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Abstract – Community detection in multilayer networks plays a key role in revealing the multiple
aspects of information spreading and in comprehending the relationships and interactions within
and between each layer. However, most existing algorithms are prone to local optimality, and they
are also difficult to extend to high-dimensional networks. To address these challenges, we propose
here a multi-objective algorithm for community detection that is based on the genetic algorithm.
In particular, the modularity is introduced to optimize each network layer iteratively, and the local
search is combined with genetic operations to overcome local optimality. Comparative benchmarks
with other algorithms on artificial and real-world networks show that the proposed algorithm
performs better, especially on high-dimensional networks.

Copyright c© 2021 EPLA

Introduction. – Complex networks are a concise and
valid methodology in representing the relevant structure
among interacting units of a real complex system [1–4].
Community structure is a classic feature of networks [5],
which can effectively reflect some typical characteris-
tics, such as the involving regularity of network struc-
tures [6–8]. Although community detection algorithms of
single-layer networks have made great achievements, an
object in the real world tends to exhibit multi-dimensional
attributes. For example, each person has multiple so-
cial accounts and can interact with each other by vari-
ous social media platforms [9]. Each layer of a network
depicts the connections among objects, and can reflect
some properties of objects in different dimensions. Al-
though each layer has its own unique community structure
in multilayer networks, it cannot represent the composite
structures of the whole network. How to use the comple-
mentary information provided by different layers to obtain
the community structure of multilayer networks is one of
the focuses of the current multilayer networks analysis,

(a)E-mail: zhenwang0@gmail.com
(b)E-mail: cgao@swu.edu.cn (corresponding author)

which has practical significance for a more real and more
accurate understanding of the multi-dimensional structure
of complex systems [10–14].

In recent years, due to the need for practical applica-
tion, the research on multilayer networks community de-
tection algorithms has attracted more attention [15]. The
most intuitional methods are extended from the single-
layer methods. Ma et al. divide these approaches into two
categories, i.e., single-analysis–based methods and multi-
analysis–based methods [16]. The former one collapses the
network into a single-layer network and the single-layer al-
gorithms are used to explore the community division. The
second kind of methods applies the single-layer method to
every layer and mines the final community by using the
consensus clustering approach. However, one shortcoming
stands out according to which they fail to preserve the in-
formation of networks and ignore the interactions between
different layers. To overcome the above problems, the mul-
tilayer network community detection is transformed into
a multi-objective optimization problem.

In the multi-objective optimization method, multiple
objectives are optimized simultaneously to ensure the in-
tegrity of network information [12]. However, how to select
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the optimal solution which adapts to different network
structure from the Pareto Sets still remains a problem.
Based on this, a novel GA-based multi-objective algo-
rithm based on the NSGA II multi-objective optimize
framework, denoted as NSGAMOF, is proposed for de-
tecting the multilayer networks community structure in
this paper. The proposed method balances each layer to
preserve the information of the multilayer network and dif-
ferent selection strategies are proposed to adapt to various
networks.

Related work. – This section introduces formulations
and algorithms of multilayer community detection.

Formulations of multilayer networks. A multilayer
network is abstracted to G = ({G1, . . . , Gl}, R), Gl =
(Vl, El) stands for a network at the l-th layer where Vl

represents nodes and El the inter-layer links. R = {Eij ⊂
Vi × Vj , i, j ∈ 1, . . . , l, i �= j} indicates connections among
nodes of layer Gi and Gj . The elements of R represent
inter-layer connections or crossed layer connections. That
is, l subnetworks and the connections among these l net-
works make up a multilayer network together.
There are few indexes to directly assess the quality

of the multilayer networks compound community. At
present, the composite modularity (Q′

c) [17], redundancy
index (Rc) [18], normalized mutual information (NMI) [19]
and adjusted rand index (ARI) [20] are commonly used as
the evaluation indicators.
As defined in eq. (1), the composite modular Q′

c is used

to estimate the community index. The greater Q′
c is, the

better the quality of the multilayer network compound
community performs. M denotes the amount of communi-
cation links and n indicates dimensions or communication
layers of a network. A denotes the corresponding adjacent.
d infers to the degree of a node. Xi indicates that node i
belongs to community X. When Xi = Xj , δ(Xi, Xj) = 1,
0 otherwise:

Q′
c =

1

2M

n
∑

i,j

(

A′
ij −

di × dj
2M

)

δ(Xi, Xj). (1)

The redundancy index Rc [18] denotes the calculated
ratio of redundant connections of multilayer networks.
The larger Rc is, the better the quality of the com-
pound community is. Intuitively, a compound community
should have links across multiple layers. ‖p‖ represents
the amount of communities. S′

i denotes a couple {c1, c2}
that can be connected at the lowest layer of the G com-
munity. If {c1, c2} ∈ S′

i, then β(c1, c2, El) = 1, otherwise
B(c1, c2, El) = 0. The redundancy index is formulated in
the following equation:

Rc =
1

t× ‖p‖

∑

Gδ∈G

∑

{c1,c2}∈S′

i

β(c1, c2, El). (2)

The normalized mutual information (NMI) can assess
the comparability of the optimized community and the

original one [19]. F ′ denotes a confusion matrix. F ′
x (F ′

y)
denotes the amount of elements in the x-th row (or the
y-th column) in F ′. rc1 (rc2) signifies the total amount of
clustering in a partition c1 (c2). The range of NMI value is
[0, 1]. The greater the NMI is, the higher the similarity be-
tween optimized and original networks is. Suppose that c1
and c2 are two partitions in a network, then the following
equation is applied to calculate the value of NMI(c1, c2):

NMI(c1, c2) =

−2
∑rc1

x=1

∑rc2
y=1 F

′
xy log(F

′
xyN/F ′

x.F
′
.y)

∑rc1
x=1 F

′
x. log(F

′
x./N) +

∑rc2
y=1 F

′
.y log(F

′
.y/N)

. (3)

The adjusted Rand index (ARI) is used to calculate the
similarity between real communities and clustering ones.
e and h denote the number of node pairs. The former
one denotes that located in the same community in the
real partition (c1) and the obtained one (c2), the other
in a disparate community in c1 and c2. f and g are for
the quantity of node pairs. f denotes which located in
the same community in c1 and different community in c2.
g represents that located in the same community in c2
and different community in c1. The more similar the real
partition and the obtained ones are, the greater the value
of ARI is. ARI can be defined as follows [20]:

ARI =
2(eh− fg)

(e+ f)(f + h) + (e+ g)(g + h)
. (4)

In this paper, the modularity is used as the optimiza-
tion function, and NMI, Rc, ARI are used as evaluation
indexes due to their capability of finding high-quality so-
lutions in multilayer networks [11,21–24].

Multilayer networks community detection. Exist-
ing community detection algorithms for multiplex net-
works fall into four categories, i.e., matrix-decomposition–
based method, spectral-based method, information-based
method, and modularity-based method.
Matrix-decomposition–based methods extract the com-

munity division by decomposing the matrix such as
NMF [16,22], SNMF [11,25] and so on. Spectral-based
methods compute the community division by employ-
ing eigendecomposition to Laplace matrices, such as MI-
MOSA [26], and SC-ML [27]. The performance of such
kinds of algorithm stands out because they capture the
global information across different layers. Information-
diffusion–based methods integrate different layers of the
multilayer network by employing the diffusion of net-
works [28]. For example, similarity network fusion (SNF)
computes the fused matrix of all layers through a paral-
lel interchanging diffusion process, and then explores the
community division by employing the spectral clustering
method to the fused matrix [21]. The generalized Lou-
vain (GL), one of the most efficient modularity-based al-
gorithms, achieves a great efficiency by optimizing their
generalized modularity function [23]. However, GL suffers
from great difficulties in mining the consensus community
division of all layers.
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Selection strategy based on 
the priori knowledge, denoted 

as NSGAMOF-prik

Selection strategy based on 
the posteriori knowledge, 

denoted as NSGAMOF-postk

Selection strategy based on the 
interactive knowledge, denoted 

as NSGAMOF-clu

Optimization  

modularity 

function 

under 

different 

decision 

domains

The  hill 

climbing 

method  

avoids falling 

into the local 

optimum 

Setup local search probability 

Randomly select some nodes 

and replace with neighbor genes 

Reassess fitness values of the 
chromosomes

Output the better chormosome

(c) The optimal solution

selection strategy
(b) Multi-objective

optimization algorithm
(a) The hill climbing method

Fig. 1: The framework of NSGAMOF, which consists of (a)
hill-climbing method, (b) the main body of multi-objective op-
timization and (c) the optimal solution selection strategy.

As for the methods mentioned above, they can handle
almost all multilayer networks accurately and efficiently,
but some drawbacks are unavoidable [11]. For example,
the spectral-clustering–based method is good at extract-
ing small-scale and tight communities, which may lead to
some crucial information such as SC-ML being ignored.
Many modularity-based algorithms are extended from the
single-layer method that do not address the information
across different layers. To overcome these problems, a
novel multi-objective optimization algorithm is proposed
to balance the community structure of every layer.

Formulation of NSGAMOF . – This section gives an
elaborate explanation about the NSGAMOF optimization
algorithm from the code scheme, genetic manipulation,
local search and diverse optimal selection policy to prove
the algorithm can preserve the information of networks
and select the adaptive solution respectively. Figure 1
shows the framework of the NSGAMOF algorithm.

Code scheme. An appropriate code scheme of the solu-
tion can effectively reduce the computation and expedite
the algorithm convergence. The label-based and locus-
based representation play an important role in encoding
methods for community detection. However, the label-
based code scheme is redundant, which means that if there
are t labels in the pattern, then t! different chromosomes
might be mapped to the same division [29]. In order to
get the utmost output of the information contained in the
pattern, this paper employs the locus-based adjacency pre-
sentation scheme. Suppose the solution of chromosomes in
the population is set to S = {s1, s2, . . . , sN}. The length
of the gene is N and each gene i can be arbitrary integer
between 1 and N , namely, 1 < i < N . The i-th gene value
could be j, if i, j are linked at the lowest one layer in a
network.

Genetic operators. The uniform crossover is applied
for genetic operation in this paper. In fact, the uniform
crossover pertains to multi-point crossover category, and
becomes an efficient operator in evolutionary algorithms.
First, the binary mask chromosomes with equal number of
nodes are generated at random. According to the mask,
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Fig. 2: An example of NSGAMOF-clu algorithm with three-
layer networks and six nodes in each layer. The community
structure in each layer is searched in Step 1 and the compound
structure is obtained through k-means clustering in Step 2.

the corresponding gene bits are selected from two parent
chromosomes to form new chromosome as offspring chro-
mosomes. To be specific, if the mask is 0, the operator
selects the gene of the first parent chromosome; otherwise,
the operator selects the second parent chromosome.

The mutation operator in chromosomes integrates the
correlative information of the layer nodes neighbourhood,
which makes random mutations in the form of the proba-
bility. The i-th gene in a chromosome is selected at ran-
dom in the form of predefined probability, and then this
gene mutates into the j-th neighbour of the i-th gene.

Local search operation. The NSGAMOF algorithm in-
cludes local search operations, namely the hill-climbing
(HC) method. The first step is to define the neigh-
bours of a chromosome. Given a chromosome Sk =
{S1

k, S
2
k, . . . , S

n
k }, node S

i
k is selected from chromosome Sk

at random. Then, the gene Si
k is a substitute for other

neighbour nodes Sj
k of the location i, and Sj

k �= Si
k, de-

noted by S′
k. The newly generated chromosome S′

k is used
as a neighbour of chromosome Sk. In local search oper-
ations, a chromosome is chosen to be refined at random.
Meanwhile, all possible neighbour chromosomes are iden-
tified. If the newly generated chromosome is better than
the original one, we replace it with the new chromosome.

Optimal selection strategy. In MOOP (multi-objective
optimization), a set of optimal solution sets will be ob-
tained, which signify the optimal trade-off among opti-
mization objectives. In order to obtain the final solution
of PS in MOOP, we use the disparate optimal solution
selection policy. There are three types of multi-criterion
decision making: 1) a posteriori-based, 2) a priori-based,
and 3) interactive-based [30].

The a priori-based policy leverages the value maximiza-
tion of the objective function (i.e., the modularity maxi-
mum) which is the optimal solution in the Pareto set. This
policy using prior knowledge is called NSGAMOF-prik.

Different from the a priori-based policy, the a posteriori-
based strategy takes the overall information of the network
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Fig. 3: NMI results with the changes of network topologies (u and Dc codetermine the network structure) and the layers
increasing for mLFR networks. The results indicate that the network structure and total number of layers marginally affect
the NSGAMOF (i.e., NSGAMOF-prik, NSGAMOF-clu, NSGAMOF-postk). By comparison, the performance of proposed
NSGAMOF is superior to that of MLMaOPc (i.e., proj, cspa, mf ).

into the consideration. It calculates the average modular-
ity of each layer and the chromosome with the highest
average value is the optimal solution. In this case, the
method is called NSGAMOF-postk.

The last one is the interactive-based strategy, which
mainly uses the k-means clustering method to classify the
collection of data got by disparate models and enhance the
quality of community detection. Such a strategy which
selects the fittest solution by using the clustering method
in the Pareto solution is called NSGAMOF-clu. Figure 2
shows an example of NSGAMOF-clu with three-layer net-
works and six nodes per layer.

The optimal selection strategy mentioned above can
adapt to different network structures, which ensures a high
performance. For example, the prik-based method adapts
to networks which have uneven information distribution
for each layer (i.e., most of the information exists in one
layer). However, for the network with the uniform in-
formation distribution, the prik-based approach may lose
some information but the postk-based strategy can ad-
dress the problem. In general, the proposed strategies can

improve the accuracy for multilayer networks with various
structures.

Experiments. – This section compares NSGAMOF
with the other advanced methods in both real and syn-
thetic multilayer datasets. The result is the average value
got by executing the method for 100 times. The pop-
ulation size and iteration number are set as 200 and
100. We set crossover and mutation as 0.8 and 0.2,
respectively.

Datasets. The synthetic network m-LFR128 function
has 128 nodes in each layer [31]. The actual partition
structure is known. To change parameters allows to con-
trol the total edges among communities and the difference
of node degrees among layers. Therefore, 2, 3 and 4 layers
of the network are generated respectively and these net-
works have different network topologies. The mixture pa-
rameter u signifies the part of the connection between one
node and every other node in a community. The quality of
community detecting usually becomes more dissatisfying
as u gets larger. The degree of each node in different
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Table 1: The structural information of the real-world networks.
The Layers and Nodes denote the number of layers and nodes
of multilayer networks, respectively.

KTSCASCoRAMPDWBNWTNSND(o) SND(s)

Layers 4 5 2 3 10 14 3 3
Nodes 39 61 1662 87 279 183 71 71

network layers is determined by Dc, that is, the degree
change chance. The greater the parameter Dc is, the
more diverse the nodes of various layers might be. More-
over, eight real-world network datasets are used in this pa-
per, i.e., Kapferer Tailor Shop, KTS 1, Cs-Aarhus Social,
CAS [32], Bibliographic Data, CoRA [33], Mobile Phone
Data, MPD [34], Worm Brain Networks, WBN 2, Word
Trade Networks, WTN [35] and Social Network Nata,
SND including two different ground truth divisions, i.e.,
SND(o) and SND(s) [36] (see table 1).

Experiments on synthetic networks. Figure 3 com-
pares three strategies of NSGAMOF with the MLMaOP
algorithm (i.e., proj, cspa, mf ) [14] in terms of NMI based
on different parameters (i.e., d, Dc and u) in 12 net-
work structures from mLFR dataset. Results show that
each strategy the NSGAMOF algorithm performs bet-
ter than all strategies in MLMaOP algorithm. More-
over, the increasing number of layers scarcely influences
the performance of NSGAMOF algorithms. Although
the parameter Dc affects the network architecture, NS-
GAMOF can still find out the optimal division beneath
diverse network architectures. We can conclude that NS-
GAMOF algorithms (i.e., NSGAMOF-prik, NSGAMOF-
clu, NSGAMOF-postk) perform better than MLMaOP al-
gorithms (i.e., proj, cspa, mf ) in the diverse optimal se-
lection policy, network architecture and network layers.

Experiments on real-world networks. Comparative re-
sults of NSGAMOF-prik, NSGAMOF-clu, NSGAMOF-
postk, BGLL [37], the MOEA-MultiNet algorithms [11] in
the KAPFERER TAILOR SHOP and CS-AARHUS SO-
CIAL multilayer networks are shown in table 2. More
specifically, L1, L2, L3 and L4 of the one-layer strategies
show that the simplified composite modular Q′

c and redun-
dancy Rc are calculated by utilizing each community re-
turned by BGLL algorithms in each layer of the networks.
MOEA-MultiNet and NSGAMOF of multilayer strategies
calculate the corresponding simplified composite modular
Q′

c and redundancy Rc.
Results show that the multilayer strategy is superior to

the one-layer strategy in solving multilayer network com-
munity detection. And the proposed NSGAMOF-postk
algorithms of multilayer strategy outperforms obviously
the several other algorithms, especially in simplified com-

1http://vlado.fmf.uni-lj.si/pub/networks/data/UciNet/

UciData.htm#kaptail.
2https://www.wormatlas.org/.

Table 2: The Q′

c
and Rc metric comparative results.

Dataset Strategy Algorithm Q′
c Rc

KAPFERER
TAILOR
SHOP

NETWORK

One-layer

BGLL/L1

BGLL/L2

BGLL/L3

BGLL/L4

0.2179
0.2006
0.1380
0.0932

0.3964
0.4717
0.2657
0.4094

Multilayer

MOEA-MultiNet
NSGAMOF-prik
NSGAMOF-clu

NSGAMOF-postk

0.2094
0.4343
0.4698
0.4810

0.4735
0.3705
0.3511
0.3134

CS
AARHUS

NETWORK

One-layer

BGLL/L1

BGLL/L2

BGLL/L3

BGLL/L4

BGLL/L5

0.4685
0.1672
0.0832
0.2893
0.4115

0.2852
0.0472
0.1205
0.1611
0.2715

Multilayer

MOEA-MultiNet
NSGAMOF-prik
NSGAMOF-clu

NSGAMOF-postk

0.4010
0.2316
0.2315
0.2287

0.3186
0.3703
0.3617
0.3847

posite modular metric. In general, we can conclude
that the compound community structure acquired by
the proposed algorithms NSGAMOF-prik, NSGAMOF-
clu, NSGAMOF-postk) have better performance than the
BGLLs [37] and the MOEA-MultiNet algorithm [11] in the
single layer.

Tables 3 and 4 further compare the proposed strategies
of NSGAMOF with other algorithms (i.e., CSNMF, CP-
NMF, CSNMTF, CSsNMTF [11], SNF [21], SC-ML [27],
CGC [22], GL [23] and Infomap [38]) on five different real
multilayer datasets in terms of NMI and ARI, respectively.
Obviously, at any rate one of the presented methods is su-
perior to other algorithms, especially in NMI metrics in
most real-world datasets. And the ARI index value of the
proposed algorithm has significant advantages over other
algorithms. In addition, to validate the performance of the
proposed algorithm roundly, the results on the HBN net-
work, which contains 13281 nodes and 8 layers, are shown
in table 5. The results denote that the proposed algorithm
achieves an acceptable result.

Analysis of selection strategies. Although the ground
truth represents consensus division of a kind, the infor-
mation and importance of each layer are different. To
identify the varying frequency of the different importance
of each layer, three strategies are proposed to better adapt
to different network structures. Here, two datasets (i.e.,
MPD and SND(o)) are used to verify the validity of the
proposed strategies. Figure 4 plots the NMI and ARI of
each layer.

For the results shown in tables 3 and 4, the interactive-
based strategy (postk) performs well when run on the
SND(o) dataset and the a priori -based strategy acquires
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Table 3: The NMI comparison results on real-world multilayer
networks datasets. prik, clu and postk denote NSGAMOF-
prik, NSGAMOF-clu and NSGAMOF-postk, respectively. The
dash means that MIMOSA does not work on such dataset.

CoRA MPD WBN SND(o) SND(s) WTN

prik 0.716 0.554 0.372 0.578 0.221 0.266
clu 0.834 0.464 0.387 0.553 0.163 0.266
postk 0.575 0.468 0.363 0.691 0.058 0.291
CSNMF 0.514 0.504 0.463 0.681 0.053 0.322
CPNMF 0.480 0.451 0.432 0.685 0.053 0.172
CSNMTF 0.346 0.458 0.404 0.773 0.276 0.154
CSsNMTF 0.39 0.521 0.424 0.678 0.034 0.155
SNF 0.449 0.395 0.425 0.689 0.057 0.073
SC-ML 0.48 0.495 0.079 0.681 0.030 0.226
CGC 0.389 0.457 0.370 0.673 0.078 0.072
GL 0.418 0.467 0.398 0.618 0.097 0.426
Infomap 0.373 0.410 0.355 0.001 0.001 0.273
MIMOSA 0.011 0.096 0.020 0.132 0.046 –
S2-jNMF 0.796 0.516 0.072 0.582 0.037 0.157
Comclus 0.471 0.421 0.362 0.555 0.073 0.374
GMC 0.519 0.451 0.242 0.597 0.051 0.204

Table 4: ARI comparison results. prik, clu and postk denote
NSGAMOF-prik, NSGAMOF-clu and NSGAMOF-postk, re-
spectively. The dash means that MIMOSA does not work on
such dataset.

CoRA MPD WBN SND(o) SND(s) WTN

prik 0.777 0.409 0.214 0.462 0.257 0.196
clu 0.879 0.373 0.246 0.435 0.177 0.174
postk 0.645 0.35 0.313 0.544 0.058 0.203
CSNMF 0.491 0.394 0.291 0.493 0.059 0.160
CPNMF 0.47 0.368 0.233 0.503 0.059 0.094
CSNMTF 0.279 0.346 0.237 0.811 0.234 0.035
CSsNMTF 0.288 0.422 0.225 0.484 0.031 0.088
SNF 0.47 0.28 0.211 0.515 0.058 0.005
SC-ML 0.485 0.379 0.001 0.493 0.021 0.133
CGC 0.296 0.357 0.211 0.472 0.092 0.002
GL 0.334 0.372 0.185 0.460 0.089 0.068
Infomap 0.016 0.115 0.200 0.012 0.001 0.093
MIMOSA 0.001 0.010 0.005 0.086 0.001 –
S2-jNMF 0.813 0.396 0.076 0.452 0.023 0.069
Comclus 0.447 0.365 0.251 0.481 0.086 0.269
GMC 0.426 0.248 0.012 0.428 0.034 0.015

a better solution when run on the MPD dataset. For
SND(o), the best solution is extracted by choosing the
maximum average of all layers since complementary infor-
mation can improve the accuracy, but for MPD, the in-
formation of other layers reduces the accuracy so the prik
strategy get the best solution. The experimental result
demonstrates that the proposed strategies can improve the
performance by adapting to various data structures.

Table 5: The results on large-scale datasets. The Rc and Q′

c

are chosen as the metrics to evaluate the performance of the
algorithm when running on the large-scale datasets.

prik clu postk Comclus

Qm 0.124 0.128 0.087 0.1775
Rc 0.057 0.065 0.053 0.001
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Fig. 4: The NMI and ARI of each layer. There exist relative
differences in different layers for a multilayer network. Different
strategies can adapt to different multilayer networks to improve
the accuracy of algorithms.
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Fig. 5: The results of conductance and NMI running on
(a) CoRA and (b) MPD. The red line denotes the conductance.
The smaller the index value is, the better the performance is;
the blue line denotes NMI, and the greater the value is, the
better the performance is.

Convergence analysis. To demonstrate the conver-
gence performance of NSGAMOF, NMI and conductance
indices are calculated to observe the convergence of the
NSGAMOF algorithm. As shown in fig. 5, the NSGAMOF
algorithm converges slowly at the beginning, and then the
convergence starts to accelerate after 55 iterations. Fi-
nally, the NSGAMOF algorithm stably converges within
90 times. In the whole operation process of the NSG-
AMOF algorithm, the curve of the NMI index generally
rises and tends to be stable after some reasonable fluctua-
tion, which proves that NSGAMOF algorithm has strong
convergence.

Scalability analysis. Figure 6 shows the result of scal-
ability as the network nodes and dimension increase. The
experiments employ 10 diverse datasets with 2 dimen-
sions. In fig. 6(a), the curve exhibits the characteris-
tics of a quadratic equation as the networks increase in
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(a) Scalability with the network size.
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(b) Scalability with dimension of the network

Fig. 6: (a) With the growth of node numbers, the worst run-
ning time changes. It can reflect that the scalability of the
algorithm varies with the network size. (b) With the growth
of dimensions, the worst running time changes. The scalability
of the algorithm varies with the dimension of networks.

size. Overall, it is reasonable for the execution time of the
NSGAMOF-prik algorithm. Figure 6(b) depicts the worst
running time of the proposed algorithm as the network di-
mension increases. According to this result, the algorithm
presents the scalability for the high-dimensional network.

Conclusion. – In order to effectively balance the com-
munity structure of every layer to obtain a high-quality
compound community, we transform the multilayer net-
work community detection into a MOOP and present
a new GA-based multi-objective optimization algorithm
NSGAMOF for multilayer network community detection.
The concept of modularity and local search are introduced
to optimize every layer of a network iteratively. The di-
verse optimal selection policy is applied to ensure the rel-
atively optimal compound community structure.
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