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Abstract – Social diversity is omnipresent in the modern world. Here we introduce this diversity
into spatial multigames and study its impact on the evolution of cooperation. Multigames are
characterized by two or more different social dilemmas being contested among players in the pop-
ulation. When a fraction of players plays the prisoner’s dilemma game while the remainder plays
the snowdrift game cooperation becomes a difficult proposition. We show that social diversity,
determined by the payoff scaling factors from the uniform, exponential or power-law distribu-
tion, significantly promotes cooperation. In particular, the stronger the social diversity, the more
widespread cooperative behavior becomes. Monte Carlo simulations on the square lattice reveal
that a power-law distribution of social diversity is in fact optimal for socially favorable states,
thus resonating with findings previously reported for single social dilemmas. We also show that
the same promotion mechanism works in time-varying environments, thus further generalizing the
important role of social diversity for cooperation in social dilemmas.

Copyright c© EPLA, 2017

Cooperative phenomenon exists widely in the real
world, ranging from animal to human societies [1]. How-
ever, how to understand why selfish players are willing
to donate to the collective income at individual cost re-
mains unclear. This confusion is normally investigated
using the evolutionary game theory [2–6] as a classi-
cal theoretical framework. Furthermore, the prisoner’s
dilemma game and the snowdrift game as the exempli-
fications for addressing the cooperative phenomenon have
received substantial attention [7–29]. For example, in a
standard prisoner’s dilemma game played by two players,
each should simultaneously decide whether to cooperate
or to defect. Since a defecting player will acquire the
maximum payoff if encountering a cooperative player, the
emergence of cooperation faces an enormous challenge. In
fact, the entire population resorts to defection within the
prisoner’s dilemma game in well-mixed populations [4].
Therefore, much research has been devoted to exploring
mechanisms that can bring about the promotion of the
cooperative strategy among selfish players.

In order to resolve social dilemmas, where selfish play-
ers pursuing short-term individual benefits might lead to
the tragedy of the commons [30], an impressive amount
of research has been carried out in this field over the

past years [31–41]. In ref. [36], Nowak has discussed
five classic mechanisms for the promotion of cooper-
ation: kin selection, direct reciprocity, indirect reci-
procity, network reciprocity, as well as group selection. In
ref. [37], Nowak and May have first introduced the pris-
oner’s dilemma game on the square lattice. They have
found that cooperators form compact clusters and so es-
cape the exploitation of the defecting players, thus facil-
itating cooperative behavior. Following this significant
breakthrough, network reciprocity attracted considerable
attention [42–47]. In ref. [42], Santos and Pacheco have
discovered that scale-free networks promote the emer-
gence of cooperation both in the snowdrift game and the
prisoner’s dilemma game far beyond the boundaries im-
posed by regular lattices. Moreover, coevolutionary rules
where strategies of players and other properties simul-
taneously evolve have been investigated [48–54], further
enriching the mechanisms for raising the degree of coop-
eration. In addition, several other approaches have been
considered that may favorably influence the evolution of
cooperation, like payoff noise [55–59], strategic complex-
ity [60–67], inhomogeneous activity of players [68,69], pop-
ulations of mobile individuals [70], as well as multilayer
networks [71–76].
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Recently, evolutionary multigames [77–79] or mixed
games [39] have attracted more attention and brought piv-
otal progression in evolutionary game theory. Cressman
et al. have initially analyzed a two-decision two-player
model where agents may adopt different strategies in dif-
ferent situations, and they showed that the eventual state
of the game could be represented by the dynamics of the
separate game [80]. Wang et al. have studied evolutionary
multigames in structured populations inspired by differ-
ent individuals with a different perception under the same
social dilemma. Research revealed that the level of coop-
eration could be enhanced because of the application of
different payoff matrices [81].

Our main motivation in this letter is rooted in the fact
that while diversity can boost cooperation [82–84], we are
likely to perceive diversity differently, and moreover, will
likely be unaware of its utilization in different contexts.
We expect that the introduction of social diversity in the
spatial multigames can enlarge the range of impact of the
evolutionary multigames on the promotion of cooperation.
In this paper, we study the role of the adoption of social
diversity in the spatial multigame environment in the ad-
vance of the cooperative strategy. The term multigame
environment is fulfilled by individuals adopting distinct
magnitude of the sucker’s payoff, where a portion of the
players plays the snowdrift game while the remaining por-
tion of the players plays the traditional prisoner’s dilemma
game. It is worth mentioning that the mean payoff matri-
ces turn to the weak prisoner’s dilemma game on account
of the equal distribution of positive and negative mag-
nitude of the sucker’s payoff. Meanwhile, we investigate
the social diversity of individuals determined by random
variables which are obtained from the uniform, exponen-
tial, or power-law distribution and thus generating sev-
eral disparate kinds of diversity. The random variables
might increase or decrease the value of payoffs, and they
depict various social states of game participants. Our out-
comes show that regardless of the distribution types of
random variables, social diversity can improve consider-
ably the levels of cooperation in the spatial evolutionary
multigames. Particularly, the power-law distribution of
the scaling factor causes the greatest facilitation of coop-
erative behavior among the entire range of parameters.
Moreover, for the purpose of testing the robustness of our
primary research, we also consider the facilitative impact
of social diversity on cooperation in a time-varying multi-
game environment, where we observe similarly positive
evolutionary outcomes.

In the continuation of this letter we first describe the
evolutionary multigame on the square lattice and the in-
troduction of social diversity that is realized by scaling
factors from the three different distributions. Next we
present the main results from Monte Carlo simulations,
and finally conclude with a discussion and possible direc-
tions for future research.

We study evolutionary multigames with individuals
located on the square lattice with periodic boundary

conditions. Every participant interacts only with its k = 4
nearest neighbors. Initially, each player situated on the
square lattice could choose cooperation (C) or defection
(D) with equal probability. Furthermore, we calculate
the payoffs of players in pairwise games according to the
standard form [37]. If both participants choose coopera-
tion, they will gain the reward R. Moreover, if one defec-
tor competes with one cooperator, the defector gains the
temptation T while the cooperator gains the sucker’s pay-
off S. If both participants choose defection, both of them
gain the punishment P . Inspired by the previous work
concerning the multigames [81], we employ diverse S val-
ues to characterize that the identical social dilemma can
be perceived variously by various individuals. Especially,
half of the entire randomly selected population applies
S = −Θ, whereas the other half applies S = +Θ, where
0 < Θ < 1. In other words, we have a part of the players
which plays the snowdrift game while the other part of
the players plays the traditional prisoner’s dilemma. We
use the same distribution of negative and positive S values
among the population, thus entire payoff matrices turn to
S = 0 the weak prisoner’s dilemma.

In the former literature as regards the evolutionary
multigames, players utilize the payoff matrices where most
of the elements are the same [79,81]. Nevertheless, because
diversity is ubiquitous in the reality, we introduce social
diversity into the spatial multigame environment. Moti-
vated by the preceding work with respect to the prisoner’s
dilemma game [82], we rescale the payoffs as

Ψ′ = Ψ(1 + ξ), (1)

where Ψ is either T, R, P or S, ξ = min(ξi, ξj), and ξi

or ξj is a scaling factor acquired randomly from a pre-
scribed distribution for each game participant just once
at the beginning of the simulation. In this paper, we pri-
marily consider three different distributions of the scal-
ing factor, namely the uniform, the exponential, and the
power-law distribution, which are described by the follow-
ing expressions:

ξ = a ∗ (−2χ + 1), (2)

ξ = a ∗ (− lnχ − 1), (3)

ξ = a ∗ (χ−1/2
− 2). (4)

Here χ is a uniformly distributed random number from the

unit interval, and
∫ 1

0
ξ(χ)dχ = 0 in all cases, thus yielding

the mean of ξ in the whole population equal to zero. The
coefficient a (0 ≤ a ≤ 1) determines the amplitude of fluc-
tuations of social diversity, such that the greater the value
of a, the greater the amplitude of fluctuations. Specially,
a = 1 is the maximum value that still assures (1 + ξi) ≥ 0
for any i, while a = 0 returns the original setup without
social diversity.

The spatial distributions of the three different social di-
versity for a = 1 are exhibited in fig. 1. We can see clearly
that the mildest dispersion of the scaling factor is guaran-
teed by the uniform distribution, whereas the power-law
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Fig. 1: (Colour online) Spatial distribution of scaling factors
drawn from a uniform (top), exponential (middle), and power-
law (bottom) distribution, as obtained for a = 1. Each panel
shows a characteristic 1D cross-section of the square lattice.

distribution offers the greatest segregation of social diver-
sity. The exponential distribution of ξ results in a disper-
sion of the scaling factor which is between the uniform and
power-law distribution.

All players will get corresponding payoffs after each
instance of the game, and they simultaneously accumu-
late payoffs by interacting with their closest four neigh-
bors. Moreover, all individuals simultaneously renew their
strategies after every complete iteration cycle of game.
A player i randomly chooses one neighbor j, then player i
imitates the strategy Sj from player j with the probability
decided by the difference of their overall payoffs [85]:

W (si ← sj) =
1

1 + exp[(Πi − Πj)/K]
, (5)

where K = 0.1 determines the uncertainty in the strategy
adoption process. We simulate the evolutionary multi-
games according to the classic Monte Carlo simulation
method, and simulations are primarily performed on N =
100 × 100 square lattices. Near phase transition points
we have further increased the system size to avoid acci-
dental extinctions and to ensure suitable accuracy. The
fraction of cooperators fc over the entire population is
used to measure the level of cooperation in the system.
We acquire the fraction of cooperators in the stationary
state by calculating the average value over the last 2000
full Monte Carlo steps after sufficiently long transients are
discarded. To further improve accuracy, the final results
are averaged over 20 independent realizations.

Then, we investigate the effect of social diversity on
the promotion of cooperation by simulation experiments
of the above-mentioned spatial multigames. According to
the previous literature [48,86,87], we assume that coop-
erative players can coexist with defecting players in spa-
tial populations due to network reciprocity. Besides, the
multigame setting captured by adopting disparate values
of the sucker’s payoff can improve the level of coopera-
tion. What is more, the introduction of social diversity in
multigame environment can further influence the cooper-
ative behavior.

Fig. 2: (Colour online) Fraction of cooperators fc on the square
lattice in dependence on the temptation to defect T , as ob-
tained with and without uniformly distributed social diversity
for three different values of Θ (see legend). Other parameter
values are a = 1 and K = 0.1.

Fig. 3: (Colour online) Fraction of cooperators fc on the
square lattice in dependence on the temptation to defect T ,
as obtained with and without exponentially distributed social
diversity for three different values of Θ (see legend). Other
parameter values are a = 1 and K = 0.1.

In fig. 2, fig. 3 and fig. 4, we show that cooperator den-
sity fc changes with temptation T for three various distri-
butions of the scaling factor and three different values of Θ
when a = 1, K = 0.1. We can observe that the greater the
value of temptation T , the smaller the value of cooperator
density fc irrespective of the distribution types of social
diversity and the value of the sucker’s payoff. Moreover, it
can be seen that the introduction of social diversity in the
spatial multigame environment can promote the degree of
cooperation significantly regardless of distribution cases of
social diversity in most of the range of parameters. Obvi-
ously, we can find that the fraction of cooperative individ-
uals fc increases as the value of Θ increases for all three
diverse distributions of the scaling factor. Meanwhile, as
shown in fig. 5, we show that the fraction of cooperative in-
dividuals fc varies with temptation T for four cases, while
Θ = 0.4, a = 1 and K = 0.1. The revealed results sug-
gest that the power-law distribution produces the greatest
promoter of cooperative behavior and the uniform distri-
bution causes the worst promoter of cooperative behavior
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Fig. 4: (Colour online) Fraction of cooperators fc on the square
lattice in dependence on the temptation to defect T , as ob-
tained with and without power-law distributed social diversity
for three different values of Θ (see legend). Other parameter
values are a = 1 and K = 0.1.

Fig. 5: (Colour online) Fraction of cooperators fc on the
square lattice in dependence on the temptation to defect T ,
as obtained without social diversity, as well as with uniformly,
exponentially, and power-law distributed social diversity (see
legend). It can be observed that power-law distributed social
diversity is most successful in ensuring cooperation in the stud-
ied multigame. Other parameter values are Θ = 0.4, a = 1 and
K = 0.1.

across the entire range of T . We can see that the criti-
cal value of the cooperative behavior extinction improves
from T = 1.50 without social diversity to T = 1.55 (the
uniform distribution of social diversity), T = 2 (the ex-
ponential distribution of social diversity), and cooperative
players exist in the whole range of T for the power-law
distribution.

Our consideration for the promotion of cooperation
mentioned above is due to the introduction of the het-
erogeneous fitness of individuals, which facilitates robust
cooperative clusters around those individuals that possess
the large values of ξ. In fact, when cooperative individ-
uals occupy the main sites of the lattice (analogous to
the hubs of a scale-free or similar network), they begin
spreading their strategy in the form of compact clusters.
That is to say, cooperative individuals may prevail on the
whole network due to clusters of cooperators, where they

Fig. 6: (Colour online) Fraction of cooperators fc on the square
lattice in dependence on the amplitude of social diversity a,
as obtained for the uniform, exponential, and power-law dis-
tributed social diversity (see legend). As in fig. 5, it can be
observed that power-law distributed social diversity is most
successful in ensuring cooperation. Other parameter values
are Θ = 0.4, T = 1.2 and K = 0.1.

cooperate with each other. Nevertheless, the defective in-
dividuals are in the absence of this feature and so they fail
to make use of social diversity to diffuse their strategies.
A similar case is that the evolutionary game in scale-free
graphs, and the individuals with the maximum connection
can control the results of the evolutionary game. Once
cooperators occupy the hubs of the network, they can
spread cooperative behavior rapidly, while defectors can-
not reach this effect. Besides, the power-law distribution
of social diversity presents the strongest inhomogeneous
of the scaling factor, as exhibited in fig. 1. Those partic-
ipants with low ranking of the scaling factor may follow
the high-ranking participants and resist the exploitation
of defectors.

We present the effects of amplitude a of social diversity
on the promotion of cooperation for different distributions
of the scaling factor in fig. 6. Clearly, the level of cooper-
ative behavior might be markedly elevated as the value of
a increases in the three different situations. In accordance
with the expressions of the scaling factor ξ, it can be seen
that the amplitude a affects the fluctuation of the scaling
factor. Practically, the greater value of the amplitude a
gives rise to the greater fluctuation for the scaling factor
as well as the greater part of low-ranking players.

Finally, we further examine the robustness of our pri-
mary conclusions in a time-varying multigame setting. In
reality, individuals often perceive the same social dilemma
differently over time. With respect to our model, the same
players employ different values of the sucker’s payoff in
every game. That is to say, players adopt S = +Θ or
S = −Θ with equal probability in every game instead
of possessing a constant value of the sucker’s payoff as
discussed above. Surely, the overall mean of the payoff
matrices turns to S = 0, and thus to the weak prisoner’s
dilemma game. According to the above-presented results
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Fig. 7: (Colour online) Fraction of cooperators fc on the
square lattice in dependence on the temptation to defect T ,
as obtained without social diversity, as well as with uniformly,
exponentially, and power-law distributed social diversity (see
legend), this time in a time-varying multigame (compare with
fig. 5). As above, it can be observed that power-law distributed
social diversity is most successful in ensuring cooperation, even
in a time-varying multigame, thus further generalizing the im-
portant role of social diversity for cooperation in social dilem-
mas. Other parameter values are Θ = 0.4, a = 1 and K = 0.1.

obtained for a classical multigame, the introduction of so-
cial diversity in the spatial multigame can enhance the
level of cooperative behavior. Figure 7 displays how the
fraction of cooperators fc changes with T at Θ = 0.4,
a = 1, and K = 0.1 in a time-varying spatial multi-
game. One can observe that in the time-varying multi-
game environment, cooperation is extensively promoted
for all the three distributions of the scaling factors if com-
pared with the time-varying multigame without social di-
versity. Moreover, as before, cooperation is promoted best
if the scaling factors that determine social diversity come
from a power-law distribution.

To sum up, we have investigated the effects of social
diversity in spatial multigames on the evolution of coop-
eration. In particular, we have primarily considered multi-
games where one half of the population plays the snowdrift
game while the other half plays the traditional prisoner’s
dilemma game. The social diversity was introduced by
means of the uniform, exponential, or the power-law dis-
tribution of the scaling factors that multiply the payoff
matrix. According to the outcomes of Monte Carlo sim-
ulations, we conclude that, regardless of the distribution
type of the scaling factors, social diversity promotes co-
operation in multigame environments. Specifically, the
power-law distribution induces the greatest facilitation of
the cooperative behavior while the uniform distribution
yields the lowest facilitation of the cooperative behavior,
and this holds across the entire range of the temptation
to defect. The enhancement of cooperative behavior is
due to the introduction of various social states of compet-
ing individuals, which facilitates the emergence of robust
cooperative clusters around the individuals that possess

the large values of the scaling factor. To be specific, once
cooperators occupy important locations of the square lat-
tice, they can propagate their cooperative strategy to the
cluster-forming feature. We have also shown, expectedly,
that the larger the value of Θ, the higher the concentra-
tion of cooperators on the square lattice. What is more,
with the purpose of verifying the robustness of our primary
results summarized above, we have also studied the stim-
ulative impact of social diversity on cooperation in time-
varying evolutionary multigames, where we have observed
the same results as in static evolutionary multigames.

Our results thus reaffirm the significance of social di-
versity for the successful evolution of cooperation, and we
also hope they provide further insights into the resolu-
tion of social dilemmas among selfish players, in particular
where multigames are at play. Indeed, it is easy to imagine
that payoff matrices are composed of mixtures of different
games at different times, or that different players adopt
different matrices when playing, as representative of the
natural environment and different circumstances. In this
respect, it is easy to imagine further research along sim-
ilar lines, for example by considering other evolutionary
games constituting the multigame environment, where the
previous research on universal scaling parameters of the
social dilemma strength will be of value [88,89]. Further,
it would of course be very interesting to test these theo-
retical predictions in human experiments and in practical
applications [90–94]. A simple descriptive example of a
multigame is how the owner of a cheap car can have a very
different risk perception on a highway crossing compared
to the owner of a new expensive car. Recent research has
already revealed that this is an important consideration
with far-reaching consequences for the outcome of evolu-
tionary games [39,77–79,81,95,96], and with this letter we
hope to add further to this inspiring avenue of research.
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