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Abstract – First-spike latency following stimulus onset is of significant physiological relevance.
Neurons transmit information about their inputs by transforming them into spike trains, and the
timing of these spike trains is in turn crucial for effectively encoding that information. Random
processes and uncertainty that underly neuronal dynamics have been shown to prolong the time
towards the first response in a phenomenon dubbed noise-delayed decay. Here we study whether
Hodgkin-Huxley neurons with a tunable intensity of intrinsic noise might have shorter response
times to external stimuli just above threshold if placed on a scale-free network. We show that
the heterogeneity of the interaction network may indeed eradicate slow responsiveness, but only if
the coupling between individual neurons is sufficiently strong. Increasing the average degree also
favors a fast response, but it is less effective than increasing the coupling strength. We also show
that noise-delayed decay can be offset further by adjusting the frequency of the external signal,
as well as by blocking a fraction of voltage-gated sodium or potassium ion channels. For certain
conditions, we observe a double peak in the response time depending on the intensity of intrinsic
noise, indicating competition between local and global effects on the neuronal dynamics.

Copyright c© EPLA, 2014

Introduction. – The dynamics of complex systems,
the backbone of which are often complex interaction net-
works, has been the subject of intense study during recent
years [1,2]. Seminal works on network science [3,4] have re-
vealed that many real-world networks exhibit small-world
or scale-free topological properties, and neuronal networks
are by no means an exception [5]. For example, Egúıluz
et al. [6] examined the organization of the functionally
connected human brain during a resting state on a voxel
scale and observed a scale-free architecture of functionally
connected brain regions. Moreover, Fraiman et al. [7] com-
pared networks derived from the fMRI signals of the hu-
man brain with similar networks extracted form the Ising
model, and they found that near the critical temperature
the two networks are similar. In fact, there exist many
more evidence in support of criticality and emergent col-
lective behavior in the dynamics of neuronal networks [8],
the majority of which are a direct consequence of the com-
plex interaction patterns among neurons.

Compared to large-scale neuronal networks, neurons
alone are relatively simple excitable units that respond

by means of stereotyped pulses, called action potentials
or spikes, to extrinsic stimuli that can be provided by
external excitation, by noise, or by neighboring neurons
in a spatially extended system [9–11] (for comprehensive
reviews see [12–14]). The basis of information process-
ing in the brain is transforming the incoming signals into
neuronal excitations. These transformations are crucial
for efficient encoding of information [15], and the process-
ing capacity of neurons is directly related to the nature
of spike trains as a code [16]. Spike trains can encode in-
formation via timing (temporal coding) [17] or via mean
firing rates (rate coding) [18,19]. Since there exist evi-
dence that rate coding would in many situations be inef-
ficient and unreliable compared to temporal coding [20],
the focus is shifting towards the later. In the context of
temporal coding, the timing of the first spike is of par-
ticular relevance, as it typically carries a greater amount
of information about the incoming stimulus than subse-
quent spikes [21,22]. It is within this context and with
this motivation that Pankratova et al. [23,24] analyzed the
impact of external noise on the timing of signal detection
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in FitzHugh-Nagumo and Hodgkin-Huxley neurons. The
reported results revealed that the first-spike latency is in-
versely proportional to the noise strength, and that it can
be minimized by a proper driving frequency of the exter-
nal stimulus. However, if the noise intensity exceeds a
threshold, the latency again begins decreasing. The phe-
nomenon that thus an intermediate noise intensity yields
the slowest responsiveness of an individual neuron was
described as noise-delayed decay (NDD), and subsequent
studies followed up by examining the relevance of internal
noise through neuronal membrane patches with stochastic
channels [25], synaptic background activity [26], as well
as temperature variations [27]. Ozer and Graham [28]
examined the NDD in dependence on the network activ-
ity by varying the membrane time constant of a single
cell. They showed that NDD emerges for small values of
the time constant, thus indicating high network activity,
and that it vanishes for large values. In addition to these
studies at the level of a single cell, in [29] the authors
analyzed the first-spike latency on small-world neuronal
networks, and showed that it exists for small coupling
strengths. The NDD phenomenon has thus already re-
ceived substantial attention in terms of the relevance of
internal noise through neuronal membrane patches with
stochastic channels and synaptic background activity.

Neurons are inherently noisy, and in general it is be-
lieved that noise has a destructive impact on the effective-
ness of neuronal information processing, although it can
also aid the detection of weak signals through stochas-
tic resonance [30]. Voltage-gated ion channels embedded
in neuronal membrane are one of the major sources of
noise due to their random transitions between conducting
and nonconducting states [31]. The intensity of channel
noise is related to the number of active ion channels that
participate in the generation of spikes [32], and assessing
the impact of the number of active ion channels is there-
fore important, especially to uncover the role of specific
ion channel noise on neuronal firing. In this context, neu-
rotoxins such as tetraethlyhammonium and tetrodotoxin
are used in experiments to reduce the number of working
ion channels [33]. In particular, by means of a fine-tuned
adminstration of these toxins a certain fraction of potas-
sium or sodium ion channels can be disabled or blocked.
The relevance of ion channel noise can also be studied by
means of computational models. It is known, for exam-
ple, that the regularity of spontaneous spike trains can
be reduced or enhanced by blocking or poisoning some
fraction of sodium or potassium ion channels [34,35], and
also that channel blocking can enhance the collective spik-
ing regularity of bi-directionally coupled [36] and small-
world neuronal networks [37]. Recently, the development,
propagation or robustness of spiral waves observed in
the cortex of brain has been addressed via ion channel
poisoning [38–40].

In this letter, we build on these previous advances to
determine the role of interaction networks by delayed sig-
nal detection, in particular by the timing of first spikes in

scale-free–coupled Hodgkin-Huxley neurons. Thereby, we
employ a model for the stochastic behavior of the voltage-
gated ion channels embedded in the membrane patch,
where the channel noise intensity depends on the mem-
brane area. We focus on the relevance of the strength of
coupling, the average degree of individual neurons, as well
as on the frequency of the external signal and the fraction
of blocked voltage-gated sodium or potassium ion chan-
nels. We thus deliver a comprehensive study that reveals
under which conditions the heterogeneity of neuronal net-
works actually enhances responsiveness, which factors that
may reduce spike latency, and ultimately under which con-
ditions the temporal coding might be optimal. The main
results and conclusions are presented in subsequent sec-
tions, while first we describe the mathematical model and
other details of the setup in greater detail.

Mathematical model and setup. – In the network,
the dynamics of each neuron is described by the Hodgkin
and Huxley [41] model, according to which the time evo-
lution of the membrane potential for coupled neurons in
the presence of an external signal f(t) = A sin(ωt) is given
as follows:

CmdVi/dt = GNa(mi, hi)(VNa − Vi)+GK(ni)(VK − Vi)

+GL(VL − Vi)+
∑

j

εij(Vj − Vi) + f(t). (1)

In eq. (1) εi,j = ε is the coupling strength if neu-
ron i is coupled to neuron j, while otherwise εi,j = 0,
Cm = 1µFcm2 is the membrane capacity, and GNa, GK

and GL represent sodium, potassium and leakage con-
ductances, respectively. Moreover, VNa = 115mV,
VK = −12mV and VL = 10.6mV are the reversal poten-
tials for the sodium, potassium and leakage channels. The
leakage conductance is set constant at GL = 0.3mScm−2,
while the sodium and potassium conductances change dy-
namically according to [25,34,35,37]:

GNa(mi, hi) = gmax

Na xNam3

i hi, GK(ni) = gmax

K xKn4

i . (2)

In eq. (2) gmax

Na = 120mScm−2 and gmax

K = 36mScm−2

are the maximal sodium and potassium conductances,
respectively. Moreover, m and h denote the activation
and inactivation gating variables for the sodium channel,
respectively, whereas the potassium channel includes an
activation gating variable n. We also introduce two scal-
ing factors, xNa and xK , which are the fractions of non-
blocked ion channels comparing to the total number of
sodium (NNa) or potassium (NK) ion channels within the
patch area, respectively [25,34,35,37]. These scaling fac-
tors are confined to the unit interval.

Activation and inactivation gating variables, mi, ni and
hi, change over time in response to the membrane poten-
tial following first-order differential equations, but only in
the limit of very large cell sizes. However, since the pop-
ulation of ion channels is finite, the stochastic behavior
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Fig. 1: (Colour on-line) Spatiotemporal distribution of first
spikes produced by 200 scale-free–coupled Hodgkin-Huxley
neurons driven by a supra-threshold periodic stimulus f(t) with
frequency ν = 20Hz and amplitude A = 4 µA/cm2 for differ-
ent membrane areas S, as indicated in the figure legend. An
intermediate intensity of internal noise at S = 100 µm2 in-
duces maximal delays, which however are less pronounced by
high-degree neurons (low neuron index i) than by low-degree
neurons. This hints towards the fact that the heterogeneity
of the interaction network might play a key role in mitigating
prolonged first-spike latency. The employed coupling strength
is ε = 0.01.

of voltage-gated ion channels must be taken into consid-
eration. To account for this, we use the algorithm pro-
posed by Fox [42]. Thus, variables of stochastic gating
dynamics are described with the corresponding Langevin
generalization [42]:

dxi/dt = αx(1 − xi) − βxxi + ξxi
(t), xi = mi, ni, hi, (3)

where αx and βx are rate functions for the gating variable
xi. The probabilistic nature of the channels appears as a
source of noise ξxi

(t) in eq. (3), which is an independent
zero mean Gaussian noise whose autocorrelation function
is given as follows [25,34,35,37]:

〈ξm(t)ξm(t′)〉 =
2αmβm

NNaxNa(αm + βm)
δ(t − t′), (4)

〈ξh(t)ξh(t′)〉 =
2αhβh

NNaxNa(αh + βh)
δ(t − t′), (5)

〈ξn(t)ξn(t′)〉 =
2αnβn

NKxK(αn + βn)
δ(t − t′), (6)

where the factors, xNa and xK , are used again to disre-
gard the blocked channels, which do not contribute to the
intrinsic channel noise. Given the assumption of homoge-
neous sodium and potassium ion channel densities, chan-
nel numbers are calculated via NNa = ρNaS, NK = ρKS
where ρNa = 60µm−2 and ρK = 18µm−2 are the sodium
and potassium channel densities, respectively, whereas
S represents the total membrane area, done previously
in [25,34,35,37]. Equations (4)–(6) define that the intrin-
sic noise level is inversely proportional to the number of
ion channels in the membrane area.

As the interaction network describing the connections
between the neurons we use the scale-free network gener-
ated via growth and preferential attachment as proposed
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Fig. 2: (Colour on-line) Mean latency Λ (left) and jitter Ψ
(right) in dependence on the average degree kavg and the mem-
brane area S, as obtained for ν = 20 Hz, A = 4 µA/cm2 and
ε = 0.01. It can be observed that there exists an intermediate
internal noise intensity at which both Λ and Ψ are maximal.
Although the peak values decrease with increasing kavg and
also shift towards slightly larger values of S, the relevance of
the average degree of individual neurons is fairly marginal.

by Barabási and Albert [4]. Here growth implies that the
numbers of connected neurons increases with time, while
preferential attachment means that new neurons are more
likely to connect with existing neurons that already have a
large number of connections to other neurons. Typically,
we use networks with an average degree kavg consisting
of N = 200 neurons, although we have verified that the
presented results are independent of the system size.

We quantify the response of the network by means of the
mean latency Λ, which measures the average time neurons
in the network need to produce the first spike in response
to the external signal. Accordingly, Λ = N−1

∑

i ti, where
ti is the first response time of neuron i that is recorded
as soon as the membrane potential Vi crosses the 20mV
threshold upwardly for the first time. We also determine
the second moment of ti as Ψ =

√

N−1
∑

i t2i − Λ2, which
represents the so-called temporal jitter. Final values of Λ
and Ψ presented below are averages over up to 100 inde-
pendent runs conducted for each set of parameter values to
ensure appropriate statistical accuracy with respect to the
scale-free network generation and stochastic simulations.

Results. – To begin with, we note that for the exter-
nal signal f(t) = A sin(ωt) we use A = 4µA/cm2 and
ν = 20Hz, where ω = 2πν, which according to [23] is
just above the firing threshold of ν = 16Hz at this par-
ticular amplitude. Intrinsic noise does thus not play the
role of the main excitatory agent, but rather it masks the
deterministic external signal f(t). The task of the neu-
ronal network is to detect and respond to f(t) as soon as
possible.

In fig. 1, we first show the spatiotemporal distribution
of neuronal firings for three characteristics values of S.
It can be observed that the first-spike latency is max-
imal at an intermediate total membrane area equalling
S = 100µm2 (green dots), while for S = 0.1µm2 (red
dots) and S = 105 µm2 (blue dots) the first response
times are, at least overall, significantly shorter. This is
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Fig. 3: (Colour on-line) Mean latency Λ (left) and jitter Ψ
(right) in dependence on the coupling strength ε and the mem-
brane area S, as obtained for ν = 20 Hz, A = 4 µA/cm2 and
kavg = 4. As in fig. 2, it can be observed that there exists
an intermediate internal noise intensity at which both Λ and Ψ
are maximal. As ε increases, however, the peak values decrease
significantly, and at sufficiently strong coupling the signature
of noise-delayed decay appears to altogether vanish. This in-
dicates that the coupling strength plays a more pivotal role
than average degree in mitigating delayed first-spike onset in
neuronal networks.

the hallmark property of noise-delayed decay. An inter-
mediate intensity of intrinsic noise, here directly regulated
by the membrane area S, maximally delays the response
of the neuronal network, and in so doing compromises its
ability to detect stimulus onset as well as to effectively en-
code information transmitted via f(t). Importantly, how-
ever, from fig. 1 one can also observe that, especially for
the most damaging value of S = 100µm2, the response
times differ significantly depending on the neuron number
i. According to the employed growth and preferential at-
tachment algorithm [4], low-index neurons are the oldest
and thus also the most interconnected neurons within the
network. These neurons are able to detect and respond to
f(t) much faster than high-index neurons. The green-dot
line in fig. 1 has a persistent upward trend towards larger
ti as i increases from 0 towards N − 1, and the trend is
particularly strong for the first ≈ 20 neurons. According
to the scale-free degree distribution, these few high-degree
neurons hold contact with the majority of other neurons
in the network, and it is likely that the auxiliary input
coming from all these other neurons helps the high-degree
neurons to detect the deterministic external signal faster
than low-degree neurons. This may in turn constitute
a mechanism by means of which noise-delayed decay in
scale-free neuronal networks could be avoided altogether,
and in what follows, we elaborate on this perspective in
more detail.

Figure 2 shows how the average degree kavg and the in-
trinsic noise strength (regulated via S) affect the mean
latency Λ and the temporal jitter Ψ. It can be observed
that increasing kavg does slightly better the responsive-
ness of the network, but also that the positive effect is
quite marginal. Moreover, the intermediate value of S
evoking the most delayed response is hardly affected and
remains bounded between S ≈ 50µm2 (for large kavg) and
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Fig. 4: (Colour on-line) Mean latency Λ (left) and jitter Ψ
(right) in dependence on the frequency of the external signal
and the membrane area S, as obtained for ε = 0.01, kavg = 4
and A = 4 µA/cm2. It can be observed that low and high
frequencies are significantly more elusive to detection than in-
termediate frequencies of the external signal. The latter yield
a clear decrease in both Λ and Ψ, although an intermediate
values of S still proves to be the most damaging to early de-
tection. These results are largely robust to variations of ε and
kavg, and they also agree with preceding observations made on
individual neurons.

S ≈ 100µm2 (for low kavg). Thus, we conclude that the
average degree of the scale-free network does not play a
key role in lessening noise-delayed decay.

Results presented in fig. 3 are more promising, where in-
deed a significant drop in both the maximal mean latency
Λ and the maximal temporal jitter Ψ can be observed as
the coupling strength ε increases. More precisely, Λ drops
by a factor of two and Ψ by a factor of three as ε goes
from 0.001 to 0.1. In addition, when approaching ε = 0.1
the mean latency Λ no longer displays a resonant-like de-
pendence on the total membrane area S, and for the tem-
poral jitter Ψ the bell-shaped form fades significantly as
well. Although the most damaging values of S remain, as
when increasing kavg (see fig. 2), relatively unaffected, the
results in fig. 3 nevertheless do lend credible support to
the notion that the network structure could be crucial for
mitigating noise-delayed decay.

In order to determine the conditions under which this
may apply more accurately, we first change the properties
of the external signal s(t), in particular its frequency ν.
Figure 4 shows how Λ and Ψ vary in dependence on ν and
S. Interestingly, the network structure does not affect the
frequency range in which delayed responses were recorded
before at the individual neuron level. Referring to fig. 1
in [23], we find that for the amplitude A = 4µA/cm2

only a rather narrow interval centering on ν ≈ 90Hz does
not evoke noise-delayed decay. This is in full agreement
with results presented in fig. 4, thus indicating that with
regards to the properties of the external signal, the mitiga-
tion of noise-delayed decay by means of network structure
can take full reference from the response of an individual
neuron. As we will show in what follows, this paves the
way for an intricate interplay between local (individual-
neurons based) and global (network-based) effects that af-
fect first-spike latency, ultimately giving rise to a double
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Fig. 5: (Colour on-line) Temporal jitter in dependence on the
membrane area S, as obtained for different average degrees kavg

(left) and coupling strengths ε (right) in the presence of potas-
sium channel blocking (xK = 0.95 and xNa = 1). Similarly
as concluded from results presented in figs. 2 and 3, in case of
potassium channel blocking too the coupling strength plays a
much more significant role than the average degree in ensuring
high responsiveness of the neuronal network.

resonance-like dependence of Λ and Ψ on S in case of se-
lective sodium or potassium channel blocking.

The impact of potassium channel blocking is presented
in fig. 5, where the earlier results in figs. 2 and 3 are
reviewed for xK = 0.95 while keeping xNa = 1. Here we
focus solely on the temporal jitter, as the second moment
is expectedly more sensitive to the change in ti, although
we note that the examination of the mean latency Λ would
lead to identical conclusions. From fig. 5 it follows that re-
sults in the absence of channel blocking apply also for the
case of potassium channel blocking. In particular, while
the increase in the average degree kavg plays a side role
at best, the increase in the coupling strength ε has the
potency to significantly dampen noise-delayed decay. In
addition, if potassium channels are blocked, the increase
in ε is also accompanied by a strong shift in the most
damaging value of S. While for small coupling strengths
S ≈ 100µm2 is most effective in delaying neuronal re-
sponse to f(t), at high coupling strengths this shifts by
two orders of magnitude to S ≈ 1µm2. The fact that a
much smaller total membrane area is needed to evoke the
maximally delayed response indicates that blocking potas-
sium channels may significantly increase the robustness of
neuronal networks to noisy disturbances.

Sodium channel blocking promises further insights, in
that for certain kavg and ε values there emerges a double
peak in Ψ in dependence on S, as evidenced in fig. 6. While
the peak around S ≈ 100µm2 was highlighted before for
xK = xNa = 1 as well as for xK = 0.95 and xNa = 1, for
xK = 1 and xNa = 0.95 there emerges a persistent second
peak at S ≈ 5µm2, which is particularly pronounced at
high kavg and high coupling strength ε. The very low in-
trinsic noise intensity that evokes the doubly noise-delayed
decay, together with the need for relatively strongly cou-
pled neurons constituting the scale-free network, suggests
that an extreme sensitization to weak external stimuli sets
in, which in turn very effectively masks the main signal
and thus induces failure of the network to respond in a
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Fig. 6: (Colour on-line) Temporal jitter in dependence on the
membrane area S, as obtained for different average degrees
kavg (left) and coupling strengths ε (right) in the presence of
sodium channel blocking (xNa = 0.95 and xK = 1). Here too
the coupling strength plays a key role in reducing the signature
of noise-delayed decay, while the impact of average degree is
much more subtle. The increase of both ε and kavg, however,
introduces a peculiar double-peak structure in dependence on
S, which indicates competition between local and global effects
affecting the delayed responsiveness of the neuronal network.

timely manner. Sodium channel blocking has before been
linked to increased sensitivity of neuronal dynamics [37],
only that here this is additionally amplified by the scale-
free interaction structure. Indeed, as fig. 1 indicates, the
high-degree neurons (low i values) are by default more re-
sponsive than low-degree neurons (i close N), which in the
presence of sodium channel blocking may result in tuning-
in too much even to the faintest of noisy disturbances,
and thus facilitating the numbness to the actual signal
that ought to be detected.

Summary. – We have studied noise-delayed decay on
scale-free neuronal networks subject to intrinsic noise, dif-
ferent frequencies of the external signal to be detected, as
well as subject to separate potassium and sodium channel
blocking. We have shown that the scale-free interaction
structure amongst neurons has the potential to signifi-
cantly shorten the response time of the entire network,
which is due to the higher responsiveness of the high-
degree neurons. For the mechanism to work, however, the
coupling strength has to be sufficiently strong, so that the
faster response of the high-degree neurons can be detected
back also by the low-degree neurons in a timely manner.
Ozer and Uzuntarla [29] have arrived at qualitatively sim-
ilar findings by using small-world neuronal networks, thus
indicating that strong coupling between neurons reduces
the NDD effect regardless of the network topology. In-
creasing the average degree also has a positive impact, but
its magnitude is only a fraction of that of the high coupling
strengths. In terms of the relevance of the frequency of the
external signal, we have shown that full reference can be
taken from the preceding study of the responsiveness of
an individual neuron. We have also demonstrated that
potassium channel blocking increases the robustness of
neuronal networks to noisy disturbances, while sodium
channel blocking induces a doubly noise-delayed decay.
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We have concluded that the temporal jitter peak at high
membrane area values is a consequence of the scale-free
network structure that further amplifies the increased sen-
sitivity due to sodium channel blocking, while the peak
at low membrane area values is due to the inherent neu-
ronal dynamics. Only the latter can be tamed effectively
by a heterogeneous network structure as long as the cou-
pling between the neurons is sufficiently strong and the fre-
quency of the external signal avoids the prohibitive values
set by individual neuronal dynamics, while the former can
be considered as the “price to pay” for the aforementioned
benefits. Given that first-spike latency following stim-
ulus onset —the effective manifestation of noise-delayed
decay— is physiologically relevant in that it may pre-
vent effective signal detection and responsiveness, and ulti-
mately lead also to inefficient information encoding based
on spike train timing, we believe the study addresses a
relevant setup with potential practical ramifications. We
hope this will be motivation enough for further research
efforts aimed at disentangling the importance of network
structure in mitigating delayed first responses of neuronal
networks due to noise. In particular, although many works
have focused only on electrically coupled neurons, as we
have also done in our study, the role of chemical cou-
pling [9,43–45] as well as other sources of heterogeneity
besides the network structure might merit particular at-
tention in either impairing or promoting NDD.
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