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Abstract. – We introduce chaotic variations, modelled by a spatially extended Lorenz system,
to the payoffs of the spatial prisoner’s dilemma game and study their effects on the evolution
of cooperation. We show that chaotic variations of appropriate amplitude promote cooperation
over a wide range of payoff parameters at which defection is the only strategy in a sterile envi-
ronment. An appropriately pronounced chaotic environment can assure permanent domination
of cooperation by full anonymity of players and without the aid of secondary strategies, thus
designating chaotic payoff variations as a general and stand-alone mechanism for cooperation
in the spatial prisoner’s dilemma game.

The prisoner’s dilemma (PD) game [1] is considered a paradigm for studying the evolution
of cooperative behaviour among egoistic individuals. Originally, the game consists of two
players who have to decide simultaneously whether they want to cooperate or defect. The
dilemma is given by the fact that although mutual cooperation yields the highest collective
payoff, a defector will do better if the opponent cooperates. Since players are aware of this fact
they both decide to defect whereby none of them gets a profit. This unfavourable equilibrium
state is, however, often violated in real life [2–5]. Accordingly, several mechanisms have
been proposed to explain the emergence of cooperation in various types of games. Examples
include spatial extensions [6–12], direct and indirect reciprocity [13–15], as well as voluntary
participation [16–18].

Besides intrinsic mechanisms that facilitate cooperative behaviour, extrinsic factors, af-
fecting either the players [19, 20] or the game itself [21–24], were recently also acknowledged
as being important agonists in the evolution of cooperation, influencing the overall population
gain and equilibrium selection, as well as the nature of phase transitions from one equilibrium
towards the other. Indeed, maintenance of different personality types favours the evolution
of cooperation in the PD game [20], whilst additive noise introduced to the classical repli-
cator dynamics, supplemented by adaptive learning rates, can enhance the average payoff of
the population in a coherence-resonance–like manner [24]. Moreover, noise introduced to the
strategy adoption process or the payoffs of spatially distributed players can induce phase tran-
sitions that fall under the directed percolation universality class [21, 22], as well as maintain
cooperation at the highest possible level with respect to intrinsic game parameters [23,25].

Presently, we report a new mechanism for the promotion of cooperation in finite-size popu-
lations on square grids. The virtue of our approach is to link the intrinsic rules of the game with
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the environment that is assumed to be chaotic. In particular, we study the effects of additive
chaotic variations, introduced to the payoff matrix of the spatial PD game, on the evolution of
cooperation. The chaotic environment is modelled by a simple spatial extension of the classical
Lorenz system [26]. We show that appropriately pronounced chaotic disturbances are able to
sustain dominance of cooperators even for defection temptation values substantially exceeding
the one marking cooperation extinction in the absence of explicit payoff variations. We argue
that real-life environmental variations are often chaotic by nature, and not simply random [25],
so that the presented approach is indeed plausible and appropriate for modelling the evolution
of cooperation in the real world. Examples of environmental chaotic influences might include
the weather, exposure to sunlight, or variations in food supplies. Also, we suggest that such in-
fluences present a viable mechanism for cooperation promotion in various environments, rang-
ing from human and animal societies to economic cycles or even biochemical systems [27,28].

For the following calculations, we consider an evolutionary PD game with players located
on vertices of a regular two-dimensional square lattice of size n×n with periodic boundary con-
ditions. Moreover, we assume that each individual interacts only with its four nearest neigh-
bours located to the north, south, east and west, whereby self-interactions are excluded. Each
player can decide either to cooperate (C) or to defect (D). Depending on the choice of their
strategies, each two players (Pi, Pj) receive payoffs summarized succinctly by the payoff matrix

Pi/Pj C D
C 1 + axi/1 + axj 1 + κ + axi/−κ + axj

D −κ + axi/1 + κ + axj 0 + axi/0 + axj

(1)

where κ ≥ 0 determines the temptation to defect whilst a ≥ 0 scales the amplitude of payoff
variations. The payoff matrix is subjected to additive chaotic disturbances that are determined
by a simple spatial extension of the classical Lorenz system [26] given by the equations

dx/dt = σ(y − x) + D∇2x, (2)

dy/dt = rx − y − xz, (3)

dz/dt = xy − bz. (4)

For simplicity, but without loss of generality, only the variable x of the Lorenz system is sub-
jected to diffusive coupling, which is implemented via a first-order numerical approximation
with periodic boundary conditions on a unitary two-dimensional lattice, whereby the diffusion
coefficient D = 2.0 is chosen small-enough as to forbid synchronization amongst distant units.
Note that strongly spatially correlated disturbances evoked by large D decrease the effect of
cooperation promotion since they essentially act as payoff scaling that is equal over extensive
areas of the spatial plane, thus not affecting the outcome of the game at all. On the other
hand, some spatial correlations of environmental disturbances, warranted by D > 0, have to
be taken into account since nearby neighbours surely experience the same fate with respect
to external factors (e.g., weather, exposure to sunlight, food supplies). In general, however,
smaller D decrease spatial correlations of the chaotic payoff variations and thus increase un-
predictability of the environment. The effect of cooperation promotion is therefore better
pronounced by smaller than by larger D.

Importantly, the variable x satisfies 〈xi〉t = 0 for ∀i, where 〈. . .〉t indicates average over
time. Thus, the average addition to the payoffs, due to the introduction of chaotic variations,
is zero which warrants the conditions for a “soft constraint” but not for the “hard constraint”
PD game, meaning that the payoff ranking of the PD game is allowed to be violated locally in
time, but is preserved on average over a long time span. If a is set small enough to ensure also
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a “hard-constraint” PD game (|axi| < κ for ∀i, t) then the facilitative effect on the survival of
cooperators is minute at most.

Starting from random initial conditions for the spatially extended Lorenz system and
uniformly distributed cooperators and defectors on the square lattice, each player can change
its strategy according to the performance of neighbouring players, whereby the probability
that a player Pi will adopt the strategy of one of its randomly chosen nearest neighbours Pj

is determined by the cumulative payoffs Si and Sj of both players according to

W (Pi ← Pj) =
1

1 + exp[(Si − Sj)/K]
, (5)

where K = 0.1 is the uncertainty related to the strategy adoption. 0 < K 
 1 implies that
the better performing player is readily adopted, whilst it is not completely impossible to adopt
the strategy of a worse performing player.

The described spatial prisoner’s dilemma game can be iterated forward in time using either
a synchronous or a random Monte Carlo update scheme [11], whereby it has been reported that
by non-deterministic player adoption rules obtained results do not differ substantially [8, 9].
Since the synchronous update scheme converges more quickly to the equilibrium than the
random iteration, we thus apply the former, letting all individuals interact pairwise with
their nearest neighbours and then simultaneously update their strategy according to eq. (5).
After each synchronous game iteration the profile of chaotic variations imposed on the payoff
matrix varies as dictated by the numerical integration procedure that is currently implemented
with dt = 0.02. Larger dt may induce numerical instability, whilst smaller dt simply delay
the transition to equilibrium frequencies of cooperators and defectors and thus unnecessary
burden the expensive numerical procedure.

It is well known that cooperation promotion by spatial structure depends heavily on the
payoff parameters of the game [6,7]. By the currently applied game settings and non-varying
payoffs (a = 0) only 10% of cooperators are able to survive if the temptation to defect equals
κ = 0.006. Remarkably, the addition of weak chaotic variations to the payoffs is able to boost
the fraction of cooperators to 50% by the same κ. Figure 1 captures this phenomenon. Note
that with or without the addition of chaotic variations cooperators survive by forming clusters
so as to protect themselves against being exploited by defectors. Cooperators located in the
interior of such clusters enjoy the benefits of mutual cooperation and are therefore able to
survive despite the constant exploitation by defectors along the cluster boundaries.

To quantify the ability of chaotic variations to facilitate and maintain cooperation in the
studied spatial PD game more precisely, we calculate the fraction of cooperators over a broad
range of κ in the absence and by a fixed magnitude a of chaotic variations. Results presented in
fig. 2 show that additive chaotic variations promote cooperation even for defection temptation
values that are an order of magnitude larger than the threshold for cooperation extinction
by a = 0. Importantly, while in the absence of explicit payoff variations cooperators never
dominate, they do so over a broad range of κ if chaotic variations are added. Nevertheless, it
also appears that there exists an upper bound of κ that can still be compensated by chaotic
variations in order to prevent the extinction of cooperators.

The existence of the upper bound of κ can be studied accurately by calculating the fraction
of cooperators separately for various κ in dependence on a. Results presented in fig. 3 show
that although larger values of κ require stronger chaotic variations for cooperation promotion,
the positive effect is still well pronounced even for κ = 0.06 if only a is large enough. Remark-
ably, cooperators dominate only for intermediate values of a, whilst for large a unpredictable
chaotic variations completely overrule the game. Under such circumstances no strategy is
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Fig. 1 – Characteristic equilibrium spatial distributions of cooperators (black) and defectors (white)
obtained by a = 0 (left panel) and a = 0.0034 (right panel) for the defection temptation value κ =
0.006. Both panels are depicted on a 200×200 portion of a larger spatial grid. The lower panel features
additive chaotic variations in dependence on time for a one-dimensional column of the spatial grid.
The colour profile is linear, black marking −0.06 and white 0.06 values of additive payoff disturbances.

Fig. 2 – Promotion of cooperation by a chaotic environment. In the absence of chaotic payoff variations
cooperators die out at κ = 0.0063 (left arrow) whereas by a = 0.057 they persist up to κ = 0.061
(right arrow).
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Fig. 3 – Promotion of cooperation by a chaotic environment for different values of κ. Note that the
x-axis has a logarithmic scale.

privileged which is indicated by the irregular trend towards tantamount of cooperators and
defectors. The fact that larger κ requires stronger chaotic variations for cooperation promo-
tion, combined with the dominance of chance by large a, implies that there indeed exists an
upper bound of κ for which environmental influences are still able to sustain total dominance
of cooperators. After extensive calculations in the two-dimensional parameter space, spanned
over κ and a, we found that κ = 0.075. Importantly though, even for defection temptation
values exceeding κ = 0.075 chaotic variations are still able to sustain cooperation by very large
a. It is highly questionable, however, whether the required large-amplitude chaotic variations
are plausible.

Noteworthy, the transition from homogenous cooperation towards the mixed state occur-
ring by large a is somewhat violent and unpredictable, thus strengthening the dominance of
chance rather than determinism in that parameter range as well as fuelling speculations about
plausibility of such large-amplitude variations. Evidently, average fractions of strategies for
a > 10 are fluctuating heavily. We were unable to obtain smooth transitions in that parameter
range with computationally feasible system sizes and number of game iterations.

In order to explain the reported phenomenon, we argue that cooperators are able to con-
structively exploit environmental influences due to their cooperative behaviour. In particular,
if two neighbouring cooperators receive an unexpected positive and negative income respec-
tively, mutual cooperation always decreases the relative difference between their cumulative
payoffs, thus keeping the unlucky cooperator competitive despite of its temporary bad luck.
On the other hand, the defecting strategy increases stratification among neighbours (or keeps
it the same if all are defectors). Although in this sense defection threatens cooperators and de-
fectors equally in that their strategy is rendered unsuccessful and thus unlikely to be adopted,
clustered cooperators have an edge since they help each other out. Intuitively, the positive
effect of chaotic payoff variations on the evolution of cooperation can be attributed to the in-
troduced unpredictability. If two defectors meet they wind up empty handed, and at this point
an unexpected or unforeseen negative income would be fatal since the defecting strategy would
not be adopted in the future. Thus, in an unpredictable environment it is safer to cooperate
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since then each player can always rely on a fix income. Although this income is often smaller
as would be obtained by the defecting strategy, it is, on the other hand, reliable and this turns
out to be the key enabling survival in an unpredictable environment. The conclusion is that in
a chaotic world it appears better to receive smaller but reliable incomes than larger but infre-
quent ones. Noteworthy, that is true only for moderate uncertainties affecting the evolutionary
process, whilst in a completely chaos-dominated environment prosperity is governed by chance.

Importantly, the above interpretation of results holds also for Monte Carlo update schemes
despite the fact that they introduce an inherent infrequency of incomes due to the random
pickings of players during each game iteration. Since for large numbers of game iterations
all players interact with their neighbours equally often on average, the introduced infrequent
incomes annihilate and the final result is qualitatively identical as obtained by the presently
applied synchronous update scheme.

We suggest that payoffs, defining the interaction phase between two individuals, are a likely
part of the evolutionary process where environmental uncertainties can take effect. Thereby,
disturbances can arise either from the players themselves, for example by not adhering to the
rules of the game in trying to make an illegal profit or due to different personalities, or from
the environment which can either favour or hinder the success of each player. Either way,
cooperators appear to be better suited for the trial of life.
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[23] Szabó G., Vukov J. and Szolnoki A., Phys. Rev. E, 72 (2005) 047107.
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