vjÞδðω� ωjÞδðξ � ξjÞδðη� ηjÞ; ð6Þ

where ρ(v,ω, ξ, η, t) is the probability to have a swarmalator at time t with
intrinsic frequency ω, intrinsic velocity v, and coordinates η and ξ. Differ-
entiating (6) with respect to t, one can obtain the continuity equation

∂ρ

∂t
þ ∂

∂ξ
ð _ξρÞ þ ∂

∂η
ð _ηρÞ ¼ 0: ð7Þ

Given that our model is a higher-order Kuramoto model occurring on a
torus, we are in pursuit of a “torodoidal” OA ansatz34,65,69, which can be
described as a multiplication of Poisson kernels,

ρðv;ω; ξ; η; tÞ ¼ 1
4π2

gvðvÞgωðωÞ 1þ
X1
p¼1

αpeipξ þ c:c

" #

× 1þ
X1
q¼1

βqeiqη þ c:c

" #
;

ð8Þ

where α(v,ω, t) and β(v,ω, t) are undetermined and need to be solved in a
self-consistent manner, and “c.c” refers to the complex conjugate of its
preceding terms. Now plugging the expression for ρ [given by Eq. (8)] into
the continuity Eq. (7), we obtain that the Fourier modes α(v,ω, t) and
β(v,ω, t) are subsequently constrained to adhere to the identical conditions
for all harmonics p and q, which leads to the fulfillment of a coupled
complex-valued differential equation as follows,

_α ¼ �iðv þ ωÞαþ 1
2
½ðHþ

1 Þ
� � Hþ

1 α
2� þ α

2
½ðH�

2 Þ�β� � H�
2 β�; ð9aÞ

_β ¼ �iðv � ωÞβþ 1
2
½ðHþ

2 Þ
� �Hþ

2 β
2� þ β

2
½ðH�

1 Þ�α� � H�
1 α�; ð9bÞ

in the submanifold αk k ¼ 1 ¼ β
�� ��. Subsequently, the order parameters

Z ±
m (m = 1, 2) become

Zþ
m ¼

Z 1

�1
dv
Z 1

�1
dωgvðvÞgωðωÞα�

m ðv;ω; tÞ; ð10aÞ

Z�
m ¼

Z 1

�1
dv
Z 1

�1
dωgvðvÞgωðωÞβ�

m ðv;ω; tÞ: ð10bÞ

Equations (9a)–(10b) contain a set of self-consisting equations for the order
parameters Z ±

m in the N→∞ limit.

Stability of the async state. In the async state, the order parameters Z ±
m

are zero.WhenZ ±
m ¼ 0, Eqs. (9a) and (9b) give the solutionsα0ðv;ω; tÞ ¼

exp½�iðv þ ωÞt� and β0ðv;ω; tÞ ¼ exp½�iðv � ωÞt�. Clearly, these solu-
tions are self-consistent, as substituting them into the Eqs. (10a) and
(10b) one can obtain Z ±

m ¼ exp½�iðΔv þ ΔωÞt�, which converges to zero
in the t→∞ limit.

Now, to investigate the stability of the async state, we introduce a small
perturbation around the solutions α0 and β0 given by

α1ðv;ω; tÞ ¼ αðv;ω; tÞ � α0ðv;ω; tÞ;
β1ðv;ω; tÞ ¼ βðv;ω; tÞ � β0ðv;ω; tÞ:

ð11Þ

This eventually gives the perturbed order parameters as

Zþ
11 ¼

Z 1

�1
dv
Z 1

�1
dωgvðvÞgωðωÞα�1ðv;ω; tÞ;

Z�
11 ¼

Z 1

�1
dv
Z 1

�1
dωgvðvÞgωðωÞβ�1ðv;ω; tÞ;

ð12Þ

where we assume that 1≫ α1ðv;ω; tÞ
�� ��, β1ðv;ω; tÞ

�� �� and Z ±
11

�� ��. Sub-
stituting the expressions for α1, β1 and Z

±
11 into the Eqs. (9a) and (9b), and

considering the terms up to first order, we obtain the following set of
evolution equations

_α1 ¼ � iðv þ ωÞα1 þ
1
2
½Jþ1 ðZþ

11Þ
� � Jþ1 Z

þ
11α

2
0�

þ α0
2β0

½J�1 ðZ�
11Þ� � J�1 Z

�
11β

2
0�;

ð13aÞ

_β1 ¼ � iðv � ωÞβ1 þ
1
2
½Jþ1 ðZ�

11Þ� � Jþ1 Z
�
11β

2
0�

þ β0
2α0

½J�1 ðZþ
11Þ

� � J�1 Z
þ
11α

2
0�:

ð13bÞ

One can notice that the terms with α0 and β0 as a function of v and ω
oscillate rapidly for t≫ 1. These rapidly oscillating terms barely
contribute when integrating over v and ω, and thus to approximate the
integrals, we can neglect these small terms.Now, introducing a newvariable
τ = v+ω, α and β can be expressed as α(v,ω, t) = α(y, t), and β(v,ω, t) =
β(y, t), respectively. Then, integrating the Eqs. (13a) and (13b) over v andω,
we eventually obtain

dZþ
11

dt
¼
Z 1

�1
dv
Z 1

�1
dωgvðvÞgωðωÞ

dα�1
dt

¼
Z 1

�1
dτGðτÞ dα

�
1ðτÞ
dt

¼ Jþ1 � 2ðΔv þ ΔωÞ
2

Zþ
11;

ð14aÞ

dZ�
11

dt
¼
Z 1

�1
dv
Z 1

�1
dωgvðvÞgωðωÞ

dβ�1
dt

¼
Z 1

�1
dτGðτÞ dβ

�
1ðτÞ
dt

¼ Jþ1 � 2ðΔv þ ΔωÞ
2

Z�
11;

ð14bÞ

where

GðτÞ ¼
Z 1

�1
dv
Z 1

�1
dωgvðvÞgωðωÞδ½τ � ðv ±ωÞ� ¼ Δv þ Δω

π½τ2 þ ðΔv þ ΔωÞ2�
:

ð15Þ
To evaluate the integration, we use the fact that it has a residue

τ = i(Δv+Δω) in the upper half plane where α�0ðτÞ and β�0ðτÞ are analytic.
Now, the async state becomes stable when the perturbed order parameters
Z ±
11 die out in time.Hence, fromEqs. (14a) and (14b), one can conclude that

the async state becomes unstable when Jþ1 � 2ðΔv þ ΔωÞ > 0, or in other
words the async state sustains its stability for Jþ1 � 2ðΔv þ ΔωÞ < 0.
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Therefore, the curve satisfying

Jþ1 ¼ 2ðΔv þ ΔωÞ; ð16Þ

signifies the critical curve above which the async state loses its sta-
bility, and the swarmalators form a phase wave state. Equation (16)
reveals that the transition from async state to phase wave state
depends solely on the pairwise interactions by means of the pairwise
coupling strengths (J1, K1).

Analysis of phase wave state. In the phase wave state, swarmalators
develop a phase wave or band with xi =∓ θi for (S, 0) and (0, S) states,
respectively. Therefore, we seek a solution to Eqs. (9a)–(10b) that satisfies
_α ¼ 0, _β≠ 0, Zþ

m ≠ 0, and Z�
m ¼ 0, (m = 1, 2). Substituting these relations

into the Eqs. (9a) and (9b), we have

0 ¼ �iðv þ ωÞαþ 1
2
½ðHþ

1 Þ
� �Hþ

1 α
2�; ð17aÞ

_β ¼ �iðv � ωÞβþ β

2α
½ðH�

1 Þ� �H�
1 α

2�: ð17bÞ

Notice that α(v,ω, t) depends on v+ω, which is distributed according
to a Lorentzian distribution with spread Δv+Δω. This allows us to evaluate
the integral for the order parameterZþ

m explicitly asZþ
1 ¼ α�ðiΔv þ iΔω; tÞ

using the Cauchy’s residue theorem by closing the contour to an infinite-
radius semicircle in the upper half-plane. Similarly, we can obtain
Zþ
2 ¼ α�

2 ðiΔv þ iΔω; tÞ ¼ ðZþ
1 Þ2. Substituting the relationbetweenZþ

1 and
Zþ
2 into the Eqs. (17a) and (17b), and assuming ψþ

1 ¼ 0, we obtain the
expressions for α and β as follows,

αðv;ωÞ ¼ F v þ ω

Sþ1 ðJþ1 þ ðSþ1 Þ2Jþ2 Þ

 !
; ð18Þ

and

βðv;ω; tÞ ¼ eð�rtÞ; ð19Þ

where we introduce a function F as

F ðyÞ ¼ �iy þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
; ð20Þ

and the term r is given by,

r ¼ iðv � ωÞ � 1
2α

½ðH�
1 Þ� � H�

1 α
2� ¼ i

J1K1

Jþ1 þ ðSþ1 Þ2Jþ2
v
J1
� ω

K1

� �"

þ ðSþ1 Þ2J2K2

Jþ1 þ ðSþ1 Þ2Jþ2
v
J2
� ω

K2

� �#
:

ð21Þ
Equation (19) results in Z�

m ¼ 0, as anticipated. On the other hand,
Eq. (18) implies that

Sþ1 ¼ F � iΔv þ iΔω

Sþ1 ðJþ1 þ ðSþ1 Þ2Jþ2 Þ

 !
: ð22Þ

Solving Eq. (22) for Sþ1 gives the expression of Sþ1 as

Sþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ2 � Jþ1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþ1 þ Jþ2
� �2 � 8Jþ2 ~Δ

q
2Jþ2

vuut
; ð23Þ

where ~Δ ¼ Δv þ Δω. The plus and minus sign inside the square
root corresponds to the stable and unstable solutions if they

exist. Equation (23) suggests the presence of a bistable region upon
the selection of coupling strengths. In this scenario, a particular
combination of coupling values leads to the coexistence of
asynchronous and phase wave states depending on the initial con-
ditions chosen. Saying differently, with varying coupling strengths,
there exist two different transition scenarios: one corresponds to the
transition from the async state to the phase wave state, referred to
as forward transition, and the other is backward transition,
which is associated with the transition from phase wave state to
async state. For the forward transition case, Sþ1 bifurcates from 0
(i.e., async state) at

Jþ1;f ¼ 2~Δ ¼ 2ðΔv þ ΔωÞ; ð24Þ

which is consistent with Eq. (16), where forward transition from async state
to phase wave state emerges and only the stable branch of Sþ1 exists. This
once again guarantees that the transition from async state to phase wave
state is solely dependent on the pairwise coupling strengths. On the other
hand, in the case of backward transition, both the stable and unstable
branches coexist for a regionof parametervalues called thehysteresis region.
But as soon as the backward critical coupling condition Jþ1 ¼ Jþ1;b is reached,
both the stable and unstable branches clash and destroy each other. As a
result, the stability of the phase wave is completely shattered, and Sþ1 ¼ 0 is
the sole viable solution. From Eq. (23), we obtain that both the stable and
unstable branches of Sþ1 exist if the following coupling condition satisfies,

Jþ1;b ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
2Jþ2 ~Δ

q
� Jþ2 : ð25Þ

Equation (25) thus corresponds to the critical curve for the backward
transition.

To illustrate this, we numerically integrate the Eqs. (2a) and (2b)
with N = 105 swarmalators for the calculation of S±

1 . In Fig. 2a we plot
the variation of order parameter S±

1 as a function of pairwise coupling
strength K1. K1 is first increased adiabatically from K1 = 0 to an adequately
large value and then decreased back with the other couplings fixed at J1 = 1,
J2 = 5, andK2 = 9. The results reveal that S�1 remains zero all the time, while
an abrupt transition from Sþ1 ≈ 0 to Sþ1 ≈ 0:7 occurs atK1 = 7 [obtained from
Eq. (24)] as the coupling strengthK1 is increased. Another abrupt transition
from Sþ1 ≈ 1 to Sþ1 ≈ 0 occurs at K1 = 6 [obtained from Eq. (25)] as K1 is
decreased starting from thephasewave state. Therefore, the systemsupports
bistability behavior (where both phase wave and async states are stable) for
K1∈ [6, 7]. This is further substantiated by our theoretical predictions
regarding the order parameters (illustrated using continuous and dashed
magenta lines for the stable and unstable branches, respectively), demon-
strating a commendable concurrence with the numerical findings (repre-
sented by solid circles). To emphasize the bistability nature, in Fig. 3 we
demonstrate the async (Fig. 3a, b) and phase wave (Fig. 3c, d) states,
respectively, for K1 = 6.5 while keeping the other couplings fixed at specific
values as earlier.

The outcomes given above highlight a significant finding that the
introduction of higher-order interactions can cause a sudden transition
from the async state to phase wave state and vice-versa, which was not
the case with only pairwise interactions among the swarmalators34.
Thereafter, to better understand the effect of higher-order interactions
in promoting bistability behavior, we plot the complete stability profile for
the system in Fig. 2b. It shows that for adequately small values of higher-
order coupling ðJþ2 < 4Þ, the transition from async state (I) to phase
wave state (III) is continuous and takes place through a supercritical
pitchfork bifurcation at Jþ1 ¼ 4. However, for larger values of higher-order
coupling ðJþ2 > 4Þ, the pitchfork bifurcation at Jþ1 ¼ 4 becomes subcritical
and a saddle-node bifurcation emerges at a lower value of Jþ1 , given by
Eq. (25) (depicted in blue). These twobifurcations correspond to the sudden
transition observed in Fig. 2a, and the region bounded by them refers to
the region of bistability (II) between async and phase wave state. Figure 2b
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also reveals an interesting observation that for relatively larger values of
higher-order coupling ðJþ2 ≥ 16Þ, the region of bistability stretches into the
negative region Jþ1 < 0, demonstrating the fact thathigher-order interactions
can stabilize the phase wave state even when the pairwise interactions are
repulsive.

Analysis of sync state. In the sync state we have ðSþ1 ; S�1 Þ ¼ ðS; SÞ, with
S ≠ 0. Therefore, we seek solutions to the Eqs. (9a)–(10b) such that
Z ±
m ≠ 0 (m = 1, 2). We will here analyze the sync state in two cases: one

when J1 = K1, J2 = K2 and the other for an arbitrary combination of
pairwise and higher-order couplings, i.e., for a generic case.

Specific case: J1 =K1 and J2 =K2

In this case, the coupled complex-valued differential Eqs. (9a) and (9b)
become decoupled as follows

_α ¼ �iðv þ ωÞαþ 1
2
½ðHþ

1 Þ
� �Hþ

1 α
2�; ð26aÞ

_β ¼ �iðv � ωÞβþ 1
2
½ðHþ

2 Þ
� � Hþ

2 β
2�; ð26bÞ

and consequently the phases ξ and η develop independently analogous to
typical higher-order Kuramotomodel45. FromEqs. (26a) and (26b) one can
observe that the functions α and β are dependent on (v+ω) and (v−ω),
respectively, which are distributed in accordance with a Lorentzian
distribution characterized by a spread of (Δv+Δω). This allows us
to evaluate the integrals for the order parameters Z ±

1 explicitly as Zþ
1 ¼

α�ðiΔv þ iΔω; tÞ and Z�
1 ¼ β�ðiΔv þ iΔω; tÞ using the residue theorem.

Similarly the other order parametersZ ±
m can be obtained explicitly as Zþ

2 ¼
α�

2 ðiΔv þ iΔω; tÞ ¼ ðZþ
1 Þ2 and Z�

2 ¼ β�
2 ðiΔv þ iΔω; tÞ ¼ ðZþ

1 Þ2. Substi-
tuting these into Eqs. (26a) and (26b) give

_Z1
± ¼ � ðΔv þ ΔωÞZ ±

1 þ 1
2

K1Z
±
1 þ K2ðZ ±

1 Þ2ðZ ±
1 Þ�

n oh
� K1ðZ ±

1 Þ� þ K2ðZ ±
1 Þ�

2 ðZ ±
1 Þ

n o
ðZ ±

1 Þ2
i
:

ð27Þ

As anticipated, the above equations are similar to those of the typical
higher-order Kuramoto model45 with Lorentzian natural frequency having
half width (Δv+Δω). Assuming ψ ±

1 to be zero, we can obtain the steady
state solution for the order parameters corresponding to the sync state
Sþ1 ¼ S�1 ¼ S as

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � K1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 þ K2

� �2 � 8K2
~Δ

q
2K2

vuut
;

ð28Þ

where plus andminus signs correspond to the stable and unstable solutions
if they exist. Equation (28) resembles the solution for phasewave state, given
by Eq. (23) when J1 =K1 and J2 =K2. This suggests that the transition from
async (0, 0) state to sync (S, S) state can emerge without experiencing an
intermediate phase wave (S, 0) or (0, S) state and the forward transition

Fig. 3 | Bistablilty between async and phase wave state. Scatter plot for async (0, 0)
and phase wave (S, 0) states at K1 = 6.5, J1 = 1, J2 = 5, and K2 = 9 [drawn from the
region (II) in Fig. 2a] is depicted in panels a-b and c-d, respectively. The order
parameter Sþ1 ðS�1 Þ is indicated by the black (magenta) circle in a and c, where the
values of Sþ1 and S�1 are represented by the length of the line joining the center with
the respective circles. Clearly, in a, both the values of order parameters are almost
zero, indicating the async (0, 0) state, while in c, the value of Sþ1 is non-zero and S�1 is
zero, characterizing the phase wave (S, 0) state. In panels b and d, the corresponding
scatter plots in the (x, θ) plane are displayed. Swarmalators are uniformly distributed
in both phase and space, characterizing the async state (in b), whereas in panel
d, swarmalators display a correlation between phase and space and thus correspond
to the phase wave state.

Fig. 2 | Abrupt transition from the async state to the phase wave state. a Order
parameter S±

1 as a function of pairwise coupling strength K1 for J1 = 1 and fixed
three-body coupling strengths J2 = 5, K2 = 9. Solid and dashed magenta curves
represent the stable and unstable solutions given by Eq. (23), respectively. The
dashed vertical lines correspond to the critical couplings for forward (in red) and
backward (in black) transitions obtained from Eqs. (24) and (25), respectively. Solid
circles depict the result obtained from the direct simulation of Eqs. (2a) and (2b) for
N = 105 oscillators with half widths of the Lorentzian distribution Δv = Δω = 1. The
results reveal an abrupt transition fromasync (I) state to phasewave (III) state, which
results in a bistable domain (II) where both the referred states are stable. b The
comprehensive stability diagram illustrating the states of async (I), phase wave (III)
and bistability (II) as a function of pairwise coupling Jþ1 ¼ J1þK1

2 and higher-order
coupling Jþ2 ¼ J2þK2

2 . Two distinct types of bifurcations, saddle-node and pitchfork,
are represented by blue and red curves, respectively. These two curves intersect each
other at ðJþ1 ; Jþ2 Þ ¼ ð4; 4Þ. When Jþ2 <4, the pitchfork bifurcation is deemed super-
critical, whereas when Jþ2 > 4, the pitchfork bifurcation becomes subcritical.
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occurs at the same critical coupling given by

J1 ¼ K1 ¼ 2ðΔv þ ΔωÞ: ð29Þ

To illustrate this, in Fig. 4a we plot the order parameters S±
1 as a

function of K1 with fixed higher-order coupling strengths J2 =K2 = 9. The
solid and dashed magenta curves depict the analytical predictions provided
by Eq. (28) for the stable and unstable branches, respectively, which are in
good agreement with the outcomes obtained through direct simulation
(represented by circles).With increasingK1, we observe a sudden transition
from S±

1 ≈ 0 (async state) to S±
1 ≈1 (sync state) atK1 = 4 [given by Eq. (29)].

Another abrupt transition from S±
1 ≈ 1 to S

±
1 ≈ 0 emerges atK1 = 3 [obtained

fromEq. (25) for J1 =K1 and J2 =K2] asK1 is decreased adiabatically starting
from the sync state. Thus, within the domain bounded by these two sudden
transitions, the system exhibits a bistable nature where both the sync and
async states are achievable for any specific value of coupling strength. To
highlight the presence of bistability, we showcase the two distinct states for
K1 = 3.5 in Fig. 5: asynchronous state (Fig. 5a, b) and synchronous state
(Fig. 5c, d). Besides, in Fig. 4b we plot the stability diagram for the system,

which shows that beyondK2 = 4, a bistable dynamics emerges in the system
due to the interplay between saddle-node and subcritical pitchfork bifur-
cations, and the associated region of bistability (II) is bounded by the curves
of these bifurcations. On the other hand, for K2 < 4, a continuous transition
fromasync state (I) to sync state (III) occurs atK1 = 4 through a supercritical
pitchfork bifurcation. The stretch of the bistability region (II) in the regime
K1 < 0 reveals the fact that for sufficiently larger higher-order coupling
strengths, the system can achieve a stable sync state even when the pairwise
interactions are repulsive (i.e., K1 = J1 < 0).

General case: J1 ≠K1 and J2 ≠K2

In contrast to the earlier scenario, in this case, the coupled complex-
valued differential Eqs (9a) and (9b) cannot be separated from each other.
As a result, it’s not possible to directly express the order parameters Z ±

1 in
terms of α and β, respectively. Therefore, we look for a solution of Eqs. (9a)
and (9b) that satisfy _α ¼ 0; _β ¼ 0;Z ±

m ≠ 0. Assuming ψ ±
m ¼ 0, we find

αðv;ωÞ ¼ F A1 þ A2ðS�1 Þ2
Sþ1 fCðSþ

2

1 þ S�
2

1 Þ þ 2ðDþ ESþ
2

1 S�
2

1 Þg

" #
; ð30aÞ

βðv;ωÞ ¼ F B1 þ B2ðSþ1 Þ2
S�1 fCðSþ

2

1 þ S�
2

1 Þ þ 2ðDþ ESþ
2

1 S�
2

1 Þg

" #
; ð30bÞ

where

A1;2 ¼ 2ðvK1;2 þ ωJ1;2Þ; B1;2 ¼ 2ðvK1;2 � ωJ1;2Þ;
C ¼ J1K2 þ J2K1; D ¼ J1K1; E ¼ J2K2:

ð31Þ

Now,we solve the integrals for theorderparameters givenbyEqs. (10a)
and (10b) using residue theorem. Further, considering the fact that in the

Fig. 5 | Bistablilty between async and sync state. Scatter plot for async (0, 0) and
sync (S, S) states at K1 = J1 = 3.5, and K2 = J2 = 9 [drawn from the region (II) in
Fig. 4a] is depicted in panels a-b and c-d, respectively. The order parameter Sþ1 ðS�1 Þ is
indicated by the black (magenta) circle in a and c, where the values of Sþ1 and S�1 are
represented by the length of the line joining the center with the respective circles.
Clearly, in panel a, the values of both order parameters are almost zero, indicating the
async (0, 0) state, while in c, both the order parameters take non-zero equal value,
characterizing the sync (S, S) state. In panels b and d, the corresponding scatter plots
in the (x, θ) plane are displayed. Swarmalators are uniformly distributed in both
phase and space, characterizing the async state (in panel b), whereas in
d, swarmalators are locked in both phase and space and thus correspond to the
sync state.

Fig. 4 | Abrupt transition from async to sync state. In a, the behavior of the order
parameter S±

1 is presented in relation to the pairwise coupling strength K1. With a
fixed setting of J1 = K1 and constant three-body coupling strengths J2 = K2 = 9, both
stable and unstable solutions (obtained from Eq. (28)) are showcased through solid
and dashed magenta curves, respectively. The dashed vertical lines correspond to
critical coupling values for forward (red) and backward (black) transitions. These
values are derived from Eqs. (29) and (25), with J1 = K1, J2 = K2. The outcome
obtained from direct simulations of Eqs. (2a) and (2b) is depicted in solid circles for
N = 105 swarmalators with Lorentzian distribution half-widths Δω = Δv = 1. The
findings distinctly reveal an abrupt transition from the async (I) state to the sync (III)
state, establishing a bistable domain (II) where both states are stable. Moving to b, a
comprehensive stability diagram is presented, illustrating the states of async (I),
phase wave (III), and bistability (II) as functions of pairwise couplingK1 and higher-
order coupling K2. The diagram encompasses two distinct types of bifurcations: the
blue curve representing a saddle-node bifurcation and the red curve depicting a
pitchfork bifurcation. Notably, these curves intersect at (K1, K2) = (4, 4). When
K2 < 4, the pitchfork bifurcation takes a supercritical nature, whereas, for K2 > 4, the
pitchfork bifurcation becomes subcritical.
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sync state Sþ1 ¼ S�1 ¼ S, we obtain

S ¼ F � Δ1 þ Δ2S
2

Sf2CS2 þ 2ðDþ ES4Þg

� 	
; ð32Þ

where Δ1,2 = 2(ΔvK1,2+ΔωJ1,2). Equation (32) eventually provides the
expression for the order parameter, which can be acquired by solving the
following equation for S

Ey3 þ ðC � EÞy2 þ ðΔ2 � C þ DÞy þ ðΔ1 � DÞ ¼ 0; ð33Þ

where y = S2. From Eq. (33), it is clear that S bifurcates from zero at Δ1 =D,
i.e.,

2
Δv

J1
þ Δv

K1

� �
¼ 1: ð34Þ

Notice that for J1 =K1, the condition (34) coincides with the critical
coupling condition (29) and thus once again guarantees that the sync state
can bifurcate directly from the async state without passing through any
intermediate state [Fig. 4]. However, in general circumstances (i.e.,
J1 ≠K1, J2 ≠K2), the transition from async state to sync state is not direct but
occurs by passing through intermediate states, namely phase wave state and
mixed state. To describe this, in Fig. 6 we plot the order parameters S±

1 for
varying K1 while keeping the other couplings fixed at nominal values
J1 = 9, J2 = 6.5, andK2 = 5.5. The solidmagenta and blue lines correspond to
the analytical predictions of stable solutions of phase and sync states
obtained from Eqs. (23) and (33), respectively, which are in favorable
alignment with the results obtained through direct simulation (shown in
solid and void markers) for the finite-size system. As observed, with
increasingK1, the system passes from the async state (I) to the sync state (V)
through the intermediate phase wave state (III) andmixed state (IV). Here,
the evolution of the order parameters ðSþ1 ; S�1 Þ shows that with increasing
K1, the system passes from (0, 0) (i.e., async) state to (S, 0) (i.e., phase wave)
state through an abrupt transition, resulting into an interval of bistability (II)
where both the async and phase wave states are stable. On the other hand,
the system goes through a continuous transition from (S, 0) (i.e., phase
wave) state to (S, S) (i.e., sync) state, resulting in the intermediatemixed state
ðS0; S00Þ where S0 > S00.

Mixed state. In the mixed state we have ðSþ1 ; S�1 Þ ¼ ðS0; S00Þ, with S0 ≠ S00.
This state resides as an intermediary between the phase wave and

sync states and bifurcates from the (S, 0), or (0, S) state when S0 > S00

or S00 > S0, through a continuous transition to the (S, S) state. In
Fig. 6, the shaded black region (IV) depicts the interval of K1 (kee-
ping the other coupling fixed at a nominal value) for which the system
passes through the mixed state. Unfortunately, we are unable to find
the analytical boundaries in terms of the coupling strengths for themixed
state, and thus obtain the domain of mixed state through the numerical
investigations by evaluating the order parameters S±

1 with Sþ1 > S�1 . The
distinctive characteristic of the mixed state lies in the fact that while both
S0 and S″ remain time-independent, the functions α and β exhibit time
dependency34. This contrasts with the time-independent Eqs. (18) and
(30) associated with the phase wave and sync states, respectively.

Abrupt transition from phase wave state to sync state. As discussed
above, in general, with increasing coupling strengths, a continuous
transition from the phase wave state to the sync state emerges in the
system through an intermediate mixed state. This smooth transition
phenomenon is consistent with previously acquired results for only
pairwise interactions between the swarmalators34. When the higher-
order coupling strengths are relatively small, a comparable transition
phenomenon is still evident in our present system with higher-order
interactions [Fig. 6]. Conversely, when sufficiently significant higher-
order couplings come into play, a critical observation comes to light. In
this scenario, the influence of higher-order interactions leads to an abrupt
and noteworthy transition from the (S, 0)/(0, S) state to the (S, S) state,
bypassing the intermediatemixed state. To illustrate this, in Fig. 7 we plot
the order parameters ðSþ1 ; S�1 Þ as a function of K1 for adequately large
higher-order couplings J2 = 8 and K2 = 9, keeping J1 fixed at J1 = 7. The
solid magenta and blue lines represent the analytically predicted stable
solutions for the phase and synchronized states, respectively, derived
from Eqs. (23) and (33). Impressively, these analytical predictions closely
match the outcomes obtained through direct simulations on the finite
size system, depicted by the solid and void markers. As K1 is being first
adiabatically increased to a large value and then decreased, we observe
two different abrupt transitions, resulting in two distinct bistable
domains. The first one corresponds to a sudden transition from the (0, 0)
state (I) to the (S, 0) state (III), inducing a region of bistability (II), where
both the async and phase wave states are stable (shaded gray region). This
bistable phenomenon has already been addressed in the context of ana-
lyzing the phase wave state. The second one is associated with an abrupt
transition from (S, 0) state (III) to (S, S) state (V), giving rise to a bistable
domain (IV), where both stable phase wave and sync state can emerge

Fig. 6 | Transition from async to sync state through intermediate mixed state.
Order parameter S±

1 as a function of pairwise coupling strength K1 for J1 = 9 and
fixed three-body coupling strengths J2 = 6.5,K2 = 5.5. Solid magenta and blue curves
represent the stable solutions for phase wave and sync states, given by Eqs. (23) and
(33), respectively. Solid circles depict the result obtained from the direct simulation
of Eqs. (2a) and (2b) for N = 105 oscillators with half widths of the Lorentzian
distribution Δv = Δω = 1. An abrupt transition from the async (I) to phase wave (III)
state is observed, which creates a domain of bistability (II), where both the states are
stable. On the other hand, from the phase wave state (III) to sync state (V), a smooth
(continuous) transition occurs, resulting in the shaded region (IV), which corre-
sponds to ðS0; S00Þ state, with S0 > S00 , and called as mixed state.

Fig. 7 | Abrupt transitions from async to phase wave state, and phase wave to
sync state. Order parameter S±

1 as a function of pairwise coupling strength K1 for
J1 = 7 and fixed three-body coupling strengths J2 = 8, K2 = 9. Solid magenta and blue
curves represent the stable solutions for phase wave and sync states, given by Eqs.
(23) and (33), respectively. Solid circles depict the result obtained from the direct
simulation of Eqs. (2a) and (2b) for N = 105 oscillators with half widths of the
Lorentzian distribution Δv = Δω = 1. Two distinct abrupt transitions are revealed.
First, an abrupt transition from the async (I) to phase wave (III) state is observed,
which creates a domain of bistability (II), where both the async and phase wave states
are stable. Second, from the phase wave state (III) to sync state (V), generating a
bistable domain (IV), where both the phase wave and sync states are stable.
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(shaded red region). To elucidate this bistability nature, in Fig. 8, we
demonstrate the two distinct states: phase wave state (Fig. 8a, b) and sync
state (Fig. 8c, d) for fixed K1 = 1.5, drawn from the region of bist-
ability (IV).

Conclusion
Summing up, here we have introduced an analytically tractable model of
swarmalators that incorporates both pairwise and higher-order interactions
(specifically three-body interactions), embedded in a simplicial complex at
the microscopic level. This proposed model exhibits a high degree of
complexity with four distinct collective states, namely async, phase wave,
mixed, and sync states. The higher-order interactions introduce supple-
mentary layers of nonlinearity into the behavior of the macroscopic system
dynamics. As a result, a few pivotal phenomena emerge that remain absent
when interactions between the swarmalators are confined to only pairwise
connections and lack the influence of higher-order interactions.Weobserve
that the inclusion of higher-order interactions leads to abrupt transitions
from the async state to either the phase wave state or the sync state,
depending on the specific coupling strength configurations. Our observa-
tions also reveal that when the higher-order interactions are sufficiently
strong, phase wave and sync state can emerge and persist, even in scenarios
where pairwise couplings are repulsive. This implies that despite the
potential decay of specific coupling types, the existence of alternative forms
of coupling can play a pivotal role in upholding the regimes of bistability
between async and phase wave (sync) states. Furthermore, our findings
extend to the discovery that substantial higher-order couplings can facilitate
a direct emergence of the sync state from the phase wave state without
passing through themixed state. This distinct behavior stands in contrast to
situations involving solely pairwise interactions, where the synchronized
state bifurcates from the phase wave state through the intermediate mixed
state. Our obtained collective states, such as phase wave and sync state,

adeptly resemble the collective dynamics observed in activematter and real-
world swarmalators, exemplified by collective behaviors observed in vinegar
eels5, group of sperm70, and forced colloids including Janus particles6,7,71.
Additionally, our observed phase transitions resemble the disordered to
order transition in real-world swarmalators systems, including biological
microswimmers such as ensemble of sperm70,72 and system of Janus
particles73.

Thus, our theoretical study makes a substantial contribution to
understanding the influence of higher-order interactions on shaping
the collective dynamics of swarmalators, although numerous avenues
for further exploration remain open. In this context, we specifically focus on
higher-order interactions up to the third order, employing an all-to-all
coupling arrangement. Consequently, investigating interactions beyond
the three-body and exploring localized coupling configurations becomes a
particularly intriguing prospect for future research. It is also worth
noting that our current investigation is limited to analyzing the effect
of higher-order interactions solely within a 1D swarmalator model on a
ring. As such, an equally captivating avenue for future exploration lies
in examining how higher-order interactions impact the collective
behavior within 2D and other higher-dimensional swarmalator systems.
Lastly, we believe our results can be substantiated through empirical testing
within the dynamic environment of robotic swarms or within the confines
of circularly confined colloids3,74 by incorporating beyond pairwise
interactions.

Data availability
All data needed to evaluate the findings of the paper are available within the
paper itself. Additional data related to this paper are available from the
corresponding author upon reasonable request.
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