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Abstract: Evolutionary game theory in the realm of network science appeals to a lot of research
communities, as it constitutes a popular theoretical framework for studying the evolution of
cooperation in social dilemmas. Recent research has shown that cooperation is markedly more
resistant in interdependent networks, where traditional network reciprocity can be further enhanced
due to various forms of interdependence between different network layers. However, the role of
mobility in interdependent networks is yet to gain its well-deserved attention. Here we consider an
interdependent network model, where individuals in each layer follow different evolutionary games,
and where each player is considered as a mobile agent that can move locally inside its own layer to
improve its fitness. Probabilistically, we also consider an imitation possibility from a neighbor on
the other layer. We show that, by considering migration and stochastic imitation, further fascinating
gateways to cooperation on interdependent networks can be observed. Notably, cooperation can be
promoted on both layers, even if cooperation without interdependence would be improbable on one
of the layers due to adverse conditions. Our results provide a rationale for engineering better social
systems at the interface of networks and human decision making under testing dilemmas.

Keywords: cooperation; interdependent networks; mobile agents; prisoner’s dilemma; snowdrift
game; game theory; mobility; rational agents

1. Introduction

Evolutionary game theory [1–7] gained a widespread recognition due to its applicability in various
interdisciplinary domains ranging from biological to social sciences, economics to psychology, and
mathematics to physical sciences [8]. Due to the Darwinian theory of the survival of the fittest, the
emergence and persistence of cooperation [9] among unrelated selfish individuals is a fundamental
challenge in nature’s evolution. How to achieve global and individual optima of cooperation in a
competitive environment is the main interest of mathematicians, biologists, physicists and social
scientists. Although cooperation is a costly move, it can be observed in many real situations. A ‘helper’
bird [10] often takes care of an individual other than its mate. The simple organisms [11,12] like
ants and bees also exhibit fascinating spatial cooperative behaviors. Paradigmatic examples are the
Prisoner’s Dilemma (PD) [13] and the Snowdrift game (SD) [14]. These are often explored theoretical
frameworks [15–26], where cooperators bare a cost for the collective well-being while defectors do not
contribute whilst still enjoying the same benefits.

Entropy 2020, 22, 485; doi:10.3390/e22040485 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-0326-826X
https://orcid.org/0000-0002-3087-541X
https://orcid.org/0000-0003-4832-5210
http://dx.doi.org/10.3390/e22040485
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/4/485?type=check_update&version=2


Entropy 2020, 22, 485 2 of 15

On the other hand, network science [27–30], a new discipline emerging in the 21st century, reveals
many unanticipated collective phenomena ranging from the internet to sociology, biochemistry to
brain science, to name but a few. Interestingly, the effect of network reciprocity on the evolutionary
game [31] has been identified as in early as the 1990s by Nowak and May. In the last decade, this
Nowak–May model has been extended under several conditions to maximize cooperation [32]. In this
context, the introduction of multilayer networks [33–39] opened up a new direction to explore [40],
which helps to understand how information available in one network layer affects the behavior of the
other network layer [41]. Multilayer network already captures the spotlight to evaluate the impact of
network of networks on the evolution of cooperation [42–44]. Although, most of the previous studies
incorporated the same game-theoretic models in all layers. But, in reality, individuals can delineate
behavioral heterogeneity [45–48]. Such diversity can be reflected in terms of aspiration level [49],
personal learning capability and so on. Szabó et al. [50] discussed the effect of inhomogeneous strategy
transfer capability, which promotes cooperation within a moderate density of influential players in the
spatial prisoner’s dilemma game model. Zhu et al. [51] also investigated the influence of two types of
layers on the public good games and they found that their heterogeneous strategy updating process
greatly enhances the evolution of cooperation in the structured population under the intermediate
fraction of influential players.

Recently, the attention of the researchers has been shifting towards the consequences of mobility
of individuals [52–54], particularly to those scenarios where the spatial structure is known to hinder
cooperation. Although the effect of mobility in the context of evolutionary game theory seems to be
an incalculable puzzle, as movements in human beings and living organisms are often modeled as a
random walk [55]. The mechanisms of these random walks are different solely based on the goal of the
movement. ‘Move after partner defects’, this strategy can outperform other complex strategies under a
certain number of suitable conditions [56]. Vainstein et al. [57] proposed an “always-move” strategy in
a diluted Nowak and May spatial Prisoner’s Dilemma model. They found that their strategy, under
the availability of enough free spaces, can increase cooperation compared to the static (non-mobility)
case for a range of parameter values. The role of different movement strategies is surveyed in [58].

In this present article, we want to explore the interplay between migration of individuals and
interdependence between the multilayer network in the evolution of cooperation. For this purpose,
we consider an interdependent network, where each layer corresponds to different types of games.
In the existing literature, an interdependent network is defined as a multilayer network consisting of
dependency interlinks (not physical connections) between the nodes in several networks and each
layer represents different types of nodes [40]. We propose a migration scheme oriented goal, solely
based on the principle of maximizing pay-offs (see Section 2 for details). Instead of the random
diffusive re-location policy, our work aims to investigate how this new migration strategy affects the
organization of cooperation in an interdependent network of different game playing layers. Interlinks
between layers are established probabilistically, which enables people to update their respective
strategies occasionally from long distant neighbors. The remaining part of this article is organized as
follows. In Section 2, the preliminary ingredients of the paper, the strategy updating algorithm and the
considered evolutionary games are thoroughly discussed. Section 3 is devoted to the presentation of
numerically simulated results, and finally, we conclude our findings with their potential implications
in Section 4.

2. Methods

2.1. Algorithm for the Strategy Updating

The employed strategy updating algorithm is as follows. We consider M number of layers, and
each layer is a square lattice of size L× L with periodic boundary condition. Initially, f0 fraction of free
spaces are considered in all layers. Thus, the number of free lattice points is N f = bL× L× f0c, and
consequently, the number of occupied lattice points is N = L× L−N f . Out of N, 50% of the individuals
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are randomly designated as cooperators (C) and remaining individuals are designated as defectors
(D). At every iteration step, individuals are updated asynchronously in a random sequential order.

Each randomly selected individual gets an equal opportunity for moving to the eight neighboring
cells surrounding it, provided those cells are empty, i.e., not occupied by any other individuals. Moving
to any of those vacant cells of the Moore neighborhood of size 3× 3, those individuals participate in
a fictitious game and calculate the expected returns (payoffs). The payoffs are accumulated due to
simultaneous interaction with the players situated in the Von Neumann neighborhood of that lattice
point at a Manhattan distance of 1.

With probability (1− r), an individual moves to the site with the highest pay-off and imitates
the strategy of the best performing neighbor, if the own pay-off is lower. In the case of more than one
cell with the highest payoff, any one cell is selected randomly. If the fictitious payoff is less than the
payoff collected in the current position, the individual remains in his/her cell. On the other hand, the
individual likes to update its strategy with probability r, from a neighbor of the player sitting in the
replica position of the opposite layer, provided that cell in the replica position is occupied by some
individual. If the replica position is empty, then the strategy of the best performing neighbor within the
same layer is copied after the proposed migration and imitation step. If an individual does not have
any free spaces surrounding him/her within its own layer, it will not update its strategy at that step.

In Figure 1, a simplified graphic is manifested. In this representation, an interdependent network
with M = 2 layers is considered. Note that the individuals of the i-th layer get the first chance
to upgrade their respective strategies at a specific time (iteration) and then, the individuals of the
(i + 1)-th layer, and so on. For instance, in the schematic picture (Figure 1), layer 1 (upper layer)
gets the first chance to update and then the second layer (bottom layer) will be updated at the same
time. So, the stochastic interlinks created between two layers are directed in nature. Such an interlink
between the nodes V1

(3,3) and V2
(3,3) are shown in the figure, where Vα

(i,j) represents the vertex at the
(i, j)-th position of α-th layer.

2.2. Network and Game-Theoretical Model

We first employ our movement strategy updating policy for M = 2 layers of interdependent
network. Two distinct 2 × 2 (two-person) games are considered in two layers. Players in one
sub-population follow the PD game, while the SD game is followed by the players in another layer. It
does not affect our simulated results that which game model is played in which layer. The general
payoff matrix resulting from the interaction between two players is given by

C D( )
C R S
D T P

in which the entries represent the payoff accumulated by the player in the left. The ordering between
the entries of this payoff matrix determines the playing game. These quantities are ranked as TSD >

RSD > SSD > PSD for SD and the PD game is delineated for TPD > RPD > PPD > SPD. This
slight variation in the relative ordering produces a notable change in the game dynamics. Here, the
interaction between two defectors results in a punishment P, which is clearly worse compared to the
reward R, gained by two players who choose to cooperate with each other, as R > P in either of the
games. The interaction between a cooperator and a defector produces a sucker’s payoff S, for the
former while the latter receives a temptation T.
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Figure 1. Schematic diagram: a bi-layer interdependent network is considered, where each network is
a L× L lattice with L = 6. White lattice points symbolize free spaces, red cells stand for defectors and
blue points represent cooperators, respectively. Each focal player can move into any of the existing
vacant (white) cells within the shaded circular region. f0 = 50% free spaces are taken into consideration
for this illustration. In case that a player does not find any vacant cell inside its Moore neighborhood,
he/she does not update his/her strategy at that step. At any particular time iteration, the players of the
first layer update their respective strategies, then at the same time iteration, the players of the second
layer get the same opportunity to update their respective strategies.

Hence, our investigation possesses three different folds and these are (i) interdependence of upper
and bottom networks, (ii) migration of individual in a sparse network, and lastly (iii) combination
of PD game with SD game. Each of these facts can boost the fraction of cooperation considerably
under certain suitable circumstances. However, their cumulative effect is not studied yet. Obviously,
PD and SD are two of the possible two-person games to study the effect of heterogeneous strategy
updating process. There are several other games [59], like Public goods game, Stag Hunt game,
Leader game, Hero game, Avatamsaka game, Anti-Leader game, Anti-Hero game and many more.
But, without loss of generality, we choose PD and SD games for their simplicity and enormous
applications in biology, economics, ecosystems and sociology [13,60–63]. Motivated by these facts,
already thousands, and possibly millions, of studies have involved dilemma games, including PD and
SD games. Particularly, donor-recipient game (DRG) (also known as donation games or mutual aid
games), one of the sub-classes of PD games, gains its well-deserved attention due to its applicability in
biology and ecosystems [64,65]. DRG is a game structure described by two-parameter benefit, b and
cost, c of cooperation. Nowak [3] proved that there exists a possible universal scaling law, fraction
of cooperation = function of ( b

c ) for DRG, when considering the major reciprocity mechanism. On
the other hand, spatial structure often promotes the evolution of cooperation for PD game [31], but
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spatial structure is found to reduce the proportion of cooperators for SD games unexpectedly [66], if
the cost-to-benefit ratio of cooperation is high. Inspired by all these facts, we choose PD and SD games
in both layers to incorporate the heterogeneity in the global interdependent network.

Throughout our study, the lattice size in each subnetwork is taken as L× L, with L = 100. All
simulations are presented after t = 103 iterations with 30 independent statistical realizations (unless
otherwise mentioned). The results remain unaltered for any longer iteration length and if averaged
over larger realizations. Without loss of any generality, the payoff values are fixed as RPD = RSD = 1.0,
SPD = SSD = 0.0, PPD = 0.1 and PSD = −0.4. These specific choices of parameters lead to dilemma
strength [59,64] of first layer D1

g = TPD − RPD = TPD − 1.0 and D1
r = PPD − SPD = 0.1 and the

dilemma strength of the second layer is D2
g = TSD − 1.0 and D2

r = −0.4. Thus, our chosen games are
general, as D1

g 6= D1
r (unless TPD = 1.1) and D2

g 6= D2
r along with PPD and PSD both are non-zero.

3. Results

Figure 2 shows the fraction of cooperation fc, defined as fc =
Number of cooperators

N , obtained from
the interaction between players of two different layers, which is almost 80% for the PD layer and
exceeds to almost 90% for the SD layer after the initial transient time period. Earlier, Santos et al. [67]
suggested a biased imitation strategy, which is found to be environmentally unfriendly for the SD
layer, but favorable for the PD layer on interdependent networks. As per the study by Wang et al. [68],
also the introduction of interdependence between interdependent networks is found to amplify the
hindrance greater in the SD layer, but promotes cooperation in PD layer. This limitation is surpassed
by the introduction of mobility in our proposed strategy updating procedure. The initial additional
investments to find a better neighborhood in order to gain more ultimately enhance fc of both layers.
In order to increase their pay-offs, individuals go for one of the two strategies. Due to the inclusion
of mobility in our present study, a defector having cooperative neighbors, leaves those cooperators
to two specific circumstances. One possibility is to move away and find a better neighborhood, or
alternate their strategy and become defectors. Therefore, a defector can utilize these benefits only for
a shorter period of time. This scenario thus resembles a one-sided love affair, where the defectors
are always attracted to the cooperators. But the cooperators do not feel the same attraction towards
the defectors. In fact, the attraction between the cooperators and defectors is proportional to S + T,
which is comparatively low than the mutual affection between two cooperators. A cooperator, having
a cooperative neighborhood will always cherish their company and love to unalter their respective
cooperative strategies for a period of successive time iterations. The mutual attraction between the
cooperators is 2R. Generally, the mathematical inequality 2R > T + S holds for the chosen games PD
and SD. To investigate the cumulative effect of our proposed strategy on the global interdependent
network, we also plot the global average in Figure 2. The global average is the arithmetic mean of
the fraction of the cooperation of both layers. Promotion of cooperation on the entire network is
established through the time evolution of global average fc.
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Figure 2. Fraction of cooperators fc as a function of time (iterations), t: The parameters are taken as
follows: TPD = 1.3 = TSD, f0 = 50% and r = 0.2. At the initial time t = 0, the fraction of cooperators is
fixed at 0.5, as all the defectors and cooperators are initially equally distributed. The x-axis is given
in logarithmic scale. Thus, the value of fc at t = 0 is not shown here. PD: Prisoner’s Dilemma; SD:
Snowdrift game.

Also, in the transient of this Figure 2, at around t = 2, a notch type behavior is found in all
time series. The exact reasoning behind this transient phenomenon is not clear to us. Initially, the
global average is decreasing with respect to time t and then, depending on suitable choices of other
parameters, fc is increasing. Earlier, the role of interdependence between the networks for the optimal
promotion of cooperation [69] is investigated and they found similar qualitative time evolution of the
fraction of cooperators. The notch type behavior in the time evolution of the fraction of cooperation is
also observed in earlier study [70] of the resilience of cooperative behaviors in multiplex networks.
Even so, a similar phenomenon is observed in Ref. [49]. Defectors are actually initially getting fare
better opportunities in the most early transient stage of the evolutionary process. The initial decimation
of cooperators in the preliminary time series reflects the fact that defectors are, as individuals, more
successful than cooperators. After this initial downfall of cooperators, the dominance of fc is established
with suitable choices of other parameters. This sudden fast change of fc creates that notch like behavior.

Note that, although fc achieves a time-independent stationary state for both layers as per our
numerical simulations (Figure 2), but the spatiotemporal structures are not static with respect to time.
Not only the size, but also the shape of the clusters are changing with respect to time. To demonstrate
this feature, few snapshots are plotted in Figures 3 and 4. Figure 3 reveals that a slight increment in r
with appropriate choices of other parameters helps to construct numerous cooperative (blue) clusters
and hence, increases the fc for both layers to a surprising degree. In Figure 3a,b, the fraction of
cooperation fc in both layers are 50%, as those figures are snapshots at initial time t = 0. In Figure 3c,d,
the snapshots are shown at time t = 103 with r = 0. Hence, those snapshots represent two independent
networks. The simulations reveal as per those specific snapshots, that the final fraction of cooperation
in the PD layer is fc = 55.52% and fc = 75.86% for the SD layer. All the simulations are performed
in Figure 3 with L = 100 and f0 = 50%. A notable change is observed in Figure 3e,f, where r = 0.2
is taken. Thus, as the global network becomes interdependent, fc is significantly enhanced in both
layers. Here we observe, fc = 78.72% for the PD layer and fc = 87.92% for the SD layer. This attests
the influence of interdependence parameter r in our study.
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Figure 3. Effect of r: TSD = TPD = 1.3 for both layers and other parameters are same as mentioned in
the text. Initially 50% cooperators and 50% defectors are considered in the L× L lattices with f0 = 50%
and L = 100. (a,b) Initial snapshots at t = 0, (c,d) snapshots at t = 103 with r = 0, and (e,f) snapshots
at t = 103 with r = 0.2. The left panel corresponds to the PD layer while the right panel shows
simulations for the SD layer. Blue and red respectively represents the cooperators and defectors. White
colors signify the free spaces. The second row represents two independent networks (as r = 0), where
the global average is 65.69%. Global average at r = 0.2 (see the third row) is fc = 83.32%, when the
global network reaches its stationary fraction of cooperation. These snapshots represent the fact that a
small enhancement of interdependence parameter r leads to an impressive improvement of the fraction
of cooperation fc in both layers.

The effect of free spaces are portrayed in Figure 4. Our simulations identify that introduction of
sufficient amount of f0, with suitable choices of other parameters, helps to suppress the competition
for resources. The mobility of the players tends to overcome the inhibiting factors and thus, helps
to increase cooperation on average. Here, L = 100 and r = 0.2 are kept fixed. We fix f0 = 30%
in Figure 4a,d. For this choice of proportion of free spaces, we find the fraction of cooperation
fc = 84.1714% for PD layer (see Figure 4a) and fc = 90.8429% for the SD layer (see Figure 4d). In the
third column of the Figure 4 (see Figure 4c,f), we set f0 = 0.7 and we find fc = 51.4333% for PD layer
and fc = 68.2% for the SD layer. Thus, although for f0 = 0.7, the fraction of cooperation is increased
for both layers compared to the initial fc, as the initial fc is kept fixed at 50%. But, this increment is
smaller compared to the rate of enhancement of fc for f0 = 0.3. In the middle column of Figure 4, we
set the free spaces at an intermediate value f0 = 50%. For this choice, fc is found to be 78.72% for the
PD layer (see Figure 4b) and 87.92% for the SD layer (see Figure 4e), respectively. These snapshots at
Figure 4 suggest the role of proportion of free spaces f0 in our simulations.

Better opportunity based on the local interactions will always lead to change in their
corresponding strategies. To improve fc, our proposed migration and imitation strategy does not need
any memory of past iterations. Even we do not introduce any kind of cost among the defectors [71].
Still initially randomly spread defectors are avoided by the cooperative neighbors. Those individuals
can interact with any individuals. Even, the number of interactions among those individuals may
interact only once, but there are still fair chances that they will interact more than once. Figures 3 and 4
demonstrate the defectors ultimately form clusters or end up at the boundaries of the cooperative
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groups. Since the cooperators in the cluster have a tendency of having more successful neighbors, the
defectors at the boundary of the cooperative cluster become cooperators. This reduces the average
payoffs of defectors and consequently helps to promote cooperation. Though the defectors do not
extinct as cooperative clusters are continuously interacted by defectors.

Figure 4. Effect of free space f0: Parameters are same as mentioned in Figure 3. Here, r is kept fixed
at 0.2. Snapshots taken at the final time iteration t = 1000, for (a,d) f0 = 0.3, (b,e) f0 = 0.5, and (c,f)
f0 = 0.7, respectively. The upper panel and the lower panel shows the results for PD and SD layers,
respectively. Increment of f0 reduces the fraction of cooperation in both the layers.

To further inspect the effect of r and f0 in our proposed model, a two-dimensional parameter
space is plotted with respect to fc. When r = 1.0, each individual can only update its strategy from
occupied (non-empty) replica node of the neighbor layer through the directed interlink. While r = 0.0
implies M isolated independent layers of two different games. Whereas, f0 = 0 demonstrates the
scenario where each layer is filled with exactly N × N number of individuals with L = N = 100 and
hence, there is no possibility of migration in the lattice. Under these circumstances, individuals can
not migrate into any neighboring cells and thus, they can not update their strategy. Hence, the final fc

for f0 = 0 will always reflect the initial setup in our proposed model. On the other hand, 100% free
space, i.e., f0 = 1.0 signifies the entire lattice is free from any individuals. Our simulations (Figure 5)
suggest that there exists an optimal range for which fc will be maximized in both layers.

Even, the interplay of different fractions of free spaces in the two layers are examined by keeping
fixed the probability at r = 0.2. Although, all other simulations in our study were done by keeping the
same fraction of free spaces (i.e., f PD

0 = f SD
0 = f0 ) in all the layers, but Figure 6 indicates there too

exists a certain favourable choices of ( f PD
0 , f SD

0 ) which will enhance fc significantly in all layers. It is
noticeable that the proportion of cooperators is maximized in an intermediate range of population
densities. As f0 of any layer tends to 0+, lack of migration opportunities hinders the maximization of
fc in that layer. In the low density of population ( f0 → 1−), individuals will not be benefited by our
algorithm as it is hard to find any neighbor, on average, at that circumstances.
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Figure 5. Fraction of cooperation in the parameter space (r, f0): Here, TPD = 1.3 = TSD. The fraction of
free-space, f0 is studied within [0%, 95%]. Also, r ∈ (0.0, 1.0]. Introduction of a tiny amount r− f0 can
outperform the defectors in both layers and as a result of that, the number of defectors are dimished to
a significant level. To establish the improvement of fraction of cooperation on the global network, we
plot the global average (right panel) along with the fraction of cooperation of PD layer (left panel) and
of SD layer (middle panel).

Figure 6. Fraction of cooperation fc as a function of f PD
0 and f SD

0 : the effect of different proportion of
free spaces on different layers is inspected here in order to maximize fc in both layers. The left plot
is for the PD layer, whereas the middle panel is for the SD layer, and global average is plotted in the
right panel. Here, r = 0.2 and TPD = 1.3 = TSD. fc is increased notably for intermediate choices of
f PD
0 and f SD

0 .

Till now, the results are represented only by varying f0 of both layers, but the size of the lattice
remains unchanged. But, such a variation of f0 with fixed L leads to a fluctuation in the effective
population densities in both layers. To study the consequences of varying free spaces in another way,
we plot the Figure 7 by changing the size L of the square lattices. The total number of individuals,
N = 8000, initially kept fixed at time t = 0. The initial fraction of cooperation in all the cases in Figure 7
is fc = 0.5. Since, the initial effective population size is kept fixed, thus by changing L, one can study
the effect of free-space, f0. The size of the lattice is varied within [100, 200] with a fixed step-length 25.
As a result of that, the fraction of free positions, f0 is also varied within [0.2, 0.8]. The results depict
the fact that, as the fraction of free position is increased with a fixed initial population, the fraction
of cooperation is also decreased. Actually, as the lattice size increases, each individual gets more
opportunity to move, but lessens their scope to interact with others due to the absence of a sufficient
number of players in their neighborhood, on average. This hinders the growth of the enhancement of
fc in both the layers. To portray the global scenario, the global average is plotted. Note that, the figure
is plotted on a semi-log scale, hence the initial fc at t = 0 is not shown there. The time series in the
Figure 7 exhibits the similar notch type behavior at around t = 3, as already observed in the Figure 2.
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Figure 7. Effect of increment of lattice size keeping the total number of individuals unchanged: The
size of the square lattice L is varied as shown in the figure. For all time series, initially at time t = 0, the
number of cooperators is 4000 and the number of defectors is kept fixed at 4000. The other parameters
are r = 0.2 and TPD = 1.3 = TSD. Since, the total number of individuals is initially fixed at t = 0, so the
increment of lattice size gives those individuals more free spaces to roam. The figure clearly illustrates
the inclusion of more free spaces, by keeping the total number of individuals unchanged, actually
decreases the fraction of cooperation fc. Here, the global average (i.e. the average of the fraction of
cooperation of both layers) is plotted with respect to t. Note that, the x-axis is in the logarithmic scale,
so the initial data at t = 0 is not incorporated.

Temptation to defect always affects the dynamical behavior of the system. The interplay between
TPD and TSD can lead the system from one desired dynamical regime to another undesired one. We
numerically observe in Figure 8, that there exists a regime for 1 ≤ T < 1.4 (approximately) for
both layers, which notably improves fc in all layers. An analytic understanding of the phenomenon
of persistence and dominance of cooperation induced by our migration and stochastic imitation
strategy appears difficult at this time. We thus seek to explain the phenomenon qualitatively, with
the aid of numerical simulations. The two-dimensional parameter space of TPD and TSD for the entire
interdependent network clearly delineates the fact that TPD < 1.4 and TSD < 1.4 promote the evolution
of cooperation more effectively. This may be due to the accumulated payoffs in the SD layer. In a Von
Neumann neighborhood surrounded by the equal number of cooperators and defectors, a cooperator
will receive n(R + S) for n = 1, 2, which is equal to n, for our choice of parameter values in both layers.
On the other hand, a defector will gain n(P + T) for n = 1, 2 on an evenly composed neighborhood
of cooperators and defectors. For our chosen values RPD = RSD = 1.0, SPD = SSD = 0.0, PPD = 0.1
and PSD = −0.4, the relation n(RPD + SPD) < n(PPD + TPD) for n = 1, 2 holds always. But for the SD
layer in a position surrounded by the same number of C’s and D’s, we have

n(RSD + SSD) > n(PSD + TSD) TSD < 1.4

= n(PSD + TSD) TSD = 1.4

< n(PSD + TSD) TSD > 1.4

with n = 1, 2.
Under these circumstances, defectors of the SD layer cannot gain enough profits from neighbors

for T < 1.4 and thus become vulnerable to cooperators. As a result of that, cooperators tend to
dominate eventually. Hence, up to T < 1.4, SD layer can help in the survival of cooperative
behavior based on our strategy and thus, eventually promotes the reduction of defectors on the
global interdependent network.
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Figure 8. Effect of temptation parameter T: f0 = 50% and r = 0.2. Frequency of cooperators, fc is
treated here as a function of the advantage of defectors, T. TPD denotes the temptation for the PD
layer and temptation for the SD layer is represented as TSD. Cooperation is enhanced for an optimal
range of [TPD, TSD], where TPD and TSD both belongs to the range [1.0, 1.4), approximately. The color
bar indicates fc. Imitating a neighbor from the SD layer (middle panel) is beneficial for the levels of
cooperation in the PD layer (left panel) for TPD < 1.4 and TSD < 1.4. This fact is portrayed through the
right panel of the figure, where we plot the global average. Note that, the fraction of cooperators is, in
general, lower in the PD layer compared to the SD layer.

Note that the parameter r here is designated as network interdependence parameter. Our
proposed strategy updating protocol only allows the players to interact in their local neighborhood, but
occasionally they can update their strategy from one of the long distant neighbors on the other network
with probability r. Every player can only connect with their replica player, provided the replica
position in the other network is not empty. To understand the role of this network interdependence, a
two-dimensional parameter space (Figure 9) is drawn in the (rPD, rSD) space, by considering different
strategy updating probabilistic fractions in both layers. Clearly, there exists an optimal region of
intermediate interdependence between the two layers, which enhances the cooperation on both
networks. Our theoretical simulation suggests a suitable choices of parameter r can drastically
maximize the fraction of cooperation for both layers. Besides our movement strategy, this random
strategy adaptation is found to intensify the cooperation level, on average.

Figure 9. Consequences of various rPD and rSD on fc: color-coded fc for the PD game (left), SD
game (middle), and global average (right) on the rPD − rSD parameter space is plotted based on the
stationary fraction of cooperation. Here, f0 = 50% and TPD = TSD = 1.3. Note that both scales are
logarithmic. Clearly, coooperation is best promoted, when interdependence parameters rPD and rSD

are chosen from an optimal range.
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4. Discussion

Coevolutionary processes on interdependent networks provide a rich playground that can be
implemented successfully on various topics that are of relevance to social sciences, as well as to
natural sciences and engineering, ranging from traffic [72], crime [73], epidemic processes [74], climate
inaction [75], antibiotic overuse [76], and vaccination [77,78], which can be put under the umbrella of
social physics [79].

Along these lines, our research reveals the role of goal-oriented migration in an interdependent
network, where individuals on two different layers are playing two distinct games, namely the
prisoner’s dilemma and the snowdrift game. Earlier studies on multilayer networks [67,68] uncovered
that interdependence between networks generally inhibits the cooperation in the SD layer, although
it is found to be useful for PD layer. In contrast, our mobility induced strategy improves the level
of cooperation significantly in both layers. Each individual has been treated here as a mobile agent,
looking for a better neighborhood in order to maximize the profit in terms of payoffs. This mobility
influences the population dynamics and facilitates cooperators to survive appreciably by evading the
invasions by defectors. Our systematic simulations indicate that the success of cooperators is enhanced
in an intermediately dense population, where the availability of free space is sufficient. Furthermore,
we have shown that the performance of the proposed strategy will increase under suitable choices
of the interdependence parameter and for a suitable value of the temptation parameter within the
[1.0, 1.4) range. We have also studied the effect of free spaces by keeping the effective population size
unchanged. We have also applied our approach to a multilayer network where on both layers the
same game model was applied, and we have likewise observed a notable enhancement of cooperation
(results not shown here).

The considered migration-induced interaction dynamics may lead to an interesting direction for
future research at the interface of multilayer networks and evolutionary game theory, in particular
with the aim of engineering better social systems at the interface of networks and human decision
making under social dilemma conditions.
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