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Abstract. Synchronization patterns have been observed in neuronal networks and are related to many
cognitive functions and information processing and even some pathological brain states. In this paper, we
study a ring network of non-locally coupled Izhikevich neurons with electrical synaptic coupling. Since
it has been proved that time delays through gap junctions can simplify the synchronization, here we
particularly investigate the effects of partial time delays on networks synchronization. By using two control
parameters, the time delay and the probability of partial time delay, we show that partial time delays
have a significant effect on the synchronization of this network. In particular, partial time delays can
either increase or decrease the synchronization and also can induce synchronization transitions between
coherent and incoherent states. Thus, partial time delays can cause chimera state, which is a special pattern
when both synchronous and asynchronous states coexist and are strongly related to many real phenomena.
Furthermore, partial time delays can change the period of synchronized neurons from period-1 to period-2
firing states that have different effects on information transmission in the brain.

1 Introduction

Study of synchronization in coupled networks is impor-
tant in different fields such as physics and biology [1,2].
It has been frequently reported that synchronization of
neuronal networks have a major role in functionality (or
malfunction) of the brain [3,4]. Synchronization is a funda-
mental neural mechanism and has a subtle role in efficient
processing and neuronal signal transmission and coding
[5–7]. Many synchronization patterns have been identi-
fied in coupled systems, such as complete synchronization,
phase and antiphase synchronization, phase-lock synchro-
nization, cluster synchronization, and lag synchronization
[8,9]. The rhythm of electrical activity of neurons carries
more important information than the amplitude. Thus,
phase synchronization, which is associated with neural
integration and working memory, is usually more visible
than complete synchronization in biological systems [5,10].
If perturbations occur in the synapses, the dynamics of the
oscillations in the neurons and their periods change. Mea-
suring the phase shifts of the neurons, which is defined
as phase resetting curves, provides the information for
predicting synchronization in neuronal networks [11,12].
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Recently, cluster (or partial) synchronization has been
studied [13–15]. Partial synchronization occurs when some
parts of the network oscillate coherently as a cluster or
group, while some others oscillate incoherently [16–19].
In a network of identical oscillators, chimera state repre-
sents the spatial coexistence of coherent and incoherent
regions [20–24]. Studying chimera state in networks has
attracted much attention within the research community
[19,25–28]. Observations in unihemispheric sleep in birds
and dolphins indicate that chimera exists in natural phe-
nomena. It is also observed in some brain disorders such
as epileptic seizures [3,29].

Many studies have investigated synchronization and
chimera states in neuronal networks in the past years. Ma
et al. [30] considered a neuronal network with imposed
electromagnetic radiation and found that the synchroniza-
tion transitions depend on the coupling strength together
with the intensity of electromagnetic radiation. Rakshit
et al. [31] presented a complete analysis of two coupled
neuronal Rulkov maps and studied synchronization in the
presence of both inner linking and chemical synapses.
Volos et al. [32] investigated two coupled Hindmarsh–Rose
models in the case of bidirectional and unidirectional cou-
plings and showed that it can give rise to either complete
synchronization or anti-synchronization. Wei et al. [33]
represented that a neuronal network of Hindmarsh–Rose
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models with alternating current, which exhibits coexis-
tence of limit cycle and chaotic attractors, can evoke
non-stationary chimera states. Schmidt et al. [34] stud-
ied two-dimensional (2D) networks of FitzHugh–Nagumo
and leaky integrate-and-fire oscillators. They observed 2D
chimera patterns such as spots, rings and stripes, and
reported the effects of varying the initial conditions and
coupling parameters on these states. Omelchenko et al.
[35] investigated nonlocally coupled Fitzhugh–Nagumo
models in both regular ring topologies with inhomoge-
neous parameters and irregular topologies with identical
oscillators, and indicated that chimera states are robust
under small inhomogeneities.

Studies have shown that synchronization can be
strongly affected by the time delay [36–38]. In neuronal
networks, time delay has a crucial effect on synchroniza-
tion, firing dynamics and spiking rate of neurons. Sub-
stantial features of the neuronal system such as increasing
or decreasing in phase synchronization, switching between
different synchronized states or spiking rate variation of
neurons can be controlled by the time delay [5,39–41].
Masoliver et al. [42] showed that in a ring time delayed
coupled network of FitzHugh–Nagumo oscillators, in the
presence of noise, the number of nearest neighbors and
time delay can control the coherence resonance. Jalili
showed that in a time delayed chemical coupled network
of Hindmarsh–Rose neurons, the time delay in both exci-
tatory and inhibitory chemical connections may increase
the phase synchronization [43]. He also showed that in
Hindmarsh–Rose delayed-coupled neuronal network, syn-
chronization of the network is different in the case of
distributed or uniform time-delays [44]. It has also been
investigated that when chimera state occurs, the values
of significant parameters of the system can be controlled
by time-delayed feedback [45]. Gjurchinovski et al. [46]
demonstrated that type of the delay such as constant,
time-varying or distributed can be a control factor for
amplitude chimera lifetime in a nonlocal ring network of
Stuart–Landau elements.

In real neuronal networks, some communication links
might have time delay, while some other might be instan-
taneous, i.e. transmitting the signals without any delay
[5]. In this paper, we study the effects of partial time
delays on synchronization patterns in coupled Izhikevich
neuron model oscillators. There are two control parame-
ters, the time delay τ , and the probability Pd of existing
the time delay in the link. It is illustrated that partial time
delay has substantial influence on synchronization of the
considered network.

2 System dynamics

In this paper, Izhikevich neuron models are considered to
be connected on a ring network. This model is described
as follows,

v̇ = 0.04v2 + 5v + 140− u+ I
u̇ = a(bv − u)

if v ≥ 30[mv], then

{
v ← c

u← u+ d.

(1)

Here, v and u represent the membrane potential of a neu-
ron and the membrane recovery variable, respectively [47].
We extend equation (1) using a weak periodic signal Ie as
follows:

v̇ = 0.04v2 + 5v + 140− u+ I + Ie (2)

in which we adopt Ie = Imsin(2ft) with Im = 0.01 and
f = 0.5. Note that the sinusoidal signal is merely utilized
as a typical example of a signal in a neuronal system. The
mathematical equations of network are presented by:

v̇i = 0.04v2i + 5vi + 140− ui + I

+g
∑N

j=1A(i,j)(vj(t− τ)− vi(t))
u̇i = a(bvi − ui)

if vi ≥ 30[mvi], then

{
vi ← c

ui ← ui + d

(3)

where the subscript i represents the ith neuron in the
network with i = 1, 2, . . . , N with N is the total number

of neurons in the network. g
∑N

j=1A(i,j)(vj(t− τ)− vi(t))
is the coupling term with g is the coupling strength and
A = (A(i,j)) is the overall coupling matrix with A(i,j) = 1
if the ith neuron is connected to the jth neuron and
A(i,j) = 0 otherwise. In this paper, we consider the con-
nection network as a ring graph in which each node is
connected to its k = 4 nearest neighbors. τ(i,j) is the time
delay that takes nonzero values with probability Pd.

3 Phase synchronization measure

The timing of the single spikes, i.e. spike trains, have some
information about neuronal communications. In order to
quantify the degree of phase synchronization, we use
the parameter R that describes the collective behavior
among multivariate spike trains [43]. The parameter R is
determined as,

R = 1
N |
∑N

j=1 exp(iϕj(t))| (4)

ϕj(t) is the phase for the jth neuron at the time t and is
defined as:

ϕj(t) = 2π
t−tj,k

tj,k+1−tj,k
j = 1, . . . , N

(5)

where t(j,k) is the time at which the kth spike of the jth
neuron starts. Zero R shows no synchronization and R = 1
indicates full synchronization [5].

4 Results

In the following, the results of changing partial time delay
on synchronization of the network are presented. To do
this, influences of τ on synchronization patterns for differ-
ent Pd are studied. We set constant parameters as a = 0.1,
b = 0.2, c = −65, d = 10 and I = 10 at which a single neu-
ron exhibits periodic behavior. The numerical results are
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Fig. 1. Spatiotemporal patterns and snapshots at t = 1000
of the network with Pd = 0.3. (a) Zero-lag synchroniza-
tion for τ = 2.5, (b) distorted sine-like wave for τ = 7 and
(c) phase synchronization for τ = 10. According to the figure,
time delays even with small probability influence on the net-
work synchronization pattern. It is observed that increasing
time delay changes synchronization pattern from an ordered
state to the distorted sine-like wave and then to phase syn-
chronization.

obtained by using 4th order Runge–Kutta method with
time step = 0.1.

The spatiotemporal patterns of spiking activity of net-
work for different values of τ and at Pd = 0.3, Pd = 0.7
and Pd = 1 are presented in Figures 1–3, respectively. Due
to using probability, the network has been solved repeat-
edly for each parameter values and the same patterns
were observed. In Figure 1, we have studied a situation in
which a small part of the network has been delayed with
Pd = 0.3. This figure indicates that τ induces an exchange
of different spatiotemporal patterns alternately. In detail,
the spatiotemporal pattern is ordered when τ = 2.5, in
this case, all neurons in the network fire and come to
rest, simultaneously. As one can see in the snapshot at
a particular moment t = 1000, all neurons have the same
membrane voltage level (see Fig. 1a). Actually, the net-
work is zero-lag phase synchronized when connections are
delayed with relatively small τ . When τ increases to τ = 7,
the ordered spatiotemporal pattern becomes rather dis-
ordered (see Fig. 1b). In this case, the neurons of the
network fire by specific phase difference with their neigh-
boring neurons. This type of firing of the neurons in the
network, which is affected by the quantity of the latency,
creates a special pattern which is called the distorted sine-
like wave [33]. Snapshot at t = 1000 also suggests that
the membrane voltage of the neurons is not the same at
a particular moment and this specific pattern is due to
the nonzero phase difference in the firing of the neurons.
As τ increases to larger values of τ = 10, synchronization
pattern of network becomes ordered again (see Fig. 1c).

Fig. 2. Spatiotemporal patterns and snapshots at t = 1000
of the network with Pd = 0.7. (a) Imperfect distorted sine-
like wave for τ = 2.5, (b) asynchronization for τ = 7 and
(c) imperfect phase synchronization for τ = 10. Figure indi-
cates that at this probability value, delay can change the
network pattern from synchronous to asynchronous patterns or
intermediate states. It is also observed that higher probability
value increases the disorders in the network.

Therefore, it can be seen that for a network with a small
percentage of latency Pd = 0.3, for large network latencies
τ = 10, it is again moving toward phase synchronization.
Figure 1 indicates that only a small part of delayed con-
nections with Pd = 0.3 can have a significant effect on
synchronization pattern of neuronal network. The time
delay is a control factor that changes the synchronization
pattern to different patterns by increasing or decreasing
the latency of the network pattern.

Let consider the network with more delayed connec-
tions with Pd = 0.7. The results are shown in Figure 2.
When τ = 2.5, the observed pattern is imperfect distorted
sine-like wave (see Fig. 2a). In this case, the neurons of
the network fire with a certain phase difference with their
neighboring neurons. Snapshots at t = 1000 confirm that
the neurons have been shaped like a sinewave pattern. As
one can see in the snapshot, although most of neurons
have negative membrane voltage, a few neurons have dif-
ferent and positive membrane voltage. Therefore, we call
it imperfect distorted sine-like wave. When τ increases
to τ = 7, the ordered spatiotemporal pattern becomes
disordered (see Fig. 2b). The network is almost in its
most disordered pattern. In this case, each neuron fires
asynchronously with irregular phase differences with its
neighboring neurons. Hence, the observed spatiotemporal
pattern and snapshot are disordered. Further increase of
time delay to larger values makes the spatiotemporal pat-
terns of network become rather ordered. Figure 2c shows
the network pattern for τ = 10. In this regard, snapshot
at t = 1000 shows that few neurons, in contrast to other
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Fig. 3. Spatiotemporal patterns and snapshots at t = 1000
of the network with Pd = 1. We see in (a) imperfect phase
synchronization for τ = 1, (b) chimera states for τ = 2.5
and (c) asynchronization for τ = 5. According to the figure
when all network connections are delayed, the delay factor can
cause different phenomena like chimeras, in addition to chang-
ing the network synchronization pattern from synchronous to
asynchronous ones.

neurons, have none negative membrane voltage at spe-
cific moment and abruptly break the continuous snapshot
pattern and get positive voltage values, so we call it the
imperfect phase synchronized pattern.

The results for the case of full time delay that all connec-
tions have delay (Pd = 1) are presented in Figure 3. When
τ = 1, due to the presence of a few neurons with positive
voltage level among other neurons that are at the negative
voltage level with phase difference, the observed pattern is
imperfect phase synchronization. The spatiotemporal pat-
tern shows that neurons tend to be ordered with a certain
phase difference with their neighboring neurons. Also, the
snapshot indicates the existence of phase difference in the
membrane voltage of the neurons (see Fig. 3a). When τ
increases to τ = 2.5, the ordered spatiotemporal pattern
becomes semi-disordered (see Fig. 3b). In this case, a coex-
istence of incoherent and coherent regions which is called
chimera state is seen. The snapshot also indicates the pres-
ence of a group of zero-lag synchronous neurons with the
same voltage level at the specific moment t = 1000, among
the other asynchronous neurons. As τ increases to τ = 5
(see Fig. 3c), synchronization regions of network become
weaker and chimera state disappears and only incoherent
regions are observed.

Figure 4 indicates full time delay network in wider delay
range for better demonstrating the transitions. Chimera
state in Figure 4a changes to a synchronization pattern of
clusters of phase lag and zero lag regions in Figure 4b
when τ changes from 2.5 to 3.4. An interesting phe-
nomenon occurs here that the increasing of delay can

Fig. 4. Spatiotemporal patterns of the network with Pd = 1.
We see in (a) chimera state for τ = 2.5, (b) two clusters of
phase synchronization for τ = 3.4, (c) synchronized period-2
firings states for τ = 3.5, (d) incoherent for τ = 5, (e) chimera
states for τ = 8.5 and (f) phase synchronization for τ = 9.8.
Figure shows that in the case of full time delay, the network
is capable of exhibiting various states in different time delays.
However, there is no linear relevance between time delay and
the level of regularity in the network.

induce the neuronal network transmitting from a period-
1 firing state to a synchronized period-2 firing state (see
Fig. 4c). Spike trains for τ = 0, τ = 3.5 and τ = 6 are
shown in Figure 5, respectively. This figure clearly shows
the transitions between period-1 firing and period-2 firing
or different period-1 firing patterns. There is a notable
point that by increasing delay, the spatiotemporal pattern
recovers to an ordered state (see Fig. 4c) and phase syn-
chronization appears. With further increase of delay, the
regularity of the spatiotemporal patterns become worse
(see Fig. 4d) but then recover again and chimera states
appear again (see Fig. 4e). Finally, the spatiotemporal
pattern becomes ordered to cluster of zero lag and phase
lag regions (see Fig. 4f).

In order to quantify the effect of partial time delay,
we calculate the dependence of the order parameter R on
delay at Pd = 0.3, Pd = 0.7 and Pd = 1 and the results are
presented in Figure 6. An interesting point is that there
is no direct relationship between increasing or decreas-
ing latency with the order parameter R. Figure 6a shows
that when Pd = 0.3, as delay increases, R increases and
decreases alternately. The diagram shows that in general,
for delay values up to τ = 4, although the synchronous
parameter increases or decreases, but it is near R = 1 and
it can be said that the network is relatively synchronous.
But with increasing this delay, for intermediate values of
less than τ = 8, we encounter a decrease in the level of the
order parameter, which is typically shown in Figure 1b, for
τ = 7. Finally, the increase in delay up to τ = 10, like low
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Fig. 5. Spike trains of a randomly chosen neuron when
(a) τ = 0, (b) τ = 3.5 and (c) τ = 6. According to the figure,
the delay factor causes a change in dynamics of the firing neu-
rons and transitions between period-1 and period-2 or different
period-1 firings.

latency values of less than τ = 5, is associated with an
increase in the level of the order parameter.

Figure 6b shows the time delay effect for a situation
where network connections are delayed by Pd = 0.7, as can
be seen, for delay values less than τ = 5. The order param-
eter R decreases with increasing time delay. Also Figures
1a and 1b confirm that the network pattern has become
more disordered by varying the latency from τ = 2.5
to τ = 7. The worst-case scenario of the network pat-
terns occurs for time delays of about τ = 4 to τ = 8 as
shown in Figure 2b, which is completely asynchronous for
τ = 7. By increasing the time delay up to τ = 10 network
returns to be ordered again, when the network synchro-
nization pattern becomes imperfect phase synchronized
(see Fig. 2c).

Figure 6c indicates the variation of the order
parameter relative to the time delay variation when
Pd = 1. As the time delay increases up to about τ = 2,
the order parameter R decreases. For latencies from τ = 2
to τ = 8, the order parameter becomes continuously low
and high. In this interval, chimera phenomenon occurs for

Fig. 6. Dependence of parameter R on the time delay τ
for different values of Pd. (a) Pd = 0.3, (b) Pd = 0.7 and
(c) Pd = 1. Figure indicates that both the delay and the
probability are important factors in network pattern.

some delay values. Also, for some values of the delay, the
dynamics of firing of neurons change (see Fig. 5). It can be
said that changing the dynamics of the firing of neurons
changes the network synchronization pattern (see Fig. 4).
Also, according to Figure 4, for some of the intermediate
values, close to τ = 4, the network reaches to its maximum
order. For larger values of time delay, the network goes
towards full synchronization, in which case the parameter
values are equal or close to 1.

5 Conclusion

Brain is a complex system and studying its collective
behaviors such as synchronization transition, pattern
selection, pattern stability, stochastic resonance, etc. can
be very helpful in understanding different neuronal mech-
anisms [10]. It has been shown that however gap junctions
and chemical synapses have different effects on syn-
chronization transitions [48], gap junctions with time
delays can provide synchronization states, destabilize
synchronous states and generate various spatiotemporal
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patterns [48,49]. Thus, in this paper, we generally studied
the effects of partial time delays on a neuronal network
of electrically coupled Izhikevich neuron model oscilla-
tors and investigated the network patterns via changing
two control parameters of time delay and the probabil-
ity of partial time delay. It was inferred that when the
probability of partial time delays is small, increasing of
delay can change the synchronization type from zero-lag
to distorted sine-like and then to phase synchronization.
If the probability of partial time delays increases, it can
cause the emergence of asynchronous state for special
time delay, therefore varying time delay induces transi-
tions from synchronous to asynchronous states. Finally,
in the case of full time delay, raising the value of par-
tial time delays can increase or decrease synchronization
and cause synchronization transitions between coherent
and incoherent or chimera states. It can also influence
on synchronized neurons to switch between different
periodic patterns. The observed patterns play signifi-
cant role in the understanding of information processing
and totally the structure and function of the human
brain.

The neurons connectivity in the brain are coupled
mainly locally, with sparse long distance connections
which supports small-worldness of the brain. So in the
future, we will try to apply numerical analysis to a small
world network of Izhikevich neuron model oscillators with
partial time delays.
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