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Abstract – It has been shown that the eigenvalue decomposition of the matrix of the bivariate
phase synchronization measure can be used for the detection of cluster synchronization. It has
also been shown that other measures, such as the strength of incoherence and various local order
parameters, can be used to quantitatively characterize chimeras, or chimera states. Here we
bridge these two domains by showing that the eigenvalue decomposition method can also be used
for the detection of chimeras. We compute the local order parameter for all oscillator pairs and
apply the eigenvalue decomposition on the bivariate matrix. We show that, in contrast to cluster
synchronization, there are more eigenvalues above one than the number of synchronized clusters
in the network. The corresponding eigenvectors correspond to synchronized groups, while the
oscillators that are not represented by the eigenvectors form the chimeras. We demonstrate our
approach on coupled Liénard equations and FitzHugh-Nagumo neurons.

Copyright c© EPLA, 2020

Introduction. – Network science has attained a great
interest in recent years due to its broad applicability across
the social and natural sciences [1–8]. Various proper-
ties of complex networks facilitate the observation of dif-
ferent emergent phenomena [9–11], one of such are the
chimera states [12]. The chimera state is a symmetry-
breaking state, consisting of synchronized and asynchro-
nized oscillators in an ensemble of coupled oscillators. The
coexistence of coherence and incoherence was firstly ob-
served in a network of coupled identical phase oscilla-
tors [13], and was later named “chimera” in reference to
the namesake in Greek mythology [14]. After their discov-
ery, chimeras have been investigated in a variety of cou-
pled oscillators, including phase oscillators, periodic and
chaotic systems in continuous or discrete forms, and also
in different fields such as in chemical, mechanical, and bi-
ological systems [15–18]. Experimentally, chimeras have
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been observed in optoelectronic oscillators [19], electro-
chemical oscillators [20], and coupled pendula [21,22].

A real phenomenon which is the closest to the chimera
state is the uni-hemispheric sleep, observed in some
aquatic mammals and birds [12]. During this sleep, in
which one eye is open, one half of the brain is awake
and asynchronous, while the other half is asleep and syn-
chronous. In addition, the coexistence of synchrony and
asynchrony is observed in pathological brain diseases such
as Parkinson’s disease, epileptic seizures, and Alzheimer’s
disease [12]. Therefore, the study of the chimera states
in neuronal networks has attracted considerable atten-
tion [23–26]. Bera et al. [27] considered a network of burst-
ing neurons with chemical synapses and observed chimera
and multi-chimera states. Tang et al. [28] studied a noisy
small-world network of neurons with delayed connections.
They investigated the effect of noise and delay on the tran-
sient or permanent chimera states. Tian et al. [29] found
that the electromagnetic field can induce the chimera state
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in the neuronal network. Zakharova et al. [30] investi-
gated a noisy network of coupled FitzHugh-Nagumo neu-
rons and reported that, in the noisy network, two phenom-
ena of coherence-resonance and chimera states emerge. In
another research [31], they provided a complete analysis
for the observed coherence-resonance chimeras and stated
that, by tuning the intensity of noise, the size of the in-
coherent part of the chimera is adjustable. Furthermore,
in 2017, they presented a time-delayed feedback control
scheme for defining the range of parameter values at which
the coherence-resonance chimeras appear [32]. Very re-
cently, Majhi et al. [12] presented a comprehensive re-
view of the studies of the chimera states in the neuronal
networks.

Recent studies about chimera states have considered dif-
ferent network topologies and connections [33,34]. The
first observation of the chimera state was in a ring of
non-locally coupled oscillators [13]. Further researches re-
vealed the emergence of chimera states for local and global
couplings [35,36]. With the development of the complex
networks, the chimeras were investigated in more com-
plex frameworks [37]. These researches showed that the
topology of the networks remarkably influences the forma-
tion of the chimera states. Mishra et al. [38] represented
the existence of different chimera-like states in globally
coupled networks with attractive and repulsive mean-field
feedback. Argyropoulos et al. [39] investigated the effect
of the fractal connectivity in a two-dimensional network
of leaky integrate-and-fire neurons. Ulonska et al. [40]
studied the networks of Van der Pol oscillators with hi-
erarchical coupling topology. By computing the network
clustering coefficient, they revealed that there is a relation
between the level of the hierarchy and the pattern of the
emergent chimera states. There are also several researches
focusing on more complex structures such as multilayer or
multiplex networks [41–44], as well as the time-varying
connectivities [34,45].

The variety of studies on the chimera states has re-
sulted in finding diverse patterns. These different types
of chimeras are named according to the properties of
the spatiotemporal patterns. Overall, if the positions
of the coherent and incoherent groups are static in
time, the pattern is stationary. Amplitude chimeras,
phase chimeras [46], imperfect chimeras [47], multi-headed
chimeras [48], and chimera death [49] are some examples
of the stationary chimera states. When the coherent and
incoherent groups change their positions in time, the non-
stationary chimera is formed. For instance, alternating
chimeras [50] and traveling chimeras [51] belong to the
non-stationary chimera states. Indeed, the identification
of these patterns needs proper analytical measures.

Several analytical methods have been used for the
characterization of the chimera states. The local or-
der parameter, the strength of incoherence, Lyapunov
spectrum analysis, and mean phase velocity are some
of the measures used for quantification of the chimera
states [12,52]. In this paper, we show that the eigenvalue

decomposition can be used to characterize the chimera
states and detect the positions of synchronized and asyn-
chronized oscillators precisely. In 2005, Müller et al. [53]
showed that the level of synchronization of the multivari-
ate time series is related to the highest and lowest eigenval-
ues of the correlation matrix. In 2007, Allefeld et al. [54]
demonstrated the utility of eigenvalue decomposition of
the matrix of indices of bivariate phase synchronization
strength in detecting the cluster synchronization, in which
the network splits into clusters of synchronized oscillators.
Here, firstly, we compute the local order parameter for
all the pairs of the oscillators of the network that exhibit
chimera state and obtain the matrix of the bivariate lo-
cal order parameter. Then we calculate the eigenvalues
and eigenvectors of this matrix and show that it is pos-
sible to find the synchronized oscillators. We propose an
algorithm that defines whether all of the oscillators are
located in the synchronized groups or not. If there are
some oscillators that are not in any synchronized cluster,
the state of the network is the chimera. In summary, the
advantages of this method are: 1) detecting the chimera
state from the synchronized and asynchronized states, 2)
distinguishing the multi-chimera state from the ordinary
chimera state, 3) identifying the exact location of the syn-
chronized and asynchronized oscillators. Therefore, the
non-adjacent synchronous oscillators can also be deter-
mined, while the other methods, such as the local order
parameter and the strength of incoherence, consider only
the neighboring oscillators. It is notable that the used
bivariate local order parameter is averaged in time, and
therefore, it can just define the stationary chimeras.

Method. – A dynamical network consisting of coupled
nonlinear oscillators can be described by

dxi

dt
= F (xi) − σ

N
∑

j=1

GijH(xj), (1)

where xi is a d-dimensional vector, F (xi) is the dynamics
of the isolated oscillator, H(x) is the coupling function,
σ is the coupling strength, G is the coupling matrix, and
N is the network size. The network may exhibit differ-
ent synchronous patterns by varying the parameters. In
special parameter values, the chimera state may be ob-
served. For characterizing the behavior of the network,
several order parameters have been used [55,56]. To spec-
ify the coherent and incoherent parts of the chimera states,
a local order parameter [52] is often used as

Zk =
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, k = 1, 2, . . . , N, (2)

where θk denotes the geometric phase of the j-th oscilla-
tor, and δ is the size of the considered neighbors. Con-
sequently, the local order parameter Zk = 1 shows that
the k-th unit belongs to the coherent part of the chimera
state, and Zk < 1 refers to the incoherent parts. Here, to
have a matrix of bivariate dependencies, we compute the
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local order parameter for all of the pairs of oscillators as

Zjk =

〈∣

∣

∣

∣

1

2
(eiθk + eiθj )

∣

∣

∣

∣

〉

t

, j, k = 1, 2, . . . , N. (3)

Similarly, Zjk = 1 indicates that the j-th and k-th os-
cillators are coherent, and Zjk < 1 shows incoherency. To
calculate the eigenvalues of the bivariate local order ma-
trix, firstly, we convert this matrix to a binary matrix,
where 1 denotes the coherency, and 0 denotes the inco-
herency between oscillators. Thus, we compute the Heav-
iside function of the matrix Z as L = Heaviside(Z −1+ǫ),
where ǫ is a small threshold fixed at ǫ = 0.01. Then, we ap-
ply the eigenvalue decomposition on the binary local order
parameter matrix (L). The binary local order parameter
matrix has the properties of the correlation matrix dis-
cussed in [52], i.e., the eigenvalues of L are non-negative,
and the eigenvalues and the eigenvectors are real-valued,
and

∑

λk = tr(L) = N . In the case of a completely inco-
herent network, only the diagonals of L are equal to 1, and
other elements are zero. Therefore, all of the eigenvalues
are equal to 1. When there is some coherency between
some oscillators, some elements of L which relate to the
coherent oscillators change to 1. Subsequently, the eigen-
values are changed such that some of them become greater
than 1. In this case, the eigenvectors relating to the eigen-
values above 1 represent the coherent oscillators.

Chimera state in coupled Liénard equations. –

In [38], the authors have shown that the network of
coupled Liénard equations exhibits different dynamical
behaviors such as cluster synchronization and chimera
state. The network of N identical Liénard equations can
be described by

ẋi = yi,

ẏi = −αxiyi − βx3 − γxi + σ[(ȳ − yi) + ε(x̄ − xi)],
(4)

where α = 0.45, β = 0.5, γ = −0.5, N = 100, and
x̄ = 1

N

∑N

i=1 xi, ȳ = 1
N

∑N

i=1 yi. For the numerical in-
vestigation of the eigenvalue decomposition, we start with
the case of cluster synchronization. Figure 1(a) shows the
spatiotemporal pattern of the Liénard network for σ = 1.7
and ε = −0.09. In this case, the network splits into two
synchronized clusters. Figure 1(b) depicts the time snap-
shot of this pattern and fig. 1(c) shows the local order ma-
trix L. The eigenvalue decomposition of matrix L shows
that this matrix has two eigenvalues above 1 (fig. 1(d)),
whose corresponding eigenvectors are shown in fig. 1(e).
These eigenvectors clearly show the positions of the syn-
chronized oscillators. From the spatiotemporal pattern, it
seems that the two clusters have different attractors. To
depict these attractors, the phase space of two oscillators
of different clusters, together with the nullclines of the
Liénard system are illustrated in fig. 1(f). It is observed
that in these parameters, both attractors are periodic.

Next, the parameters are set at σ = 1.6 and ε =
−1.8, at which the network consists of synchronized and

Fig. 1: The coupled Liénard equations in σ = 1.7 and ε =
−0.09 exhibiting cluster synchronization. Panel (a) shows the
spatiotemporal pattern of the x variables of the oscillators.
The time snapshot of x variables at t = 2000 is illustrated in
panel (b). In this figure, the dependency of the oscillators on
two clusters is clear. Panel (c) shows the matrix of the bivari-
ate local order parameter of the network, whose eigenvalues are
shown in panel (d). Panel (e) shows the two eigenvectors cor-
responding to the eigenvalues above 1. The eigenvectors show
that all of the oscillators belong to synchronized clusters. In
panel (f), the phase space of two clusters (blue and green), and
the nullclines of the Liénard system (red) are shown.

asynchronized clusters, and thus the pattern is chimera
state. Figures 2(a), (b) depict the spatiotemporal pattern
and the time snapshot of the network in this case. The
local order matrix of this state is illustrated in fig. 2(c)
and its eigenvalues are shown in fig. 2(d). It is observed
that there are two eigenvalues above 1, whose eigenvec-
tors are shown in fig. 2(e). The first eigenvector (blue)
shows the oscillators belonging to the larger synchronized
cluster, and the second one (red) shows that three of the
other oscillators are also synchronized. The rest of the os-
cillators which are not involved in these two eigenvectors
are asynchronized. As is shown in fig. 2(f), with these
parameters, the oscillators are attracted by two chaotic
attractors. In order to specify the behavior of the network
and whether the state is chimera or cluster synchroniza-
tion, the following algorithm is proposed:

1) Sum the eigenvectors which correspond to the eigen-
values above 1: V =

∑

|vk|.
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Fig. 2: The coupled Liénard equations in σ = 1.6 and ε = −1.8
exhibiting chimera state. Panel (a) shows the spatiotemporal
pattern of the x variables of the oscillators, and panel (b) shows
the time snapshot of x variables at t = 2000. Panel (c) illus-
trates the matrix of the bivariate local order parameter of the
network, and its eigenvalues are depicted in panel (d). Panel
(e) shows the two eigenvectors corresponding to the eigenval-
ues above 1. The eigenvectors show that some of the oscillators
do not belong to the synchronized clusters, and therefore the
pattern is chimera state. The two chaotic attractors of the
oscillators (blue and green), and the nullclines of the Liénard
system (red) are shown in panel (f).

2) Apply the sign function on the sum of eigenvectors:
S = sign(V ). This function assigns the value one to
the oscillators, which belong to a synchronized clus-
ter, and assigns zero to the asynchronized ones.

3) Sum the signed vector (S): C =
∑N

i=1 Si. Thus
the value C = 0 shows that the oscillators are asyn-
chronized, while C = N represents that all of the
oscillators belong to synchronized groups. Finally,
0 < C < N represents chimera state such that the
C of the oscillators belong to the synchronized clus-
ters and N − C of them construct the asynchronized
group.

For the network shown in fig. 2, the value of C is equal
to 82, which confirms the chimera state.

Multi-chimera states in coupled FitzHugh-

Nagumo neurons. – The network of coupled FitzHugh-
Nagumo neurons has been investigated in many chimera

Fig. 3: The coupled FitzHugh-Nagumo neurons in σ = 0.1 and
r = 0.35 exhibiting chimera state. Panel (a) shows the spa-
tiotemporal pattern of the u variables of the oscillators, and
panel (b) shows the time snapshot of u variables at t = 2000.
The matrix of the bivariate local order parameter L of the net-
work is illustrated in panel (c), and its eigenvalues are depicted
in panel (d). Panel (e) shows one eigenvector corresponding to
eigenvalues above 1, which represents the position of synchro-
nized oscillators. Panel (f) illustrates the phase space of the
oscillators and the nullclines of the FitzHugh-Nagumo system.

studies [25,31,57]. The dynamical equations of this net-
work are described by

εu̇i = ui −
u3

i

3
− vi +

σ

2R

j+i+R
∑

j=i−R

[buu(uj − ui)

+buv(vj − vi)],

v̇i = ui + a +
σ

2R

j+i+R
∑

j=i−R

[bvu(uj − ui)

+bvv(vj − vi)],

(5)

where ui and vi are the activator and inhibitor vari-
ables, and ε = 0.05 is a small parameter characterizing
a timescale separation. The parameter a determines the
local dynamics of the oscillators and is set at a = 0.5.
σ is the coupling strength, and the coupling is considered
to be nonlocal, such that each oscillator is coupled to its
2R nearest neighbors. The coefficients of the direct and
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Fig. 4: The coupled FitzHugh-Nagumo neurons in σ = 0.28
and r = 0.33 exhibiting a 2-headed multi-chimera state.
Panel (a) shows the spatiotemporal pattern of the u variables
of the oscillators, and panel (b) shows the time snapshot of u

variables at t = 2000, wherein two synchronized clusters are
observed. The matrix of the bivariate local order parameter L

of the network is illustrated in panel (c), and its eigenvalues are
depicted in panel (d). Panel (e) shows the eigenvectors, defin-
ing two synchronized clusters. Panel (f) illustrates the phase
space of the oscillators and the nullclines of the FitzHugh-
Nagumo system.

cross-couplings are determined by

B =

(

buu buv

bvu bvv

)

=

(

cosφ sin φ
− sinφ cosφ

)

, (6)

where φ = π/2 − 0.1 is fixed. By varying the coupling
parameters, σ, and R, this network is capable of exhibiting
different chimera and multi-chimera states.

By setting σ = 0.1 and r = R/N = 0.35, the net-
work shows the chimera state. Figures 3(a), (b) illus-
trate the spatiotemporal pattern and the time snapshot
of the network in this case. As the figures show, there
is one coherent group of oscillators in the network. The
computed local order matrix of the network is shown in
fig. 3(c) and its eigenvalues are illustrated in fig. 3(d). It
is observed that a large number of eigenvalues are above 1.
But not all the corresponding eigenvectors show distinct
synchronized clusters. Actually, some of the eigenvec-
tors are repetitive and determine one synchronized cluster.
Figure 3(e) shows the eigenvector specifying the coherent

Fig. 5: The coupled FitzHugh-Nagumo neurons in σ = 0.25
and r = 0.25 exhibiting a 3-headed multi-chimera state.
Panel (a) shows the spatiotemporal pattern of the u variables
of the oscillators, and panel (b) shows the time snapshot of
u variables at t = 2000, wherein three synchronized clusters
are obvious. The matrix of the bivariate local order parame-
ter L of the network is illustrated in panel (c), and its eigen-
values are depicted in panel (d). Panel (e) shows the eigen-
vectors, defining three synchronized clusters. Panel (f) illus-
trates the phase space of the oscillators and the nullclines of
the FitzHugh-Nagumo system.

oscillators. The number of synchronized oscillators for this
pattern is C = 65. In contrast to the Liénard network, in
this network, all of the oscillators have the same periodic
attractor. Figure 3(f) shows the phase space of oscillators
(blue) and the nullclines (red) of the FitzHugh-Nagumo
system.

By strengthening the coupling strength, the multi-
chimera states emerge, in which there is more than one
incoherent group. Figures 4(a), (b) show the spatiotempo-
ral pattern and the snapshot of the network for σ = 0.28
and r = 0.33. In this case, the network is composed of
two incoherent and two coherent groups. The local or-
der matrix of the network is illustrated in fig. 4(c) and
its eigenvalues are depicted in fig. 4(d). The eigenvectors
indicating the coherent groups are represented in fig. 4(e).
According to the eigenvectors, there are two synchronized
clusters. However, all of the oscillators have the same at-
tractor, which is shown in fig. 4(f). In this case, we have
C = 158.
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Finally, we examine a 3-headed multi-chimera state.
Figure 5 shows the network pattern and eigenvalue de-
composition results for σ = 0.25 and r = 0.25 at which
three synchronized clusters exist. In fig. 5(e), the three
eigenvectors which show three synchronized clusters are
illustrated. Therefore, the eigenvectors can indicate the
synchronized clusters as well. In this case, the value of C
is 140. Similar to the chimera state and 2-headed chimera
state, all of the oscillators have the same periodic attrac-
tor, as shown in fig. 5(f).

Conclusions. – In 2005, Müller et al. [53] used the
method of eigenvalue decomposition of the correlation ma-
trix for analyzing the correlation of the multivariate time
series. In 2007, Allefeld et al. [54] demonstrated that the
eigenvalue decomposition of the matrix of bivariate phase
synchronization strength can be applied for detecting the
cluster synchronization. The aim of this paper was to show
that the eigenvalue decomposition is also utilizable in find-
ing the chimera state. One of the characteristic measures
used in the chimera studies is the local order parameter.
Here, we considered the networks exhibiting chimera state
and multi-chimera state, and computed the local order pa-
rameter for all the pairs of the oscillators. We obtained the
bivariate local order matrix, wherein the elements equal to
one show the synchronized pairs, and the elements lower
than one represent the asynchronized ones. In the case of
M -cluster synchronization, the eigenvalue decomposition
results in M eigenvalues greater than one, where the corre-
sponding eigenvectors represent the synchronized clusters.
But in the eigenvalue decomposition of the bivariate local
order parameter matrix in the case of chimera state, the
number of the eigenvalues greater than one was more than
the number of the synchronized clusters. However, some
of the eigenvectors were repetitive and indicated the same
synchronized clusters. Overall, these eigenvectors could
show the synchronized oscillators, and the other oscilla-
tors, which were not in the synchronized clusters, formed
the asynchronized group of chimera. We examined differ-
ent examples of chimera states, including simple chimera
states, 2-headed chimeras, and 3-headed chimeras. We
have also investigated the larger network with N = 1000
and obtained the same results. Therefore, this method is
not dependent on the network size. Our results show that
the eigenvalue decomposition can detect all of these pat-
terns, and thus we recommend it favorably for applications
in other systems.
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