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Nonstationary chimeras in a neuronal network
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Abstract – Chimeras are special states that are composed of coexisting spatial domains of co-
herent and incoherent dynamics, which typically emerge in identically coupled oscillators. In this
paper, we study a network of nonlocally coupled Hindmarsh-Rose neurons that are subject to an
alternating current. We show that chimera states emerge when the neurons are connected through
electrical synapses. The considered model has two coexisting attractors, namely a limit cycle and a
chaotic attractor, to which the dynamics converges in dependence on the initial conditions. While
earlier research reported the existence of chimeras in Hindmarsh-Rose neuronal networks mainly
through chemical synapses, here we show that an alternating current in an electrically coupled
network can also evoke chimeras, whereby the spatial positions of coherent and incoherent domains
vary with time. Remarkably, we also observe chimera states in locally coupled neurons through
electrical synapses, which reduce the relaxation of nonlocallity in the coupling configuration. The
existence of nonstationary chimeras is confirmed by means of a local order parameter.

Copyright c© EPLA, 2018

Introduction. – Different oscillatory networks exist
in nature, which typically evolved either completely syn-
chronous or asynchronous states. Chimeras, or chimera
states, are in this regard special because they are charac-
terized by the coexistence of spatial organized subpopula-
tions of coherent and incoherent dynamics [1–3]. Chimeras
have received ample attention [4–7] in various fields after
their discovery in nonlocally coupled phase oscillators in
2002 [8]. Apart from the fascinating nature in theoreti-
cal studies, chimeras have also found to be related to dif-
ferent real-life phenomena, including unihemispheric sleep
in birds and dolphins [9], epileptic seizures [10], modular
neural networks [11], and even to some aspects of social
systems [12].

The chimera states were firstly observed in a network
of nonlocally coupled complex Ginzburg-Landau phase

(a)E-mail: matjaz.perc@uni-mb.si

oscillators [8]. Chimeras have also been investigated with
either global, local or nonlocal coupling [13–15], in peri-
odic oscillators [16], chaotic oscillators and maps [17,18],
and also in different neuronal systems [19–22]. In 2013,
Hizanidis et al. [20] studied the occurrence of chimera
states for various coupling schemes in networks of two-
and three-dimensional Hindmarsh-Rose oscillators. Bera
et al. [19] investigated the existence of chimera states in
pulse-coupled networks of bursting Hindmarsh-Rose neu-
rons using a chemical synaptic coupling function. Majhi
et al. [21] considered a network of neurons with multi-
layer structure and examined the impact of homogeneous
and heterogeneous information transmission delays on the
chimera states. Recently, Shepelev et al. [22] discov-
ered new chimera patterns in a ring of nonlocally cou-
pled FitzHugh-Nagumo oscillators. Besides these, chimera
states have been verified experimentally in different os-
cillator types such as chemical [23], optical [24], and
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mechanical systems [25]. Depending on the different spa-
tiotemporal patterns, many new types of chimera states
have been identified including amplitude chimeras [26],
chimera death [27,28], breathing chimeras [29], imper-
fect chimeras [30,31], traveling chimeras [32], alternating
chimera [33] and even spiral wave chimeras [34].

Here we consider the dynamics in a ring network, where
the local dynamics of each node is described by the mod-
ified Hindmarsh-Rose (HR) neuron model [35–37]. In
neuronal networks, the neurons are connected by two
different synapses, namely the electrical and chemical
synapses [19–21,38,39]. If the synaptic coupling is chem-
ical, a nonlinear sigmoidal function with a threshold and
saturation constants are used to define it. For electri-
cal synaptic coupling, a linear function which depends
on the difference between the membrane potentials is
used. More precisely, we here consider a network of non-
locally coupled alternating-current–induced Hindmarsh-
Rose neurons [37]. This model is interesting due to the
bistability nature, i.e., a stable periodic limit cycle coex-
ists with a chaotic attractor. Which is ultimately selected
by the trajectory depends on the initial conditions. This
setup thus promises fascinating spatiotemporal dynamics,
as we will demonstrate in what follows. In most of the
previous works [19–21] on chimera states in neuronal net-
works, the observed chimeras are stationary in patterns.
But in some neuronal processes, such as in bump states,
the spatial positions of neurons in coherent and incoherent
states are not static with respect to time. Thus, the sys-
tematic study on nonstationary chimera states in neuronal
networks deserves special attention.

In this letter, we study the emergence of nonstationary
chimera states in nonlocally coupled neuronal networks.
We consider the local dynamics of each node by a HR neu-
ronal model with alternating current on the membrane po-
tential which makes the system bistable. The presence of
alternating current in the individual node plays a crucial
role for the emergence of nonstationary chimera states.
We identify and confirm the new nonstationary chimera
states using the local order parameter. The earlier studies
on chimera states in neuronal networks, it was observed
that the obtained chimeras were stationary, i.e., the co-
existence of coherent and incoherent groups in chimera
state are not changed with respect to time. Remarkably,
we find that the chimera state also emerges in locally cou-
pled neurons through electrical synapses whereas previous
work [20] demanded that a nonlocal coupling configuration
with rectangular kernel is necessary for the existence of
chimera states in electrically coupled neurons. We further
identify the transition of incoherent, chimera and coherent
states by varying the coupling strength and the number
of nearest neighbors in the nonlocal ring. The obtained
chimera states are confirmed by the calculation of the lo-
cal order parameter.

Mathematical form of neuronal network model.

– The Hindmarsh-Rose neuron model is used extensively
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Fig. 1: (Colour online) (a) A limit cycle coexists with a chaotic
attractor at Im = 1.2 and F = 0.05 with initial conditions re-
spectively at (0, 0, 0) (blue) and (0, 0, 6) (gray). (b) Variation of
the maximum Lyapunov exponent (MLE) to confirm periodic
and chaotic behaviors.

to describe dynamical patterns of the membrane potential.
Here as a single unit of the network, we consider an im-
proved version of the HR neuron model proposed by Bao
et al. [37] with an injected external alternating current
on the membrane potential in the axon of a neuron. The
mathematical form of the modified HR neuronal model is
described as

ẋ = y + 3x2 − x3 − z + 3 + Im sin(2πFt),

ẏ = 1 − 5x2 − y,

ż = 0.0084(x + 1.6) − 0.0021z,

(1)

where x represents the membrane potential in the axon of
a neuron, y and z are the spiking and bursting variables
which are used to exchange fast (associated with Na+ or
K+) and slow (associated with Ca2+) currents, respec-
tively. Here Im and F are, respectively, the amplitude
and frequency of the injected external alternating current.
In this modified HR model, alternating current induces
different coexisting behaviors of asymmetric bursters for
different parameter values of Im and F . For fixed values of
Im = 1.2 and F = 0.05, the modified HR neuronal model
exhibits two coexistence states. For the initial conditions
(0, 0, 0) and (0, 0, 6), a stable limit cycle and a chaotic at-
tractor emerge and the phase-space diagrams are shown in
fig. 1(a). These two coexisting states are also confirmed
by the calculation of the Lyapunov exponent. The vari-
ations of the maximum Lyapunov exponent (MLE) for
limit cycle and chaotic attractor are shown in fig. 1(b) by
blue and gray lines, respectively. To explore the complete
scenario of the coexisting states (limit cycle and chaotic),
we compute the basin of attraction of the model (1) by
changing the initial conditions x0 = y0 and z0. The basin
of attraction for the isolated neuronal HR model is shown
in fig. 2. The blue and gray regions correspond to the ini-
tial conditions for stable limit cycle and chaotic attractor
states, respectively. From this figure, it is noticed that the
initial conditions of the bursting variable z is vital for the
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Fig. 2: (Colour online) Basin of attraction of the isolated HR
neuronal model (1) for Im = 1.2 and F = 0.05. Blue and
gray regions represent the initial conditions for limit cycle and
chaotic attractor, respectively.

emergence of coexisting states. For z0 ≤ 2.4, the initial
conditions for limit cycle and chaotic state are intertwined
and after that value there is a well-separated basin of at-
tractions for limit cycle and chaotic states.

Next, we consider a network of nonlocally cou-
pled alternating-current–induced HR neurons which are
conected with each other through electrical synapses. The
mathematical form of the coupled network is written as

ẋi = yi + 3x2
i − x3

i − zi + 3 + 1.2 sin(0.1πt)

+
d

2P

i+P
∑

j=i−P

(xj − xi),

ẏi = 1 − 5x2
i − yi,

żi = 0.0084(xi + 1.6) − 0.0021zi, i = 1, 2, . . . , N,

(2)

where d represents the coupling strength which deter-
mines how the information is exchanged among the neu-
rons through electric synapses, each neuron in the network
is coupled to its P number of nearest neighbors on both
sides. Next our main target is to investigate the different
spatiotemporal dynamics by changing the parameters d

and P . In the numerical simulations, we choose N = 100
number of neurons and use the fourth-order Runge-Kutta
method with time step 0.01.

Results. – We fix the number of nearest neighbor at
P = 20 and vary the synaptic coupling strength d. We set
the initial conditions as follows: x0(i) = y0(i) = a1(

N
2 − i)

and z0(i) = 2.75 + a2(N + 1 − i), where a1 = 0.04, a2 =
0.002. With these values of a1 and a2, the initial condi-
tions lie between x0 = y0 ∈ [−2, 2] and z0 ∈ [2.75, 2.95]
for which each isolated neuron exhibits a chaotic state (cf.
fig. 2). For smaller values of d, the neurons are in the
incoherent state. The snapshots of the neurons at d = 0.1
are shown in fig. 3(a). With increasing value of d = 0.65,
we observe that coupled neurons enter into a state with
coexistence of synchronized and desynchronized neurons,
which is a signature of the chimera state. The snapshot of
the neurons at chimera state is depicted in fig. 3(b). With
higher values of the synaptic coupling strength d = 2.5,
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Fig. 3: (Colour online) The snapshot of the neurons at t = 2050
shows (a) the incoherent state at d = 0.1, (b) the chimera
state at d = 0.65 and (c) the coherent state at d = 2.5. The
second row shows the long-term behavior of the neurons cor-
responding to the first row, i.e., (d) incoherent, (e) chimera,
and (c) coherent state. Spatiotemporal patterns of the local
order parameters for each neuron corresponding to the states
in the second row. The initial conditions are selected where
each isolated neuron is in the chaotic state.

all the neurons are in the synchronized state (fig. 3(c)).
The long-term evolutions of the neurons for the incoher-
ent, chimera and coherent states are respectively shown
in figs. 3(d)–(f). From fig. 3(e), the spatiotemporal plot
of the neurons in the chimera state, it is noticed that the
synchronized and desynchronized domains in the chimera
state are not static but travel with time. This is a clear
signature of the nonstationary chimera state. Previously,
nonstationary two-cluster chimera states were observed in
a nonlocally coupled complex Ginzburg-Landau oscillator
in the limit of strong coupling [40]. Bera et al. [41] inves-
tigated imperfect travelling chimera states in the HR neu-
ronal model where a chemical synaptic coupling function
was used. Recently, Majhi et al. [33] observed an alter-
nating chimera state in an ephaptically coupled bursting
HR neuronal network.

To quantify the spatial coherence-incoherence pattern
and chimera state, we calculate the real-valued local order
parameter [41] of each neuron. Note that the observed
chimera state is nonstationary, so the strength of incoher-
ence and mean phase velocity are not suitable measure-
ments. The local order parameter is basically the local
ordering of the neurons in coherent and incoherent groups.
The local order parameter is defined as

Li =

∣

∣

∣

∣

∣
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ejφk

∣
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, i = 1, 2, · · · , N (3)

where δ is the number of nearest neurons on both sides of
the i-th neuron. The geometric phase of the k-th neuron
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Fig. 4: (Colour online) The snapshots show the (a) incoher-
ent state at d = 0.25, (b) the chimera state at d = 0.67 and
(c) the coherent state at d = 2.8 at time t = 2148. The sec-
ond and third rows indicate the spatiotemporal plots by taking
long-time iteration of membrane potential and local order pa-
rameter, respectively.

is determined by the formula

φk(t) =
2π(t − ti(n))

ti(n + 1) − ti(n)
, (4)

where ti(n) is the time at which the n-th peak of the
i-th neuron occurs and ti(n) ≤ t ≤ ti(n + 1). In or-
der to calculate the local order parameter Li, we use the
spatial-window size δ = 1 elements. When the local or-
der parameter Lk is equal to 1, it indicates that the k-th
neuron belongs to the coherent part of the chimera state,
and when it is less than 1, it belongs to incoherent parts.
Figures 3(g)–(i) show the variation of the local order pa-
rameter of each neuron for a long time of interval where
the gray portion represents the coherent neurons in the
chimera state.

Similarly, we also observe the nonstationary chimera
state for the other choice of initial conditions. We set
the initial conditions as x0(i) = y0(i) = b1(

N
2 − i) and

z0(i) = b2(N + 1 − i), where b1 = 0.04, and b2 = 0.02.
With these values of b1 and b2, the initial conditions lie
in the intertwining part where the basin of attraction for
limit cycle and chaotic attractor are not well separated
(cf. fig. 2). The first, second and third rows of fig. 4 re-
spectively display the snapshot, spatiotemporal plots of
membrane potential and local order parameter for inco-
herent (at d = 0.25), chimera (at d = 0.67) and coherent
(at d = 2.8) states. Here the observed chimera state is
also nonstationary. This nonstationary behavior in the
chimera state emerges due to the presence of alternating
current in the HR neuronal model, eq. (1).

Next we check the complete scenario of incoherent,
chimera and coherent states by simultaneously varying
the number of nearest-neighbor nodes P in the nonlocal
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Fig. 5: (Colour online) The two-parameters phase diagram in
the d-P plane depicts incoherent (blue filled circle), chimera
(gray open circle) and coherent (green square) states.

Fig. 6: (Colour online) Chimera state using locally connected
neurons: (a) spatiotemporal pattern and (b) snapshot at
t = 2150 of the network. Here p = 1 and d = 1.5.

coupling and synaptic coupling strength d. We vary P

from 1 to 50 (i.e., from local to global coupling config-
urations) and d from 0 to 3. Figure 5 shows the (d, P )
two-parameter phase diagram for incoherent, chimera and
coherent states. To plot this phase diagram we use the
initial conditions as x0(i) = y0(i) = c1(

N
2 − i) and z0(i) =

c2(N + 1 − i), where c1 = 0.04 and c2 = 0.06. Remark-
ably, we note that the nonstationary chimera state is also
observed in locally and globally coupled neurons through
electric synaptic coupling. For an exemplary value, P = 1
and d = 1.5, we observe the chimera state in locally cou-
pled neurons. Previously, the chimera state was also no-
ticed in locally coupled oscillators due to the nonlinearity
present in the coupling function [42]. The spatiotempo-
ral plot and snapshot of the neurons in locally coupled
neuron through electrical synaptic coupling are shown in
figs. 6 (a) and (b), respectively.

Conclusions. – We have studied the dynamics of a
neuronal network on the top of a ring topology, consisting
of coupled Hindmarsh-Rose neurons with an alternating-
current induction through electrical synapses. Actually,
we have used an updated Hindmarsh-Rose model, which
is characterized by bistability. In particular, the model
exhibits the coexistence of periodic and chaotic attractor,
as shown in fig. 1 and corresponding basin of attraction
in fig. 2. To confirm different dynamical states, we have
calculated the local order parameter for different values of
the coupling strength d and number of nearest neighbors
P in nonlocal coupling. We have shown that, in contrast
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to a similar research done in the recent past, in our case
the coupled system produces the chimera state which is
not static, i.e., the position of coherent and incoherent
groups in the chimera state varies with time. We note
that, typically, chimeras also occur in a locally coupled
neuronal network where the coupling function is simple
diffusive, i.e., through electrical synapses.

More interestingly, we checked that nonstationary
chimeras in our system can be observed even if the cou-
pling configuration is all-to-all (global) (results are not
shown here). The presented results could be of relevance
for neuronal evolution, where the coexistence of coherent
and incoherent dynamics during the developmental stage
is likely to play an important role in the formative pro-
cesses of the brain.
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