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Evolution of public cooperation on interdependent networks:
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Abstract – We study the evolution of public cooperation on two interdependent networks that are
connected by means of a utility function, which determines to what extent payoffs in one network
influence the success of players in the other network. We find that the stronger the bias in the
utility function, the higher the level of public cooperation. Yet the benefits of enhanced public
cooperation on the two networks are just as biased as the utility functions themselves. While
cooperation may thrive on one network, the other may still be plagued by defectors. Nevertheless,
the aggregate level of cooperation on both networks is higher than the one attainable on an
isolated network. This positive effect of biased utility functions is due to the suppressed feedback
of individual success, which leads to a spontaneous separation of characteristic time scales of the
evolutionary process on the two interdependent networks. As a result, cooperation is promoted
because the aggressive invasion of defectors is more sensitive to the slowing-down than the build-up
of collective efforts in sizable groups.

Copyright c© EPLA, 2012

Introduction. – The study of evolutionary games on
networks and graphs (see [1] for a comprehensive review)
has proven very gratifying in terms of improving our
understanding of the emergence and sustenance of cooper-
ation among selfish and unrelated individuals. Following
the seminal discovery that spatial structure may, unlike
well-mixed populations, maintain cooperation even in the
most challenging prisoner’s dilemma game [2], and the
many groundbreaking discoveries concerning the statis-
tical mechanics of complex networks and the dynam-
ical processes taking place on them [3,4], the study
of evolutionary games on small-world [5], scale-free [6],
coevolving [7,8] and hierarchical [9] networks, to name but
a few, now appears as having been the logical next step.
From these and many other related studies, we have learnt
that scale-free networks might be the missing link to coop-
eration by virtually all main social dilemmas [10], and that
this is a very robust evolutionary outcome [11], although
not immune to the normalization of payoffs [12–15] and
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targeted removal of nodes [16]. Moreover, heterogeneity
in general, i.e. not just in terms of players having differ-
ent degree within a network, proved to be very effec-
tive in maintaining high levels of cooperation in the
population [17–23], and indeed many coevolutionary rules
have been introduced that may generate such states
spontaneously [24–34] (see [35] for a review).
Recently, however, it has been emphasized that,

although research on complex networks has been flour-
ishing and has become an integral part of many branches
of physics, the focus is predominantly still on single (or
isolated) networks [36]. In many ways this approach
can be considered as rather limited, since real networks
are simultaneously present and influence each other,
and should thus be treated as interdependent networks.
Several examples attesting to this fact are given in [37],
while specifically for evolutionary games, it is possible
to argue that the interaction network of players may
be just as important for their success as the network
of institutions providing the funding, or the network of
governmental bodies overseeing that everybody is obeying
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the rules. More generally, the success of a player in a
given network may not depend just on the players in
that same network, but may also depend on a player
that is a member of another network, thus lending ample
justification to studying the outcome of evolutionary
games on interdependent networks. Until now, however,
seminal works on interdependent networks have shown
that seemingly irrelevant changes in one network can have
catastrophic and very much unexpected consequence in
another network [36].
In this paper, we study the evolution of public cooper-

ation on two interdependent networks, which are linked
together by means of a utility function that is defined as a
combination of individual payoffs of related pairs of players
selected from different graphs. In general, payoffs represent
utilities that players try to maximize by adopting strate-
gies from others. There are, however, several realistic situ-
ations when our actions are not motivated solely by our
own wellbeing, but may also depend on the impact they
will have on others, e.g. the family or the closest collabora-
tors. The determination of an accurate utility function is
therefore demanding, typically involving the consideration
of fraternity, other-regarding preferences, or simply the
behavior of relatives in biological systems [38–41]. Here,
conceptually differently, we use the concept of utility to
link together two networks, for convenience denoted as
networks A and B, which therefore become interdepen-
dent in a way that is paramount for the outcome of the
game. In particular, we define the utility of each player
as a biased sum of the payoff of the player itself and the
payoff of the corresponding player in the other network.
In this way, players in network A consider the payoffs of
players in network B to be more relevant than their own,
while players in network B consider their own payoffs more
prominently than those of the players in network A. In
order to focus explicitly on the impact of this interde-
pendence, and to avoid potential effects stemming from
complex networks, we use the square lattice topology for
both networks A and B. This also enables us to compare
the obtained results accurately with those reported previ-
ously on a single network [42]. Moreover, due to the exactly
defined locations of all the players, the potential compli-
cations with defining who are the corresponding players
in the two networks are naturally alleviated. Interestingly,
we find that the interdependence by means of biased util-
ity promotes the evolution of cooperation, yet that the
extent of this promotion itself is heavily biased in the two
networks. Accurate results that will be presented below
firmly attest to the fact that the integration of interdepen-
dent networks and evolutionary games offers new ways of
understanding the successful evolution of cooperation, as
well as provides ample opportunities for further research
along this line.
The remainder of this letter is organized as follows.

First, we describe the considered public goods game and
the interdependence of the two networks due to the biased
definition of the utility function. Next we present the main

A

B

Fig. 1: (Colour on-line) Schematic presentation of the model.
Players are arranged on two physically separated square
lattices. Interdependence is introduced via the utility function,
which determines the probability of strategy invasion within a
lattice, and is calculated based not only on the player’s own
payoff but also on the payoff of its corresponding player in
the other network. The two payoffs are considered in a biased
manner, as marked by the different lengths of the vertical
arrows. According to the scheme, the utility function in the
upper network A (red) is determined predominantly by the
payoffs in the lower network B (blue), while the utility func-
tion in the lower network B is only slightly influenced by the
payoffs in the upper network A. Importantly, strategy inva-
sions are possible from nearest neighbors only, as marked by
the small arrows on both grids.

results, whereas lastly we summarize them and discuss
their implications.

Model definition. – The public goods game on both
networks is staged on a L×L square lattice with periodic
boundary conditions, where players are arranged into
overlapping groups of size G= 5. Every player is thus
surrounded by its k=G− 1 nearest neighbors and is a
member in g=G different groups. Initially each player
on site x in network A and on site x′ in network B
is designated either as a cooperator or defector with
equal probability. The accumulation of payoffs Px and Px′
on both networks follows the same standard procedure.
Namely, in each group cooperators contribute 1 to the
public good while defectors contribute nothing. The sum
of contributions is subsequently multiplied by the factor
r > 1, reflecting the synergetic effects of cooperation, and
the resulting amount is equally shared amongst the G
group members. In each group the payoff obtained is P gx
on network A and P gx′ on network B, while the total
amount received in all the groups is thus Px =

∑
g P

g
x and

Px′ =
∑
g P

g
x′ .

While the two networks are not physically connected,
interdependence is introduced via the utility functions

Ux = αPx+(1−α)Px′ , Ux′ = (1−α)Px′ +αPx, (1)

where α determines the bias in the consideration of payoffs
collected by the corresponding players x and x′ in the two
networks, as schematically depicted in fig. 1. At low α
values player x is guided predominantly by the payoff of
player x′, while at α= 0.5 both Px and Px′ are taken into
consideration equally by both players x and x′. Evidently,
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Fig. 2: (Colour on-line) Snapshots of the distribution of coop-
erators (green) and defectors (red) on the two interdependent
square lattices at 0, 20, 2000 and 20000 MCS from left to right.
Panels (a)–(d) (red frame) correspond to results obtained on
network A, while panels (e)–(h) (blue frame) correspond to
results obtained on network B. Parameter values are: α= 0.01,
r/G= 0.76 and L= 200.

for α> 0.5 the roles are exchanged and the treatment
becomes fully symmetric. It is also worth emphasizing
that at α= 1 (α= 0) the game on network A (B) behaves
identically as if played on a single network [42], while the
game on network B (A) is completely guided by the payoffs
of players in network A (B).
Following the determination of utilities according to

eq. (1), strategy invasions are attempted between nearest
neighbors on a given network (see fig. 1). Accordingly, on
network A player x can adopt the strategy sy of one of its
randomly chosen nearest neighbors y with a probability
determined by the Fermi function

W (sy→ sx) = 1

1+ exp[(Ux−Uy)/K] , (2)

where the utility Uy of player y is evaluated identically
as for player x. The probability of strategy invasion from
player y′ to player x′ on network B is determined likewise,
only that utilities U ′x and U ′y are used. Without loss of
generality in eq. (2) we set K = 0.5 [42], implying that
players with a higher utility spread, but it is not impossible
to adopt the strategy of a player having a lower utility.
Simulations of the model were performed by means of
a random sequential update, where each player on both
networks had a chance to pass its strategy once on average
during a Monte Carlo step (MCS). The linear system size
was varied from L= 200 to 800 in order to avoid finite-size
effects, and the equilibration required up to 106 MCS.

Results. – We start by presenting characteristic
snapshots of the distribution of cooperators and defectors
on the two networks in fig. 2. In order to demonstrate the
impact of biased utility as effectively as possible, we use
α= 0.01 and r/G= 0.76. According to eq. (1), this implies
that the evolution on network A is guided predominantly
(99%) by the payoffs of players in network B, while the
evolution on network B should be almost identical with
the evolution on a single (isolated) square lattice. By
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Fig. 3: (Colour on-line) Density of cooperators fC in depen-
dence on the normalized synergy factor r/G as obtained on
networks A (closed circles connected with a solid red line) and
B (open circles connected with a dashed blue line) for α= 0.01
(a), 0.40 (b) and 0.49 (c). The critical values of the synergy
factor r2c, where the pure C phase is reached on network A,
are marked by small red arrows at the top axis of each layer.

focusing first on the snapshots in the bottom row of fig. 2
(panels (e)–(h)), corresponding to the evolution on
network B, it can indeed be observed that the outcome
is very much similar to the one on an isolated lattice.
In the stationary state (panels (g) and (h)) defectors
dominate, while a relatively small fraction of cooperators
is able to survive by forming compact clusters. This is
in agreement with previous results obtained for a single
square lattice, where cooperators can survive only if
r/G= r1� 0.745 [42]. Much more surprising, however, is
the outcome in the upper row of fig. 2 (panels (a)–(d)),
corresponding to the evolution on network A. There the
stationary state (panel (d)) is reached a full order of
magnitude slower, yet instead of widespread defection,
cooperators dominate completely. Thus, a strong bias in
the utility function towards payoffs of players in the other
network (network B in this case) significantly promotes
the evolution of cooperation.
Results presented in fig. 3 evidence clearly that the

difference in the evolution of public cooperation on the two
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Fig. 4: (Colour on-line) Normalized critical synergy factor
r2c, required for full cooperator dominance on network A, in
dependence on α. For comparison, dotted green lines depict
the normalized value of the synergy factor r1 = 0.745 (r2 = 1.1)
where the full D (full C) is reached on an isolated square lattice
at K = 0.5 [42].

interdependent networks, as depicted by the snapshots in
fig. 2, depends significantly on the value of α. For α= 0.01
(panel (a)), where the bias in the utility function is the
strongest, the difference is the largest, while for α= 0.4
(panel (b)), and even more so for α= 0.49 (panel (c)),
the difference in the density of cooperators on the two
networks is vanishing. According to the definition of utility
(see eq. (1)), at α= 0.5 the difference vanishes completely
(not shown). By trying to infer the aggregate level of
cooperation on both networks, however, it can be deduced
that the interval of r where cooperators and defectors
coexist is virtually independent of α. With the aim of
quantifying more accurately the impact of different α
values on the evolution of public cooperation, we therefore
focus on the normalized (with G) critical value of the
synergy factor r2c, where the pure C phase (fC = 1) is
reached on network A. These critical values are marked
by small red arrows in fig. 3.
Quantifying accurately the impact of different values of
α are results presented in fig. 4, where critical r2c values,
along with the thresholds for cooperator and defector
dominance as obtained on a single square lattice, are
depicted. As already indicated in fig. 3, the largest impact
on the evolution of public cooperation is obtained when
the bias in the utility function is the strongest (in the
vicinity of α= 0). Here r2c approaches r1, indicating
that the population experiences a discontinuous transition
from a pure D phase to a pure C phase. Note that
the evolution on network A becomes totally random at
α= 0, because changes in the player’s strategy and its
utility become completely independent. In the opposite
limit, when α= 0.5, the evolution on both networks
becomes statistically identical, and moreover, is almost
the same as reported previously for a single square
lattice. Consequently, r2c(α= 0.5)≈ r2, indicating that
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Fig. 5: (Colour on-line) Difference between the aggregated level
of cooperation on both interdependent networks and the level
of cooperation as obtained for an isolated square lattice ∆fC in
dependence on the normalized synergy factor r/G, as obtained
for α= 0.01.

to connect two graphs by means of a symmetric utility
function will not result in a significant change of the
behavior that is principally determined by the topology
of a single graph.
Since it would be possible that the biased consideration

of payoffs in the utility function promotes the evolution
of cooperation only on network A, while at the same
time potentially having negative consequences for public
cooperation on network B, it is also instructive to examine
the aggregate improvement in the evolution of public
cooperation. Especially so to eliminate possible doubts
related to whether the interdependence truly promotes
cooperative behavior, or maybe it rather just rearranges
the strategies, while in fact the overall level of cooperation
on both networks is determined exclusively by the value
of r as on a single (isolated) network. For this purpose,
we plot in fig. 5 the difference between the overall level
of cooperation and the level of cooperation as obtained
for a single square lattice. As the figure shows, the
promotion of cooperation is indeed a real consequence
of the interdependence by means of the biased utility
function. The averaged level of cooperation on both
interdependent networks exceeds the level observed on a
single square lattice across the whole span of r values
where a mixed C+D phase is possible. Note that the
impact of biased utility becomes negligible on network
B (A) if the population on the network A (B) arrives
at an ordered (full D or full C) state. In that case the
evolution on network B (A) becomes similar to that on
a single network because all the players will gain the
same additional payoff from the corresponding players
on network A (B). In this way the feedback between
the strategy change and the local success of a player
is recovered. However, if staying in the mixed strategy
region, the support is the strongest when the conditions
for the survival of cooperators are worst, i.e. when the
synergy factor of collaborative efforts is small.
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Fig. 6: (Colour on-line) Simultaneous time evolution of fC
on networks A and B (as denoted), obtained for α= 0.01
and r/G= 0.76 if starting from a random initial state. The
inset shows the evolution of frequencies for strategy pairs (as
denoted) of corresponding players on the two networks.

To understand the origin of the reported promotion of
cooperation we refer back to results presented in fig. 2, in
particular to the large difference in the characteristic time
scales related to the pace of evolution on networks A and
B, which we also quantify more accurately in fig. 6. Start-
ing from a random initial state, the fraction of cooperators
starts decaying first. This is a well-known consequence of
the random distribution of strategies, which is beneficial
for defectors since they can easily exploit the vicinity of
cooperators and hence spread efficiently [12,43]. The inva-
sion of defectors on network A, however, is very much
retarded. There, the minimum of fC is reached an order
of magnitude later, but even more importantly, the mini-
mal fraction of cooperators reached is much higher than on
network B (see fig. 6). The bridle of the aggressive invasion
of defectors is a straightforward consequence of the biased
utility function, which suppresses the feedback between
the strategy update and the possible payoff enlargement
of a player. More precisely, strategy invasions on network
A are predominantly dictated by the payoffs of the corre-
sponding players on network B. Consequently, a defector
on network A, who might take advantage from the vicin-
ity of cooperators cannot invade efficiently, because the
corresponding distribution of strategies in the same area
on network B may be very different. On the other hand, on
network B, where the players are focused predominantly
on maximizing their own payoffs, the feedback between
the dynamics of evolution and the utility function that
drives this evolution remains almost completely intact.
The stationary density of cooperators as a function of r
on network B is therefore very similar to the one reported
for the traditional single-network case [42], especially for
low values of α. Surviving cooperators who manage to
prevail against the initial invasions of defectors organize
themselves into compact domains, thereby obtaining the
support (spatial reciprocity) needed to spread in the sea of
defectors. The significantly different time evolutions of fC

on the two networks are also conspicuous at this stage
of the game. While the stationary mixed C+D phase
on network B is reached after ∼ 103 MCS, the evolution
on network A is not just significantly slower (lasts ten
times longer), but it is also more beneficial for coopera-
tion. This can be further corroborated by the evolution
of possible strategy pairs of corresponding players in the
two networks during the microscopic organization (inset of
fig. 6). Results indicate that cooperation starts spreading
only when defectors run out of cooperators to exploit, i.e.
when the number of DA−DB pairs reaches the maximum
value. Thereafter, both CA−DB and CA−CB pairs start
spreading simultaneously. It is crucial to note that cooper-
ators on network B cannot survive if their partners (corre-
sponding players) on network A are defectors (DA−CB
falls). Evidently, although the slowing-down of evolution
by suppressed feedback is a strategy-neutral intervention
into the dynamics, it still has very different consequences
for the success (spreading) of the two competing strategies.
Similar features were earlier observed when the strategy
teaching [44] or strategy learning capacities of players [45]
were considered as being time dependent. More gener-
ally, present results support the comprehensively accepted
assumption that the different time scales in microscopic
dynamics may relevantly influence the evolution of cooper-
ation in complex systems [24,43,46–50]. We conclude that
to consider the more realistic interdependent networks
offers a new phenomenon when spontaneous separation
of time scales emerges exclusively due to the interdepen-
dence between the two networks as defined by the biased
utility function.

Summary. – In sum, we have shown that the study
of evolution of public cooperation on interdependent
networks can provide new insights as to why selfish and
unrelated individuals venture into collaborative efforts in
sizable groups. We have exploited the concept of utility
functions to create an interdependence between the two
networks, revealing that biased considerations of payoffs
can lead to the spontaneous separation of characteristic
time scales of evolution by means of a suppressed feed-
back of microscopic dynamics that governs the strategy
changes. In so doing, the invasion of defectors on the
network where the pace of evolution is slowed down is
obstructed by the fact that an immediate presence of coop-
erators on one network is not necessarily linked to a higher
utility function on the other network. Since, however, the
clustering of cooperators into large groups is an inherently
slower evolutionary process than the aggressive invasion
of individual defectors, and thus the spreading of coop-
erative behavior is not negatively influenced by the inter-
dependence, the successful evolution of public cooperation
is effectively enhanced. The presented results help us to
understand why defection is not so successful if the utility
to be maximized is determined not just based on local, i.e.
the nearest neighbors, but also on global, i.e. players that
are situated in another network, sources. Although it is in
general expected that the local structure will promote the
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evolution of cooperation by means of spatial reciprocity,
sacrificing some fraction of this effect on the expense of
preventing defectors to invade effectively may yield a net
advance for cooperators. The biased utility function intro-
duced here captures succinctly such a scenario. Although
our model is too simple to be directly applicable to a
concrete situation, it is nevertheless capable to capture
the essence of an interesting everyday example. This has
to do with the fact that humans often rely on “governmen-
tal” sources, and that thus the local and global interests
are not necessarily strongly correlated. Withholding taxes
or exploiting social security (assuming within reason) will
hardly affect our interactions with others within our imme-
diate neighborhood. Hence, we may be tempted to cheat
on sources that appear distant or not directly related
to our primary activities. Creating a reliable and robust
interdependence between the two networks, as we demon-
strate in this letter, may then provide the necessary lever-
age to elevate the awareness of the bigger picture and thus
raise the level of cooperation in the society.
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Phys. Rev. E, 80 (2009) 021901.
[45] Szolnoki A., Wang Z., Wang J. and Zhu X., Phys.

Rev. E, 82 (2010) 036110.
[46] Roca C. P., Cuesta J. A. and Sánchez A., Phys. Rev.

Lett., 97 (2006) 158701.
[47] Pacheco J. M., Traulsen A. and Nowak M. A., J.

Theor. Biol., 243 (2006) 437.
[48] Rong Z., Wu Z.-X. andWang W.-X., Phys. Rev. E, 82

(2010) 026101.
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