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Abstract
The chaotic behaviour of a driven resonant circuit is studied directly from
the experimental data. We use basic nonlinear time series analysis methods
that are appropriate for undergraduate courses. Mutual information and false
nearest neighbours are explained in detail, and used to obtain the best possible
attractor reconstruction. For the reconstructed attractor, a determinism test is
performed and the largest Lyapunov exponent is calculated. We show that
the largest Lyapunov exponent is positive, which is a strong indicator for the
chaotic behaviour of the system. To help the reader reproduce our results and
to facilitate further applications on other experimental systems, we provide
user-friendly programs with graphical interface for each implemented method
on our Web page.

1. Introduction

Four decades ago, the paradigm of chaos was introduced [1]. Since the discovery of chaos the
interest in this field of research has risen rapidly. Several attempts have been made to integrate
the chaos theory into the undergraduate curriculum [2–4]. Accordingly, simple experiments
have been proposed [5–9] to demonstrate basic characteristics of chaotic behaviour, such as
the irregularity of motion, unpredictability and sensitivity to initial conditions.

In many cases, the analysis of experimentally observed chaotic behaviour is for simplicity
reasons confined to computer simulations of appropriate mathematical models [10–12].
However, showing that a mathematical model exhibits chaotic behaviour is no proof that
chaos is also present in the corresponding experimental system. To convincingly show that
an experimental system behaves chaotically, chaos has to be identified directly from the
experimental data. For this purpose, nonlinear time series analysis methods have to be applied
[13–15].

In this paper, we use basic nonlinear time series analysis methods for confirming the
chaotic behaviour of a very simple periodically driven resistor–inductor diode (RLC) circuit
[16]. First, we use the delay coordinate embedding method for reconstructing the attractor
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Figure 1. Schematic presentation of the experimental system.

of the system from the observed time series. For this purpose, we have to determine the
proper embedding delay and embedding dimension. There exist two methods, developed in
the framework of nonlinear time series analysis, that enable us to readily perform the desired
tasks. The mutual information method [17] yields an estimate for the proper embedding
delay, whereas the false nearest neighbour method [18] enables us to determine a proper
embedding dimension. Second, we perform a simple determinism test [19]. The latter is
of crucial importance, since it enables us to distinguish between deterministic chaos and
irregular random behaviour, which often resembles chaos, but originates from a stochastic
system. Finally, to determine the presence of deterministic chaos in the driven RLC
circuit, we calculate the largest Lyapunov exponent. We show that the largest Lyapunov
exponent is positive, which is a strong indicator for the presence of chaos in the examined
system.

To help the reader reproduce our results, and to facilitate further applications on other
experimental systems, we provide user-friendly programs with a graphical interface for each
implemented method. The whole program package, including step-by-step usage guidance,
can be downloaded from our Web page [20].

2. Experiment

We study a simple periodically driven RLC circuit [16] (see figure 1). The circuit elements
have values R = 200 �,L = 0.1 mH, while the diode is a classical 1N4007 silicon rectifier
with a typical junction capacitance of approximately 30 pF. The output (Uoutput) voltage has
been measured with a LeCroy digital oscilloscope with a sampling rate of 500 measurements
per second.

In dependence on the amplitude of the input sinusoidal voltage (Uinput,0), the circuit
exhibits various regular and complex oscillations. If Uinput,0 ≈ ±0.5 V, the system oscillates
regularly with a resonant frequency of 2.2 Hz. The corresponding two-dimensional phase
space projection Uinput versus Uoutput is shown in figure 2(a). When Uinput,0 is increased to
approximately ±1.5 V, we obtain a two-folded limit cycle (figure 2(b)). At even higher values
of Uinput,0, the limit cycle undergoes further period doublings (see figure 2(c)), until eventually
the behaviour becomes chaotic as shown in figure 2(d).

Although results presented in figure 2 indicate a typical period doubling route to chaos, a
more detailed and careful approach is required to truly confirm the presence of deterministic
chaos in the examined system. For this purpose, we collect 25 000 data points of the output
voltage presented in figure 2(d), and apply nonlinear time series analysis methods in order to
confirm the chaotic behaviour of the system.
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(a) (b)

(c) (d)

Figure 2. System behaviour in dependence on the amplitude of the input sinusoidal voltage
(Uinput,0). The experimental results are shown as 2D phase space projections of the input versus
output voltage. (a) Regular behaviour in the form of a simple limit cycle at Uinput,0 = ±0.5 V.
(b) Regular behaviour in the form of a two-folded limit cycle at Uinput,0 = ±1.5 V. (c) Regular
behaviour in the form of a four-folded limit cycle at Uinput,0 = ±3.0 V. (d) Chaotic behaviour at
Uinput,0 = ±4.0 V.

3. Time series analysis

3.1. Reconstruction of the attractor

At first, the reconstruction of the attractor in an m-dimensional phase space appears to be a
rather complicated task, since we only have the time series of a single system variable. In our
experiment, we have measured the output voltage Uoutput. This gave us the time sequence of
the form {x0, x1, x2, . . . , xi, . . . , xn}, where xi denotes the output voltage at time i. According
to Takens [21] the reconstructed attractor of the original system is given by the vector sequence

p(i) = (xi, xi+τ , xi+2τ , . . . , xi+(m−1)τ ), (1)

where τ and m are the embedding delay and the embedding dimension, respectively. The
famous theorem by Takens [21] states that for a large enough m, this procedure, known as delay
coordinate embedding, provides a one-to-one image of the original system. In other words,
the attractor constructed according to equation (1) will have the same mathematical properties,
such as the dimension, Lyapunov exponents, etc as the original system. Although the
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concept of delay coordinate embedding may appear somewhat mystic, in particular the fact
that one can reconstruct the whole phase space of a system from a single scalar measurement,
there exists a rather intuitive explanation why the reconstruction can be made. According
to Abarbanel [13], the key to understanding lies in the fact that all variables in a nonlinear
process are generically connected, i.e. they influence one another. Thus, every subsequent
point of a given measurement xi is the result of an entangled combination of influences from
all other system variables. Accordingly, xi+τ may be viewed as a substitute second system
variable, which carries information about the influences of all other variables during time τ .
With the same reasoning one can introduce the 3rd (xi+2τ ), 4th (xi+3τ ), . . . , mth (xi+(m−1)τ )

substitute variable, and thus obtain the whole m-dimensional phase space where the substitute
variables incorporate all influences of original system variables, provided m in equation (1) is
large enough.

To reconstruct the attractor successfully by using equation (1), appropriate values for τ

and m have to be determined. For estimation of τ , two criteria are important. First, τ has to
be large enough so that the information we get from measuring the value of x at time i + τ

is significantly different from the information we already have by knowing the value of x at
time i. Only then will it be possible to gather enough information about all other system
variables that influence the value of x to reconstruct the whole attractor. Second, τ should
not be larger than the typical time in which the system loses memory of its initial state. This
is particularly important for chaotic systems, which are intrinsically unpredictable and hence
lose memory of the initial state as time progresses.

Following this reasoning, Fraser and Swinney [17] introduced the mutual information
between xi and xi+τ as a suitable quantity for determining τ . The mutual information between
xi and xi+τ quantifies the amount of information we have about the state xi+τ presuming we
know the state xi . Given a time series of the form {x0, x1, x2, . . . , xi, . . . , xn}, one first has
to find the minimum (xmin) and the maximum (xmax) of the sequence. The absolute value of
their difference |xmax − xmin| then has to be partitioned into j equally sized intervals, where j

is a large enough integer number. Finally, one calculates the expression

I (τ ) = −
j∑

h=1

j∑

k=1

Ph,k(τ ) ln
Ph,k(τ )

PhPk

, (2)

where Ph and Pk denote the probabilities that the variable assumes a value inside the hth and
kth bins, respectively, and Ph,k(τ ) is the joint probability that xi is in bin h and xi+τ is in bin
k. In order to better understand equation (2), let us consider a limit example. In the case of
chaotic behaviour I (τ ) → 0 as τ → ∞, since xi and xi+τ are then no longer correlated, and
thus Ph,k(τ ) factorizes to PhPk yielding zero in equation (2). In general, we are interested in
minima of I (τ ). At the first minimum of I (τ ) xi+τ adds the largest amount of information
to the information we already have by knowing xi , without completely losing the correlation
between them [17, 22]. Hence, the first minimum of I (τ ) marks the optimal choice for the
embedding delay.

For the oscillatory regime presented in figure 2(d), the first minimum of I (τ ) is obtained
at τ = 65 time steps (see figure 3). This result can be easily reproduced with our program
mutual.exe, which can be downloaded from our Web page [20]. The program has only
two crucial parameters, which are the number of bins j (in our case 100) and the maximal
embedding delay τ (in our case 500). All calculated results are displayed graphically. More
precise usage instructions are given in the appendix and on the Web page.

To determine the proper embedding dimension m, we use the false nearest neighbour
method [18]. The method relies on the assumption that an attractor of a deterministic system
folds and unfolds smoothly with no sudden irregularities in its structure. Therefore, points
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Figure 3. Determination of the proper embedding delay. The mutual information has the first
minimum at τ = 65.

that are close in the reconstructed embedding space have to stay sufficiently close also during
forward iteration. If this criterion is met, then under some sufficiently short forward iteration
the distance between two points p(i) and p(j) of the reconstructed attractor, which are initially
only a small ε apart, cannot grow further as Rtrε, where Rtr is a given constant (see below).
However, if an ith point has a close neighbour that does not fulfil this criterion, then this ith
point is marked as having a false nearest neighbour. We have to minimize the fraction of points
having a false nearest neighbour by choosing a sufficiently large m. If m is too small, two
points of the attractor may solely appear to be close, whereas under forward iteration they are
mapped randomly due to projection effects. The random mapping occurs because the whole
attractor is projected onto a hyperplane that has a smaller dimensionality than the actual phase
space and so the distances between points become distorted.

In order to calculate the fraction of false nearest neighbours the following algorithm
is used. Given a point p(i) in the m-dimensional embedding space, one first has to find
a neighbour p(j), so that ‖p(i) − p(j)‖ < ε, where ‖· · ·‖ is the square norm and ε is a
small constant usually not larger than the standard deviation of data. We then calculate the
normalized distance Ri between the (m + 1)th embedding coordinate of points p(i) and p(j)

according to the equation:

Ri = |xi+mτ − xj+mτ |
‖p(i) − p(j)‖ . (3)

If Ri is larger than a given threshold Rtr , then p(i) is marked as having a false nearest neighbour.
Equation (3) has to be applied for the whole time series and for various m = 1, 2, . . . until the
fraction of points for which Ri > Rtr is negligible. According to Kennel et al [18], Rtr = 10
has proven to be a good choice for most data sets.

The results obtained with the false nearest neighbour method are presented in figure 4. It
can be well observed that the fraction of false nearest neighbours (fnn) convincingly drops to
zero for m = 5. This means that the studied periodically driven RLC circuit is a 5D system.
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Figure 4. Determination of the minimal required embedding dimension. The fraction of false
nearest neighbours (fnn) drops convincingly to zero at m = 5.

In other words, it would be justified to model the behaviour of the system with not less than
five autonomous first-order ordinary differential equations.

This result can also be easily reproduced with our program fnn.exe, which can be
downloaded from our Web page [20]. Parameter values that have to be provided are the
minimal and the maximal embedding dimensions for which the fraction of false nearest
neighbours is to be determined (mmin = 1,mmax = 5), the embedding delay (τ = 65), the
initial ε (0.05), and the factor for increasing the initial ε (1.41).

Having calculated the optimal embedding delay and embedding dimension, we are able
to successfully reconstruct the attractor. For m = 5 and τ = 65, the attractor obtained
according to equation (1) is presented in figure 5. The correct reconstruction of the attractor
is a key step towards establishing whether the experimentally observed behaviour originated
from a deterministic chaotic system, since it enables us to perform the determinism test, and
to calculate the largest Lyapunov exponent.

3.2. Determinism test

After reconstructing the attractor, we are able to perform the determinism test [19] to verify
if the studied time series indeed originates from a deterministic system. The determinism test
is of crucial importance since it enables us to distinguish between deterministic chaos and
irregular random behaviour, which often resembles chaos.

By closely observing figure 5, it becomes evident that the measured data points are
somewhat burdened with measurement error. The lines of the reconstructed phase space are
not completely smooth. Thus, one may wonder if the irregular appearing attractor is truly
a consequence of the underlying deterministic dynamics, or is it simply a consequence of
random measurement error. To clarify this, a determinism test [19, 23, 24] has to be deployed.

If a system is deterministic, it can be described by a set of ordinary differential equations.
The vector field at every point of the phase space is uniquely determined by the differential
equations. Therefore, the determinism test introduced by Kaplan and Glass [19] enables us
to construct the vector field of the system directly from the time series, and subsequently
test if the reconstructed vector field assures uniqueness of solutions in the phase space. The
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Figure 5. Reconstructed phase space obtained with the optimal embedding parameters: τ = 65
and m = 5.

determinism test is based on a correct reconstruction of the attractor in the embedding space.
The embedding space has to be coarse grained into equally sized boxes. To each box that is
occupied by the trajectory a vector is assigned, which will finally be our approximation for
the vector field. The vector pertaining to a particular box is obtained as follows. Each pass i
of the trajectory through the kth box generates a unit vector ei whose direction is determined
by the phase space point where the trajectory first enters the box and the phase space point
where the trajectory leaves the box. In fact, this is the average direction of the trajectory
through the box during a particular pass. The approximation for the vector field Vk in the kth
box of the phase space is now simply the average vector of all passes obtained according to
the equation

Vk = 1

Pk

Pk∑

i=1

ei , (4)

where Pk is the number of all passes through the kth box. Completing this task for all occupied
boxes gives us a directional approximation for the vector field of the system. Note that the
word directional is stressed since the described method provides no information about how
fast the trajectory moves through particular boxes. Therefore, we cannot say anything about
the absolute lengths of the obtained vectors. The absolute magnitude of the vector field is,
however, not important for the determinism test. What is important is the fact that if the
time series originated from a deterministic system, and the coarse grained partitioning is
fine enough, the obtained vector field should consist solely of vectors that have unit length
(remember that each ei is a unit vector). This follows directly from the fact that we demand
uniqueness of solutions in the phase space. If solutions in the phase space are to be unique,
then the unit vectors inside a particular box must all point in the same direction. In other
words, the trajectories inside each box may not cross, since that would violate the uniqueness
condition at each crossing. Note that each crossing decreases the size of the average vector
Vk . For example, if the crossing of two trajectories inside the kth box occured at right angles,
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Figure 6. Determinism test. The approximated vector field for the embedding space reconstructed
with τ = 65 and m = 5. The pertaining determinism factor is κ = 0.83.

then the size of Vk would be, according to Pythagoras,
√

2/2 ≈ 0.707 < 1. Hence, if the
system is deterministic, i.e. no trajectory crossings inside a particular box occur, each average
resultant vector obtained according to equation (4) will be exactly of unit length. Accordingly,
the average length of all resultant vectors Vk , which we introduce as the definite measure for
determinism κ , will be exactly 1, while for a system with a stochastic component this value
will be substantially smaller than 1.

The results of the determinism test for the embedding space presented in figure 5 are shown
in figure 6. For this calculation the five-dimensional embedding space was coarse grained
into a 10 × 10 × 10 × 10 × 10 grid. The pertaining determinism factor of the approximated
vector field presented in figure 6 is κ = 0.83. Indeed, it can be well observed that the
large majority of vectors are of unit length. However, due to the ever-present measurement
error the determinism of the time series is somewhat blurred, consequently yielding κ < 1.
Nevertheless, the deterministic signature is still good enough to be preserved, so that the
chaotic appearance of the reconstructed attractor cannot be attributed to stochastic influences.
The result presented in figure 6 can be reproduced with the program determinism.exe, which
can be downloaded from our Web page [20].

3.3. Largest Lyapunov exponent

Lyapunov exponents determine the rate of divergence or convergence of initially nearby
trajectories in phase space [25–27]. In general, an m-dimensional system has m different
Lyapunov exponents �i , where i = 1, 2, . . . , m. They can be ordered from the largest to
the smallest, thereby forming the Lyapunov exponent spectrum (�1,�2, . . . , �m). Let us
consider a three-dimensional system with the Lyapunov exponent spectrum (�1,�2,�3).
It has been shown [25–27] that the sign of each Lyapunov exponent uniquely determines
the attractor of the system. More precisely, all negative exponents, denoted by (−,−,−),
indicate the presence of a fixed point, while (0,−,−) indicates a limit cycle and (+, 0,−) a
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chaotic attractor. The most important observation is that the largest Lyapunov exponent �1,
denoted as �max, uniquely determines whether the system is chaotic or not. If �max > 0,
two initially nearby trajectories of the attractor diverge exponentially fast as time progresses,
constituting the extreme sensitivity to changes in initial conditions, which is the hallmark of
chaos. Thus, for our purposes it suffices to constrain the analysis solely to the largest Lyapunov
exponent.

We describe an algorithm developed by Wolf et al [28], which implements the theory
in a very simple and direct fashion. The first step of the algorithm consists of finding the
nearest neighbour of the initial point p(0) = (x0, x0+τ , x0+2τ , x0+3τ , x0+4τ ). Let L0 denote the
Euclidean distance between them. Next, we have to iterate both points forward for a fixed
evolution time tevolv, which should be of the same order of magnitude as the embedding delay
τ , and denote the final distance between the evolved points as Levolv. If the attractor is chaotic,
Levolv will typically be larger than L0, whereas in the case of periodicity Levolv ≈ L0. In
practice, however, this is true only if tevolv is chosen small enough (usually not larger than mτ )
so that the initial length element L0 is propagated only through the small-scale structure of the
attractor. If namely tevolv is too large, it is possible that the two trajectories defining L0 pass
through a folding region of the attractor and thus Levolv will be smaller than L0, finally leading
to an underestimation of the largest Lyapunov exponent (�max). After each tevolv a replacement
step is attempted in which we look for a new point in the embedding space whose distance to
the evolved initial point is as small as possible, under the constraint that the angular separation
between the evolved and replacement element is small. This procedure is repeated until the
initial point p(0) reaches the end of the time series. Finally, �max is calculated according to
the equation

�max = 1

Mtevolv

M∑

i=0

ln
L

(i)
evolv

L
(i)
0

, (5)

where M is the total number of replacement steps.
By using equation (5), we calculate the largest Lyapunov exponent for the attractor

presented in figure 5. The largest Lyapunov exponent converges very well to �max = 0.33.
This is a firm proof for the chaotic behaviour of the studied experimental system. This final
result can be easily reproduced with our program lyapmax.exe [20].

4. Discussion

The experimental behaviour of a periodically driven RLC circuit was systematically analysed
using basic nonlinear time series analysis methods. In particular, we outlined a minimalist,
yet careful approach that eliminates the occurrence of so-called false positives, i.e. claims
that chaos was found where it was not, but is still simple enough for undergraduate students.
Moreover, we developed user-friendly programs for each implemented method [20], which
should make the reproduction of presented results possible also for individuals for which this
paper represents the first encounter with nonlinear time series analysis.

We applied the mutual information method [17] and the false nearest neighbour method
[18] for establishing optimal embedding parameters for the attractor reconstruction from the
experimental time series. This enabled us to perform the determinism test [19] and calculate
the largest Lyapunov exponent [28]. Thereby, we were able to show that the examined
experimental system is deterministically chaotic directly from the time series, without having
to construct a mathematical model for the circuit.

The knowledge one obtains when mastering the above-described methods presents a
good starting point for performing further nonlinear time series analysis, such as calculation
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of dimensions [29–31] or noise reduction [32, 33]. In fact, these tasks would all be appropriate
subjects for a sequel paper. Currently, these topics are covered in existing monographs on
nonlinear time series analysis [13–15] and in the original papers. An excellent source of
information for these methods is also the TISEAN project [34]. Together with the pertaining
paper [35] and the book by the same authors [14] the TISEAN project presents a very valuable
source of information as well as programs for virtually all topics of nonlinear time series
analysis. Therefore, particularly for advanced undergraduate students who would like to delve
deeper into nonlinear time series analysis, we recommend exploiting the benefits offered by
these sources.

Our goal was to make the methods accessible to undergraduate students, to whom this
paper may represent the first contact with the presented theory. The paper is also devoted to
teachers who would like to integrate nonlinear time series analysis methods into the physics
curriculum.

Appendix. The program package

The whole program package that can be downloaded from our Web page [20] consists of five
programs (embedd.exe, mutual.exe, fnn.exe, determinism.exe and lyapmax.exe) and an input
file ini.dat, which contains the studied time series. All programs have a graphical interface and
display results in the forms of graphs and drawings. In order to run the programs, Windows R©

environment is required and the input file ini.dat has to be in the working directory. After
download, the content of the package.zip file should be extracted into an arbitrary (preferably
empty) directory. Thereafter, the programs are ready to run via double-clicking on the
appropriate icon. Initially, a parameter window will appear, which allows you to insert proper
parameter values (by default they are set equally to those used in this paper). Once this step
is completed, press the OK button to execute the program. A progress bar will appear, which
lets you know how fast the program is running, and when it will eventually finish. After
completion results are displayed graphically in a maximized window. To avoid exceptionally
high memory allocation and running times, all programs are currently limited to operate
maximally on 250 000 data points with 10 degrees of freedom. Upon request, we can provide
programs that can also handle larger data sets. Finally, we strongly advise the reader to read
the manual pertaining to the programs on our Web page [20], where more detailed instructions
for users can be found.
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