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Abstract – Hyperbolic networks have high clustering, short average path lengths, and community
structure, which are all properties that are commonly associated with social networks. As such,
these networks constitute the perfect playing ground for probing factors that may affect public
cooperation in realistic scenarios. And although much is already known about the evolution of
cooperation on networks, we here consider the public goods game on tied hyperbolic networks,
such that payoffs in one network layer influence the payoffs in the other and vice versa. We also
consider random, assortative, and disassortative mixing in the networks to account for varying
connections between players over time. While our research confirms the overall positive impact
of interdependent payoffs, we also find that mixing on the network where cooperation thrives
may strongly promote the cooperation in the other network, while destroying it completely in
the former. We show that this is related to the mapping of lower payoffs from one network to
the other, where cooperators in one network benefit from the failure of cooperators in the other
network. Namely, as soon as the multiplication factor for the public goods is high enough to nullify
the negative effects of mixing and cooperators thus recover, the positive effect on cooperation in
the other network vanishes. We determine optimal conditions for this phenomenon in terms of the
frequency of mixing and the strength of ties between the payoffs on both networks, and we discuss
the implications of our research for enhanced cooperation in coupled populations, in particular in
the light of mutual success not always being desirable for cooperation to thrive.

Copyright c© 2023 EPLA

Introduction. – The emergence and survival of co-
operative behaviour among selfish individuals is one of
the major challenges that continues to captivate the in-
terest of scientists across various disciplines [1]. The
use of evolutionary game theory has emerged as a key
tool in this effort, offering a robust theoretical frame-
work for describing the evolutionary dynamics of strate-
gies in social dilemmas [2–4]. On the other hand, the
advances made in network science greatly enhance our un-
derstanding of many complex systems in the real world,
including the evolution of cooperation in social dilem-
mas [5–7]. By representing individuals as nodes in a net-
work, and their social interactions as links between nodes,
researchers can analyse the structure and dynamics of so-
cial networks to gain insights into the mechanisms that
promote cooperation and develop strategies for fostering it

(a)E-mail: matjaz.perc@gmail.com (corresponding author)

in real-world settings. Over the past two decades, research
has demonstrated that the structure of social networks
is a critical factor in determining the prevalence of co-
operation [8–11]. The shift from regular grids and lat-
tices to complex social networks has proven as a crucial
step forward in creating more realistic network models.
Such models include various types of interactions, such as
scale-free [12–20], small-world [21–25], random [26], hier-
archical [27–29] and coevolving networks [30–33]. Lately,
new network models have emerged that effectively cap-
ture the most important structural properties of real-world
networks, such as random geometric graphs in hyper-
bolic spaces. These models are known for having re-
alistic features, such as small diameter, high clustering,
community structure, and a heterogeneous degree distri-
bution [34,35], making them a popular choice for simulat-
ing a range of social phenomena, including evolutionary
game theory [36–41].

62002-p1



Maja Duh et al.

Meanwhile, there has been a shift in focus from single
and isolated networks to multilayer and interdependent
networks [42–52]. This is due to the fact that individuals
often belong to multiple networks simultaneously, mak-
ing interdependent networks more relevant for describing
real-world systems than isolated networks. In one of the
seminal works, Buldyrev et al. [53] investigated a cas-
cade of failure on the interdependent networks and found
that seemingly irrelevant changes in one network can have
catastrophic consequence in another network. Along this
way, Wang et al. used the concept of interdependent net-
works to study the evolution of public cooperation [42].
They introduced the interdependence through the utility
function and showed that the bias in the utility function
can effectively influence the level of public cooperation.
Since then, numerous mechanisms have been proposed to
explore the cooperative behaviour on interdependent net-
works, including individual popularity [54], heterogeneous
coupling between lattices [50], information sharing [55,56],
self-organization [52,57], migration and stochastic imita-
tion [48], assortative and disassortative matching between
layers [58] as well as third party interventions [59]. Note-
worthy, it has also been shown that network reciprocity
affects cooperative behavior in multilayer networks only
under weak coupling, whereas for strong coupling, the ef-
fect of network reciprocity disappears [47].
In real-life situations, individuals often move around,

leading to changes in their network of interactions.
Mobility is a crucial characteristic of social and biologi-
cal systems, and it plays an important role in the study of
evolutionary games. To understand the impact of mobility
on the evolution of cooperation, researchers have proposed
different mobility models [48,60–65]. The movements of
individuals can either be independent of the evolutionary
dynamics [66–69], or driven by the evolutionary dynam-
ics, where players move based on their payoff [32,70,71],
success [72] or aspiration [73,74]. Additionally, numer-
ous studies have examined the mixing of players in rela-
tion to node degrees. These studies have demonstrated
that various types of migrations can have different im-
pacts on the evolution of cooperation in heterogeneous
networks [40,75]. The concept of degree mixing has also
been applied to multilayer networks. For instance, Wang
et al. [61] studied the impact of assortative and disassor-
tative mixing on two-layer scale-free networks and con-
cluded, that degree mixing in multilayer networks hinders
the evolution of cooperation.
In this paper we further explore the principles of public

cooperation in the context of multi-layered interactions
by means of public goods game on tied hyperbolic net-
works, so that players across the two network layers are
connected through the utility function, which couples the
payoffs across both layers. We additionally incorporate
in our model different types of mixing protocols (random,
assortative and disassortative), where mixing of players
can be performed on one (A or B) or both (A and B) lay-
ers. In our simulations we then focus on how the interplay

between different types of player migrations and interlayer
interactions affects the evolution of public cooperation.

Mathematical model. – We studied the public goods
game on two interconnected network layers, A and B,
with each node within the layer being occupied by one
player. We use random geometric graphs in hyperbolic
spaces to simulate the structure of interactions between
players in each layer. To create the network, we be-
gan with n = 2 connected nodes and then introduced
new nodes (i) that were mapped onto a hyperbolic disc
using polar coordinates that were randomly assigned:
θi = 2πu1 and ri = 1

β
cos−1 [1 + cosh(βRhd − 1)u2],

where Rhd = 1 reflects the radius of the hyperbolic disc,
β = 0.1 is the internal growth parameter, and u1 and
u2 are independent random variables sampled from the
uniform distribution on a unit interval. Each new i-
th node connects with n existing nodes with a proba-
bility that is proportional to the distance between the
i-th and the j-th node: dij = cosh−1[cosh(ri) cosh(rj) −
sinh(ri) sinh(rj) cos(∆θij)], where ∆θij = π−|π−|θi−θj ||
denotes the angular distance [35]. This leads to a broad-
scale network with an average degree 4 [40]. Building upon
the idea of multilayer network concepts, players do not
only interact with their neighbours within the same layer,
but also with players in the other network layer. The in-
terdependence between the layers was established through
utility functions that were guided by the interlayer connec-
tions. The latter were established so that each player in
layer A gets connected with one player in layer B with the
shortest possible connection. A schematic presentation of
the multilayer network model is shown in fig. 1(a).

The resulting networks are utilized in the classical pub-
lic goods game, where individual players are represented
by nodes, and the interactive relationships between them
are characterized by the edges. Each player i has ki direct
neighbours in the same network layer (i.e., the degree of
the individual player) and one i′ indirect partner in the
other network layer. Initially, each player is randomly as-
signed as a cooperator (C) or defector (D) with an equal
probability. Players accumulate their payoffs on both net-
work layers following the same procedure. Namely, each
player participates in g = ki+1 overlapping groups, where
cooperators contribute a fixed cost to the public good
(si = 1) while defectors contribute nothing (si = 0). Af-
terwards, the overall contributions are multiplied by the
synergy factor R > 1, and the resulting amount is then
redistributed equally among all players in the group. Ac-
cordingly, the payoff of a player in each group g obtained
on the network layer A is Pi and Pi′ on layer B, while
the overall payoff received in all the groups is the sum
Pi =

∑
g P

g
i and Pi′ =

∑
g P

g
i′ . As the number of direct

neighbours varies between individuals, the synergy factor
R is normalized with the size of the corresponding group
to ensure a meaningful comparison of the results [76].

As noted previously, there exist so-called dependency
links between both network layers A and B, where each
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Fig. 1: Graphical presentation of the multilayer public goods
game model with mixing of the players. (a) A scheme of
the two-layer network where the interactions between players
within each layer (black lines) are modelled by the geometric
model in hyperbolic spaces. Blue lines indicate the interlayer
connections between the two layers, which were established so
that the distance between the connected players in different
layers was minimal. Only 40 nodes per network layer are dis-
played here for illustrative purposes. (b) Schematic represen-
tation of the three different types of mixing. The i-th player at
the radial position ri exchanges positions with the j-th player,
whose position is determined arbitrary in case of random mix-
ing (black arrow), within an annulus centered at the mean ra-
dius ri with width 2∆ras in the scenario of assortative mixing
(red arrow), within an annulus centered at the mean radius
r′ with width 2∆rdis when considering disassortative mixing
(blue arrow). Only 100 nodes within the network layer are
shown for illustration purposes, although in our simulations
we used N = 2500 nodes per network layer.

player i in the network layer A has exactly one external
partner i′ in the network layer B, and the same applies in
reverse. To take into account that the payoff of a player
depends also on the state of a player in another layer,
the interlayer connections can be expressed as the utility
functions

Ui = αPi + (1− α)Pi′ , Ui′ = (1− α)Pi′ + αPi. (1)

α determines the strength of external links or the bias
between the payoffs of player i and i′ on the two network

layers, with α = 0 (α = 1) indicating that the utility
primarily relies on the payoff of player i′ (player i) as in
the single network scenario [40]. When α is between 0
and 0.5, player i is primarily affected by the payoff of its
external partner i′. For α = 0.5 both payoffs are taken
into consideration equally strongly by both players i and
i′. Conversely, when α is between 0.5 and 1, the roles of
players i and i′ are reversed, resulting in fully symmetric
outcomes [42]. Henceforth, network layer A is considered
as the primary network, and the values of α are restricted
to the range of [0, 0.5] for the subsequent explanations.

We simulate the evolutionary process in accordance
with the standard Monte Carlo simulation. After ran-
domly selecting one player i, one of its neighbors j on
the layer A, and the corresponding external partners i′

and j′ on layer B, the corresponding payoffs and utility
functions can be calculated. Considering that strategy
transfers are allowed from neighbors on a given network
layer only, player i adopts the strategy of player j with a
probability determined by the Fermi function

W (si → sj) =
1

1 + exp[(Uj − Ui)/K]
, (2)

where K denotes uncertainty related to the strategy adop-
tion process and is set to 0.5 without loss of generality [77].
The adoption of a strategy by player i′ from player j′ oc-
curs in a similar manner with the use of their respective
utilities Ui′ and Uj′ in eq. (2).
To introduce mixing of players, we implemented a mix-

ing process after every m-th Monte Carlo step. During a
mixing step, each player had a chance to exchange their
site with another randomly selected player on the same
network layer, on average once. In most of our calculations
the mixing frequency was set to m = 10, unless stated
otherwise. This means that randomly selected pairs were
switched after every 10th Monte Carlo step. We consid-
ered different types of mixing protocols: i) random mix-
ing, where places of players were exchanged irrespective
of their positions; ii) assortative mixing, where players
with similar distances from the center of the hyperbolic
disc were swapped; iii) disassortative mixing, where play-
ers close to the center were replaced by remote players
and vice versa. With this, we took into account that the
degree of a node tends to increase as it gets closer to the
center, and that nodes farther away from the center have
lower degrees and are considered peripheral nodes.
How different types of mixing are incorporated in our

model is illustrated in fig. 1(b). In principle, in either
scenario a randomly selected i-th player located at a ra-
dial distance ri exchanges the place with the randomly
selected j-th player. The latter is chosen arbitrary in case
of random mixing (black arrow). When considering assor-
tative mixing, the j-th player is selected from the nodes
located within an annulus centered at the mean radius ri,
with a width of 2∆ras (red arrow), whilst in the case of
disassortative mixing, it is selected from the annulus at
the mean radius r′, with a width of 2∆rdis (blue arrow).
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The widths of both annuli, 2∆ras and 2∆rdis, denote the
locations of 5% of nodes with the closest radial distances
to the nodes located at radius ri or r′. Moreover, in the
scenario of disassortative mixing, the radius r′ defines the
radial distance to the j-th player, whose relative distance
rank is R(j) = 1 − R(i), with R(i) denoting the relative
distance-based rank of the selected i-th player located at
the radial distance ri.

In our calculations we considered N = 2500 players in
each network layer. To determine the equilibrium fraction
of cooperators, we averaged the last 10000 generations af-
ter a transient period of 100000 Monte Carlo time steps.
Additionally, the final results were averaged over 400 inde-
pendent runs for each set of parameter values (20 different
initial conditions and 20 different network realizations).

Results. – We start by presenting the influence of the
payoff bias α and additional random mixing of players on
the evolution of cooperation on two interdependent ran-
dom hyperbolic networks. Figure 2 shows the fraction of
cooperators fC on both network layers as a function of
the normalized synergy factor R/G. Panels on the left
side of fig. 2 display the results for layer A, while panels
on the right side show the results for layer B. Three mix-
ing options are considered: mixing only on layer A, mixing
only on layer B, and mixing on both layers A and B. Ran-
dom mixing is applied after every 10th full Monte Carlo
step, where N randomly selected pairs exchange places.
We first focus on the results of the game without mixing
(solid grey lines with circles). The results clearly show
that the evolution of public cooperation on both network
layers depends significantly on the value of the bias α,
i.e., the stronger the bias, the higher the level of public
cooperation. When α is set to 0.01 (fig. 2(a) and (b)), the
evolution on layer A is mainly (99%) influenced by the
payoffs of players in layer B, while the evolution on layer
B is almost identical with the evolution on a single random
hyperbolic network [40]. Cooperators on layer B dominate
completely for approximately R/G > 0.6, while layer A is
occupied by both cooperators and defectors for the whole
range of R/G. For α = 0.2 (fig. 2(c) and (d)), the success
level of cooperators on layer A is slightly higher, while at
B the results are similar to those obtained for α = 0.01.
According to eq. (1), at α = 0.49 (fig. 2(e) and (f)) the dif-
ference between the two networks vanishes completely, as
both payoffs (Pi and Pi′) play the same role in evaluating
utility.

Introducing random mixing of players only on layer A
(solid dark blue lines with rectangles) has no impact on
the evolution of cooperation on layer B when α is set to
0.01 (fig. 2(b)). This is understandable, since the game on
B is almost not influenced by the payoffs of players in layer
A. However, mixing on layer A shifts the critical value of
the normalized synergy factor, above which cooperators
emerge, to higher R/G values and increases the success
level of cooperators on layer A (fig. 2(a)). This effect
is even more significant for α = 0.2 (fig. 2(c) and (d)),

Fig. 2: While the evolution of public cooperation on two inter-
dependent network layers depends significantly on the value of
the bias α, additional mixing of players in the networks leads
to very unexpected results. Depicted is the fraction of cooper-
ators fC as a function of the normalized synergy factor R/G,
as obtained on two interdependent random hyperbolic graphs
for α = 0.01 (a) and (b), α = 0.2 (c) and (d), and α = 0.49 (e)
and (f). The left three panels (a), (c) and (e) show results for
the layer A, while the right three panels (b), (d) and (f) show
results for the layer B. In all panels results for random mixing
on one (A or B) layer and both (A and B) layers are presented.
The solid grey line with circles shows the corresponding result
for the public goods game on two interdependent random hy-
perbolic graphs without mixing. The size of each network layer
is N = 2500, and the mixing frequency is set to m = 10.

where transformations begin to emerge on layer B as well.
These changes become most pronounced when α equals
0.49 (fig. 2(e) and (f)), where interesting phenomena oc-
cur, which will be further addressed in continuation. Fur-
thermore, when random mixing of players is introduced
only on layer B (solid orange lines with triangles), the
outcomes are even more surprising. Results presented in
the top two panels (α = 0.01) evidence that mixing on
layer B impairs the evolutionary success of cooperators on
this layer, while promote it for certain values of the nor-
malised synergy factor R/G on layer A. This range of R/G
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values, where mixing on layer B improves cooperation on
layer A, is even wider for α = 0.2 (fig. 2(c)), while co-
operation on layer B is still suppressed (fig. 2(d)). When
α = 0.49 (the bottom two panels of fig. 2), mixing on layer
B (A) evidently promotes cooperation on the other layer
—layer A (B)— while on the same layer (where mixing
is performed) the critical value of the normalized synergy
factor, above which cooperators emerge, shifts to higher
R/G values (∼ 1.15). When the normalized multiplication
factor is high enough, cooperators dominate completely,
which cannot be achieved without the introduction of mix-
ing on this layer. Finally, mixing on both layers A and B
(solid pink lines with inverted triangles) produces on layer
A almost identical outcomes as mixing only on layer A.
Similarly, the results of mixing on both layers for layer B
are nearly identical to those obtained with mixing only on
layer B. Moreover, this is true for all investigated α values.
Next, we investigated the effect of different types of mix-

ing protocols (random, assortative, and disassortative) on
the evolution of cooperation on two interdependent net-
works, with the focus on mixing on layer B only. Figure 3
depicts the fraction of cooperators as a function of the nor-
malized multiplication factor R/G, as obtained for differ-
ent combinations of the payoff bias α and different mixing
protocols. The left and right panels in fig. 3 show the re-
sults for layers A and B, respectively. To provide a point
of reference, we display the outcomes of the game without
mixing (indicated by a solid grey line with circles) in all
panels for comparison. The differences between different
mixing types are clearly visible for α = 0.01 (fig. 3(a) and
(b)) and α = 0.2 (fig. 3(c) and (d)). It is evident that ran-
dom mixing has the most significant impact, followed by
disassortative mixing, which has a slightly lower impact,
and finally, assortative mixing, which has an even smaller
impact. For α = 0.49 (fig. 3(e) and (f)), assortative and
disassortative mixing hardly evoke a visible difference in
the fraction of cooperators compared with the case, where
random mixing is applied. Comparing different types of
mixing with the case where no mixing is introduced, we
observe that assortative and disassortative mixing have a
very similar effect on the evolutionary success of coopera-
tors as random mixing, for all selected α values. Regard-
less of the type of mixing, mixing on the network layer
where primary (without mixing) cooperation is successful
(in our case, layer B) can greatly enhance cooperation in
the other network layer (in our case, layer A), but it may
lead to its total breakdown in the former. However, once
the synergy factor becomes large enough, cooperators on
the primary network layer recover and the positive effect
on cooperation in the other layer disappears. We conclude
that the transfer of lower payoffs from one network layer
to another plays a crucial role in this phenomenon, as it
allows cooperators in one layer to take advantage of the
failure of cooperators in the other layer.
To gain a better understanding of this phenomenon, we

limit our focus solely to the random mixing type, where
mixing is performed only on layer B, and vary the mixing

Fig. 3: Mixing on the network layer where cooperation is suc-
cessful can strongly encourage cooperation in another network
layer, while completely destroying it in the first, regardless of
the type of mixing. All six panels present the fraction of co-
operators fC as a function of the normalized multiplication
factor R/G, as obtained on two interdependent random hyper-
bolic graphs A (left three panels) and B (right three panels)
for three different values of the bias α : α = 0.01 (a) and (b),
α = 0.2 (c) and (d), and α = 0.49 (e) and (f). In all panels
results for three mixing types (random, assortative and dis-
assortative mixing), where mixing is performed only on layer
B, are presented. The solid grey line with circles shows the
corresponding result for the public goods game on two interde-
pendent random hyperbolic graphs without mixing. The size
of each network layer is N = 2500, and the mixing frequency
is m = 10.

frequency m. Figure 4 depicts the fraction of cooperators
fC as a function of the normalized synergy factor R/G
for α = 0.01 (fig. 4(a)), α = 0.2 (fig. 4(b)) and α = 0.49
(fig. 4(c)). To facilitate comparison, results for both layers
(A and B) are presented in the same panel. The results
confer that mixing on layer B impairs the evolutionary
success of cooperators on the same layer —layer B (in-
dicated by solid lines with open rectangles)— while en-
hances cooperation in the other network layer —layer A
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Fig. 4: Once the multiplication factor becomes high enough to
cancel out the negative effects of mixing in one network layer
(in our case layer B), then the positive effect on cooperation
in the other network layer (in our case layer A) disappears.
Depicted is the fraction of cooperators fC as a function of the
normalized synergy factor R/G, as obtained on two interde-
pendent random hyperbolic graphs A (closed rectangles) and
B (open rectangles) for α = 0.01 (a), α = 0.2 (b) and α = 0.49
(c). In all panels results for random mixing on layer B for five
different mixing frequencies m are presented. The size of each
network layer is N = 2500.

(indicated by solid lines with closed rectangles)— and the
more so the smaller the value of m. When the synergy
factor reaches a certain threshold, the beneficial impact
of cooperation in layer A diminishes and cooperators in
layer B experience a recovery in their success level. The
effect can be observed for all selected values of the mix-
ing frequency m when α is set to 0.2 and 0.49. However,
when α = 0.01 and the mixing frequency is 100, the criti-
cal value of the normalized synergy factor R/G, required
for cooperators to emerge, only shifts slightly to higher
values in both layers.

Discussion. – Over the last two decades, researchers
have utilized network science to identify the most suit-
able network topologies that accurately depict real-world
networks and help understand collective social behaviour.
Recently, multilayer networks have gained much attention
in this respect, not only because they offer a solid frame-
work to describe diverse types of genuine interactions but
also because the combination of different network topolo-
gies across various layers can affect the evolution of co-
operation in nontrivial ways [43,78,79]. In a recent study
by Wu et al. [49], the evolution of cooperation was inves-
tigated in a multigame model composed of the Prisoner’s
Dilemma and Snowdrift game on interdependent networks
with different topologies. Specifically, interdependent net-

works formed by two square lattices were found to pro-
mote the evolution of cooperation, while coupling between
two scale-free networks was shown to inhibit cooperation.
To investigate further the role of interlayer interactions in
heterogeneous networks, we studied here the multiplayer
public goods game on two interdependent random geomet-
ric graphs in hyperbolic spaces, where the interdependence
between both layers is introduced by means of the utility
function [42]. Our findings suggest that introducing biased
considerations of payoffs can be beneficial for promoting
public cooperation. Similar results have been obtained on
two interdependent scale-free networks [58].

Furthermore, to account for the possibility of players
migrations, we studied the effect of random, assortative
and disassortative mixing on one or both layers, where N
selected pairs (on the same network layer) switched af-
ter each m-th Monte Carlo step. We demonstrated that
such varying connections between players over time led to
very unexpected outcomes. Mixing on the network layer,
where cooperation is primary successful (in our case layer
B), impairs the evolutionary success of cooperators on the
same network layer, regardless of the type of the mixing
protocol. Furthermore, the smaller the value of the mixing
frequency m, the more detrimental mixing is for coopera-
tion. This is in agreement with previous results on isolated
networks [40,80]. Interestingly, our results show that co-
operation can be strongly promoted in the other network
layer (in our case layer A), but only for certain values of
the normalized synergy factor R/G. Once the multiplica-
tion factor for the public goods reaches a certain threshold
that counteracts the negative effects of mixing on the for-
mer layer, cooperators are able to recover and the positive
impact on cooperation in the other layer disappears. This
phenomenon can be attributed to the transfer of lower
payoffs from one network layer to another, which leads to
the cooperators in one layer benefiting from the failures of
cooperators in the other layer.

Our aspiration is for this work to contribute to the bet-
ter understanding of the evolution of public cooperation
within the context of migration and multi-layered inter-
actions, as well as to the better understanding of other
forms of moral behavior by means of mathematical and
agent-based modeling [81]. Furthermore, we hope to in-
spire other researchers to explore the utilization of tied hy-
perbolic networks and the various applications of agents’
mixing and mobility in similar lines of research.

∗ ∗ ∗

This research was supported by the Slovenian Research
Agency (Javna agencija za raziskovalno dejavnost RS)
(Grant Nos. P1-0403, J1-2457 and J3-3077).

Data availability statement : No new data were created
or analysed in this study.

62002-p6



Unexpected paths to cooperation on tied hyperbolic networks

REFERENCES

[1] Nowak M. A., Evolutionary Dynamics (Harvard Univer-
sity Press, Cambridge, Mass.) 2006.

[2] Maynard Smith J., Evolution and the Theory of Games
(Cambridge University Press, Cambridge, UK) 1982.

[3] Sigmund K., The Calculus of Selfishness (Princeton Uni-
versity Press, Princeton, N.J.) 2010.

[4] Javarone M. A., Statistical Physics and Computational
Methods for Evolutionary Game Theory (Springer, New
York) 2018.

[5] Boccaletti S. et al., Phys. Rep., 424 (2006) 175.
[6] Albert R. and Barabási A.-L., Rev. Mod. Phys., 74

(2002) 47.
[7] Estrada E., The Structure of Complex Networks: The-

ory and Applications (Oxford University Press, Oxford)
2012.

[8] Nowak M. A., Science, 314 (2006) 1560.
[9] Perc M. and Szolnoki A., BioSystems, 99 (2010) 109.

[10] Capraro V. et al., Phys. Rev. E, 101 (2020) 032305.
[11] Vilone D. et al., J. Phys. Commun., 2 (2018) 025019.
[12] Santos F. C. and Pacheco J. M., Phys. Rev. Lett., 95

(2005) 098104.
[13] Poncela J. et al., New J. Phys., 9 (2007) 184.
[14] Masuda N., Proc. R. Soc. B, 274 (2007) 1815.
[15] Assenza S. et al., Phys. Rev. E, 78 (2008) 017101.
[16] Tanimoto J. et al., Phys. Rev. E, 85 (2012) 032101.
[17] Mao Y. et al., EPL, 122 (2018) 50005.
[18] Cimpeanu T. et al., Chaos, Solitons Fractals, 167 (2023)

113051.
[19] Cimpeanu T. et al., to be published in Dyn. Games

Appl. (2023), https://doi.org/10.1007/s13235-023-

00502-1.
[20] Cimpeanu T. et al., Sci. Rep., 12 (2022) 1723.
[21] Kim B. J. et al., Phys. Rev. E, 66 (2002) 021907.
[22] Masuda N. and Aihara K., Phys. Lett. A, 313 (2003)

55.
[23] Santos F. C. et al., Phys. Rev. E, 72 (2005) 056128.
[24] Fu F. et al., Eur. Phys. J. B, 56 (2007) 367.
[25] Lin Z. et al., Physica A, 553 (2020) 124665.
[26] Kumar A. et al., J. R. Soc. Interface, 17 (2020)

20200491.
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[44] Gómez-Gardeñes J. et al., Phys. Rev. E, 86 (2012)

056113.
[45] Battiston F. et al., New J. Phys., 19 (2017) 073017.
[46] Shi L. et al., Nonlinear Dyn., 96 (2019) 49.
[47] Li G. and Sun X., Physica A, 578 (2021) 126110.
[48] Chowdhury S. N. et al., Entropy, 22 (2020) 485.
[49] Wu Y. et al., Physica D, 447 (2023) 133692.
[50] Xia C.-Y. et al., PLoS ONE, 10 (2015) e0129542.
[51] Deng Z.-H. et al., Physica A, 510 (2018) 83.
[52] Chu C. et al., Chaos, 29 (2019) 013139.
[53] Buldyrev S. V. et al., Nature, 464 (2010) 1025.
[54] Liu C. et al., New J. Phys., 20 (2018) 123012.
[55] Szolnoki A. and Perc M., New J. Phys., 15 (2013)

053010.
[56] Liu J. et al., Appl. Math. Comput., 340 (2019) 234.
[57] Luo C. and Zhang X., Commun. Nonlinear Sci. Numer.

Simul., 42 (2017) 73.
[58] Duh M. et al., New J. Phys., 21 (2019) 123016.
[59] Song Z. et al., Appl. Math. Comput., 403 (2021) 126178.
[60] Perc M. et al., J. R. Soc. Interface, 10 (2013) 20120997.
[61] Wang Z. et al., Phys. Rev. E, 89 (2014) 052813.
[62] Zhang S. X. L. et al., Eur. Phys. J. B, 95 (2022) 67.
[63] Cong R. et al., PLoS ONE, 7 (2012) e35776.
[64] Dhakal S. et al., R. Soc. Open Sci., 9 (2022) 212000.
[65] Armano G. and Javarone M. A., Sci. Rep., 7 (2017)

1781.
[66] Cardillo A. et al., Phys. Rev. E, 85 (2012) 067101.
[67] Javarone M. A., Eur. Phys. J. B, 89 (2016) 42.
[68] Vainstein M. H. et al., J. Theor. Biol., 244 (2007) 722.
[69] Sicardi E. A. et al., J. Theor. Biol., 256 (2009) 240.
[70] Chen Y.-S. et al., Physica A, 450 (2016) 506.
[71] He Z. et al., Chaos, Solitons Fractals, 141 (2020)

110421.
[72] Helbing D. and Yu W., Proc. Natl. Acad. Sci. U.S.A.,

106 (2009) 3680.
[73] Lin Y.-T. et al., Physica A, 390 (2011) 77.
[74] Wu T. et al., Phys. Rev. E, 85 (2012) 066104.
[75] Rong Z. et al., Phys. Rev. E, 76 (2007) 027101.
[76] Santos F. C. et al., Nature, 454 (2008) 213.
[77] Perc M. et al., Phys. Rep., 687 (2017) 1.
[78] Jusup M. et al., Phys. Rep., 948 (2022) 1.
[79] Alvarez-Rodriguez U. et al., Nat. Hum. Behav., 5

(2021) 586.
[80] Duh M. et al., Phys. Rev. E, 102 (2020) 032310.
[81] Capraro V. and Perc M., J. R. Soc. Interface, 18

(2021) 20200880.

62002-p7


