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This article is written for undergraduate students and teachers who would like to
get familiar with basic nonlinear time series analysis methods. We present a step-
by-step study of a simple example and provide user-friendly programs that allow
an easy reproduction of presented results. In particular, we study an artificial time
series generated by the Lorenz system. The mutual information and false nearest
neighbour method are explained in detail, and used to obtain the best possible
attractor reconstruction. Subsequently, the times series is tested for stationarity
and determinism, which are both important properties that assure correct inter-
pretation of invariant quantities that can be extracted from the data set. Finally, as
the most prominent invariant quantity that allows distinguishing between regular
and chaotic behaviour, we calculate the maximal Lyapunov exponent. By following
the above steps, we are able to convincingly determine that the Lorenz system is
chaotic directly from the generated time series, without the need to use the dif-
ferential equations. Throughout the paper, emphasis on clear-cut guidance and a
hands-on approach is given in order to make the reproduction of presented results
possible also for undergraduates, and thus encourage them to get familiar with the
presented theory.

PACS numbers: 01.50.-i, 05.45.Tp UDC 530.182
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1. Introduction

Nonlinear time series analysis theory offers tools that bridge the gap between
experimentally observed irregular behaviour and deterministic chaos theory. The
theory of deterministic chaos offers an explanation for irregular behaviour of sys-
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tems that are not influenced by stochastic inputs. To this purpose, characteristic
quantities, such as Lyapunov exponents are usually derived from differential equa-
tions that describe temporal evolution of the system. These quantities are often
referred to as invariants, since they do not depend on initial conditions, and so
represent characteristic properties of the system. A positive maximal Lyapunov
exponent, for example, is characteristic for chaotic systems, whereas systems with
solely non-positive exponents are usually referred to as regular. The aim of this pa-
per is to describe and provide user-friendly programs for basic nonlinear time series
analysis methods that are in our opinion necessary to confirm or reject the presence
of deterministic chaos in a time series, without the help of differential equations.
Particular emphasis is given on a step-by-step guidance and reproducibility of ob-
tained results, so that even individuals with little or no experience can get familiar
with the presented material and develop an interest for this field of research.

In 1963, meteorologist Ed Lorenz [1] derived a fairly simple three-dimensional
set of first-order nonlinear differential equations

ẋ = σ(y − x) , (1)

ẏ = rx − y − xz , (2)

ż = xy − bz , (3)

which, in a very simplified way, model the convective rolls in the atmosphere. In
an even more simplified way, this set of differential equations can be seen as a
qualitative model for the weather. For certain values of parameters σ, r and b (for
example, σ = 10, r = 25, b = 8/3), the system has a positive maximal Lyapunov
exponent, and thus expresses irregular deterministic behaviour, which we term
chaotic [2 – 4]. In view of this brief description of well-known results, one may be
tempted to conclude that the weather on our planet is chaotic. This may be true,
and we will make no attempts trying to disprove this conclusion. Nevertheless,
some doubtful students may not be readily convinced and could argue that chaos is
nothing more than a mathematical artefact; a phenomenon non-existing outside the
simulations of our computer. The question is, can we, besides computer simulations
and occasional poor weather forecast, offer any other more convincing evidence that
the weather is indeed chaotic? The answer is conditionally affirmative, as we will
elucidate below. The remedy lies in the nonlinear time series analysis [5 – 7], which
enables us to extract characteristic quantities, i.e. invariants such as the maximal
Lyapunov exponent, of a particular system solely by analysing the time course of
one of its variables. In theory, it would then be possible to collect temperature
measurements in a particular city for a given period of time and employ nonlinear
time series analysis to actually confirm the chaotic nature of the weather. Despite
the fact that this idea is truly charming, its realization is not feasible quite so easily,
so let us face reality one step at a time.

Before one starts to employ nonlinear time series analysis methods, it is neces-
sary to check some basic requirements a time series has to fulfil in order to qualify
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for such an undertaking. Blindly, of course, all data sets are good enough, and
the programs will always do their job readily. However, the obtained positive max-
imal Lyapunov exponent, for example, cannot be considered as an indicator for
chaos, if the studied time series doesn’t result from a stationary process. The same
statement can be made with respect to determinism. Thus, the time series must
originate from a stationary deterministic process in order to justify the calculation
of the maximal Lyapunov exponent. Only then, the obtained value of the exponent
will have a meaning and truly posses the power to discriminate between a chaotic
and regular system. Hence, only after we have established that the studied data
set originates from a stationary deterministic process, we can move on to calculate
the maximal Lyapunov exponent. The most basic step in this procedure is to con-
struct a proper embedding space from the time series. For this purpose, we have
to determine the proper embedding delay and embedding dimension. There exist
two methods, developed in the framework of nonlinear time series analysis, that en-
able us to successfully perform the desired tasks. The mutual information method
[8] yields an estimate for the proper embedding delay, whereas the false nearest
neighbour method [9] enables us to determine a proper embedding dimension. All
above-mentioned methods, as well as currently unfamiliar terms, will be accurately
described in the next section.

The construction of a proper embedding space is, however, not only necessary
to calculate the maximal Lyapunov exponent of a time series, but also to perform
trustworthy stationarity and determinism tests. Therefore, we will first describe
and demonstrate the usage of the mutual information method and the false nearest
neighbour method, and afterwards introduce the stationarity and determinism test.
Finally, the algorithm for the calculation of the maximal Lyapunov exponent will
be presented and deployed. When trying to reproduce the results obtained in this
article, we suggest following the same sequence of tasks as described above. This
sequence seems reasonable also for any other data set.

All presented methods will be tested on a numerical time series generated by
the Lorenz equations [Eqs. (1 – 3)] for parameter values σ = 10, r = 25, b = 8/3,
sampled at a time interval of 0.01 s and occupying 40000 points, if not explicitly
stated otherwise. Although it is much more interesting to study an experimental
time series with unknown characteristics, there is much to be gained, especially
from the educational point of view, by studying the time series of a known deter-
ministic system. In particular, since the correct results are known from the chaos
theory, it is easy to verify if the results obtained with nonlinear time series analysis
methods are at least qualitatively correct. Furthermore, by testing the programs
on familiar data sets, i.e. with a known number of degrees of freedom and the
maximal Lyapunov exponent, the inexperienced user can get confidence in the op-
erations executed by a program for various parameter settings, and thus familiarize
with the available tool kit. The final result, which we are going to reproduce below
using nonlinear time series analysis methods, is that the examined data set origi-
nates from a stationary deterministic process with three degrees of freedom and a
positive maximal Lyapunov exponent, from which we can conclude that the system
under study [1] is deterministically chaotic.
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Before we finally delve into the beauty of nonlinear time series analysis, let us
emphasize that this article is not of review type, meaning that it doesn’t describe
all relevant methods. It is rather a collection of carefully chosen methods, which
should allow a person just getting familiar with the subject to get inspiring and
above all meaningful results without having to delve too deep into the existing
theory. An expert will surely miss a word or two on dimension estimates [10 – 12],
prediction algorithms [13], noise reduction schemes [14,15], or surrogate data tech-
niques [16,17], which all form an important part of nonlinear time series analysis.
However, all these topics were left out because of extended amount of knowledge
required to perform these tasks successfully, and also to assure increased readabil-
ity an understanding among readers just getting familiar with the subject. Since
a regular article can hardly be long enough to describe all relevant methods and
techniques properly, the interested reader is advised to seek further information
about these topics in already cited original research papers and books [5 – 7]. Some
additional pointers to the relevant literature will also be given in the next section.

2. Methods and implementation

Following the sequence of tasks we have outlined above, let us first introduce
the method known as delay coordinate embedding. It enables us to construct a
phase space of a system from a single observed variable. This reconstructed phase
space is usually referred to as the embedding space. Consider then the time course
of a variable of the Lorenz system. How are we to reconstruct the phase space
of the system not knowing the other two variables? The intuitive solution lies
in the fact that all variables in a deterministic dynamical system are generically
connected. With simpler words, we can say that they influence one another, as can
be seen by observing Eqs. (1 – 3). For example, the time evolution of the variable
x is through a subtraction directly dependent on the variable y, whereas the time
evolution of the variable y similarly depends on the variable x as well as variable
z. The direct consequence of this fact is the following. If at the time t only the
value of the variable x is known, then another measurement of the variable x at a
future time t + τ will implicitly carry some information also about variables y and
z. By continuing the measurement of variable x at times t+2τ , t+3τ , . . . , we thus
continuously gather information not just about variable x, but also about variables
y and z. In fact, if τ is chosen properly, the amount of information we thereby
obtain about y and z is large enough to allow us to introduce the values of variable
x at times t + τ and t + 2τ as substitutes for the original variables. Although this
result seems shocking, there exists a rigorous mathematical proof of a theorem that
confirms the validation of the above reasoning. The theorem is usually termed as
the embedding theorem, and was formally proven by Takens [18]. It states that for
a large enough embedding dimension m, the delay vectors

p(t) = (xt, xt+τ , xt+2τ , . . . , xt+(m−1)τ ) (4)
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yield a phase space with exactly the same invariant quantities as the original system.
In Eq. (4), variables xt, xt+τ , xt+2τ , . . . , xt+(m−1)τ denote the values of variable x
at times t, t + τ, t + 2τ, . . . , t + (m − 1)τ whereas τ is the so-called embedding de-
lay. Note that the original theorem by Takens is formulated with respect to the
embedding dimension m, and not with respect to the embedding delay τ as we
have exemplified above. We could afford this minor discrepancy since the proper
embedding dimension for the Lorenz system is known; it is the same as the dimen-
sionality of the dynamical system. In general, however, this fact is not known and
the correct formulation of the theorem, as proven by Takens, has to be used. A
very nice intuitive demystification of the embedding theorems can be found in the
book by Abarbanel [5], whereas a more mathematical approach can be found in the
original articles by Takens [18] and Sauer et al. [19].

While the implementation of Eq. (4) should not pose a problem, the correct
choice of proper embedding parameters τ and m is a somewhat different matter.
The most direct approach would be to visually inspect phase portraits for various τ
and m trying to identify the one that looks best. The word “best”, however, might
in this case be very subjective. Examine the phase portraits shown in Fig. 1. For
a student with a great imagination, the reconstruction presented in Fig. 1c might
seem as the “best”, while a more conservative character would perhaps prefer the
one shown in Fig. 1a. In fact, the phase space portrait in Fig. 1b is the best choice
amongst the presented ones. But how can we tell? The problem with the phase
portrait presented in Fig. 1a is that it looks a bit compressed. Some might say that
the attractor does not have well-evolved folding regions. This manifests so that
the nicely expressed arcs at both ends of the attractor come crushing together in
the middle in a seemingly violent manner, making the structure of the attractor
indistinguishable at small scales. On the other hand, the phase portrait in Fig. 1c is
a bit to complex. In this case, the trajectory folds and wraps around very frequently.
Although this yields and appealing picture, it also introduces a seemingly stochastic
component, especially in the middle of the phase space, which is usually not a
good appearance for a proper embedding. Clearly, the phase portrait in Fig. 1b is
the best. The presented attractor has nice evolved folding regions, but still looks
compact and deterministic.

Fig. 1. Reconstructed phase space obtained with different embedding delays and
dimensions. a) τ = 3,m = 2. b) τ = 17,m = 3. c) τ = 100,m = 4.
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Before we continue with the discussion of the results presented in Fig. 1, let us
mention that they are easily reproducible with our program embed.exe that can be
downloaded from our web page [20]. The program graphically displays 2D projec-
tions of four different embeddings simultaneously to enable a better comparison of
results for various τ and m. Some general instructions for the usage of our tool kit
are given in the Appendix, whereas a more detailed description can be found at the
download site.

Despite the fact that it is advisable, even necessary, to visually inspect the data
before performing any calculations, and you might feel satisfied with the above rea-
soning for determining proper embedding parameters, and it might even seem that
the given instructions will do the job also in other cases, be aware of the following.
First, pay attention to the values of embedding delays used for the phase space
portraits in Fig. 1. Notice that the delays differ almost by orders of magnitude.
In this case, it is easy to distinguish between a proper and a less proper embed-
ding. In reality, however, the task of finding the proper embedding delay becomes
increasingly difficult as the value approaches the optimum. Second, be aware of the
fact that although it is said that Fig. 1a was obtained by setting m = 2, Fig. 1b by
setting m = 3 and Fig. 1c by setting m = 4, you would not notice the difference if
all pictures were obtained with m = 2 or m = 100, since the first two embedding
coordinates depend only on the embedding delay [see Eq. (4)]. Certainly, if you
chose an embedding delay greater than two, you could go ahead and examine also
other possible phase space projections. However, this would really make the task
of finding the proper embedding mind boggling and difficult. Besides these general
warnings, there is also the issue of time consume that has to be addressed. Imagine
you want to analyse a time series that originates from a rather unknown system,
which is usually the case. Then you would not know if the underlying dynamics
that produced the time series had two or twenty degrees of freedom. It is easy to
verify that the time required to check all possibilities that might yield a proper
embedding with respect to various τ and m is very long. This being said, let it be
a good motivation to study the mutual information method and the false nearest
neighbour method, which enable us to efficiently determine proper values of the
embedding delay τ and embedding dimension m.

We start with the mutual information method. A suitable embedding delay τ
has to fulfil two criteria. First, τ has to be large enough so that the information
we get from measuring the value of variable x variable at time t + τ is relevant
and significantly different from the information we already have by knowing the
value of the measured variable at time t. Only then it will be possible to gather
enough information about all other variables that influence the value of the mea-
sured variable to successfully reconstruct the whole phase space with a reasonable
choice of m. Note here that generally a shorter embedding delay can always be
compensated with a larger embedding dimension. This is also the reason why the
original embedding theorem is formulated with respect to m, and says basically
nothing about τ . Second, τ should not be larger than the typical time in which
the system looses memory of its initial state. If τ would be chosen larger, the re-
constructed phase space would look more or less random since it would consist of
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uncorrelated points, as in Fig. 1c. The latter condition is particularly important for
chaotic systems which are intrinsically unpredictable and, hence, loose memory of
the initial state as time progresses. This second demand has led to suggestions that
a proper embedding delay could be estimated from the autocorrelation function
defined as

a(τ) =
1

T + 1

T
∑

t=0

xtxt+τ , (5)

where the optimal τ would be determined by the time the autocorrelation function
first decreases below zero or decays to 1/e. For nearly regular time series, this is a
good thumb rule, whereas for chaotic time series, it might lead to spurious results
since it based solely on linear statistic and doesn’t take into account nonlinear
correlations.

The cure for this deficiency was introduced by Fraser and Swinney [8], who
proposed to use the first minimum of the mutual information between xt and xt+τ

as the optimal embedding delay. The mutual information between xt and xt+τ

quantifies the amount of information we have about the state xt+τ presuming we
know the state xt. Given a time series of the form {x0, x1, x2, . . . , xt, . . . , xT }, one
first has to find the maximum (xmax) and the minimum (xmin) of the sequence.
The absolute value of their difference |xmax −xmin| then has to be partitioned into
j equally sized intervals, where j should be a large enough integer number. Finally,
one calculates the expression

I(τ) =

j
∑

h=1

j
∑

k=1

Ph,k(τ) ln Ph,k(τ) − 2

j
∑

h=1

Ph lnPh , (6)

where Ph and Pk denote the probabilities that the variable assumes a value inside
the h-th and k-th bin, respectively, and Ph,k(τ) is the joint probability that xt is in
bin h and xt+τ is in bin k. As long as the partitioning of the whole interval occupied
by the data is fine enough, i.e. j is chosen large enough, the value of the mutual
information does not explicitly depend on the bin size. While it has often been
shown that the first minimum of I(τ) really yields the optimal embedding delay,
the proof of this has a more intuitive, or shall we rather say empiric, background.
It is often said that at the embedding delay where I(τ) has the first local minimum,
xt+τ adds the largest amount of information to the information we already have
from knowing xt, without completely losing the correlation between them. Perhaps
a more convincing evidence of this being true can be found in the very nice article
by Shaw [21], who is, according to Fraser and Swinney, the idea holder of this
reasoning. However, a formal mathematical proof is lacking. Kantz and Schreiber
[6] also report that in fact there is no theoretical reason why there should even exist
a minimum of the mutual information. Nevertheless, this should not undermine
your trustworthiness in the presented method, since it has often proved reliable
and well suited for the appointed task. At most, you should be careful and not
take the method completely for granted if further applications with the obtained
embedding delay yield somewhat doubtful results.
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Finally, let us examine the results obtained with the autocorrelation function
as well as the mutual information method. Both results are presented in Fig. 2.
The supposed optimal embedding delay obtained with the autocorrelation function
equals τ = 34, whereas the mutual information method yields τ = 17 time steps.
The two values differ by a factor of two, whereas the optimal one is the latter,
as can be seen in Fig. 1b. Since the phase space for τ = 34 is not presented,
you should perhaps consider it as an exercise to plot the attractor and find the
differences between the two embeddings. The presented results in Fig. 2 can be
easily reproduced with our program mutual.exe, which can be downloaded from
our web page [20]. The program has only two crucial parameters, which are the
number of bins j (in our case 50) and the maximal embedding delay τ (in our case
500). All calculated results are displayed graphically. Some further instructions
for the usage of our tool kit are given in the Appendix, whereas a more detailed
description can be found at the download site.

Fig. 2. Determination of the proper embedding delay. a) The autocorrelation decays
to 1/e at τ = 34. b) The mutual information has the first minimum at τ = 17.

Let us now turn to establishing a proper embedding dimension m for the exam-
ined time series by studying the false nearest neighbour method. The false nearest
neighbour method was introduced by Kennel et al. [9] as an efficient tool for de-
termining the minimal required embedding dimension m in order to fully resolve
the complex structure of the attractor. Again note that the embedding theorem
by Takens [18] guarantees a proper embedding for all large enough m, i.e. that
is also for those that are larger than the minimal required embedding dimension.
In this sense, the method can be seen as an optimisation procedure yielding just
the minimal required m. The method relies on the assumption that an attractor
of a deterministic system folds and unfolds smoothly with no sudden irregularities
in its structure, like previously described in Figs. 1a and c. By exploiting this as-
sumption, we must come to the conclusion that two points that are close in the
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reconstructed embedding space have to stay sufficiently close also during forward
iteration. If this criterion is met, then under some sufficiently short forward itera-
tion, originally proposed to equal the embedding delay, the distance between two
points p(i) and p(t) of the reconstructed attractor, which are initially only a small ǫ
apart, cannot grow further as Rtrǫ, where Rtr is a given constant (see below). How-
ever, if a t-th point has a close neighbour that doesn’t fulfil this criterion, then this
t-th point is marked as having a false nearest neighbour. We have to minimize the
fraction of points having a false nearest neighbour by choosing a sufficiently large
m. As already elucidated above, if m is chosen too small, it will be impossible
to gather enough information about all other variables that influence the value of
the measured variable to successfully reconstruct the whole phase space. From the
geometrical point of view, this means that two points of the attractor might solely
appear to be close, whereas under forward iteration, they are mapped randomly
due to projection effects. The random mapping occurs because the whole attractor
is projected onto a hyperplane that has a smaller dimensionality than the actual
phase space and so the distances between points become distorted.

In order to calculate the fraction of false nearest neighbours, the following algo-
rithm is used. Given a point p(t) in the m-dimensional embedding space, one first
has to find a neighbour p(i), so that ||p(i) − p(t)|| < ǫ, where || . . . || is the square
norm and ǫ is a small constant, usually not larger than the standard deviation of
data [see Eq. (9) below]. We then calculate the normalized distance Ri between the
(m + 1)st embedding coordinate of points p(t) and p(i) according to the equation

Ri =
|xi+mτ − xt+mτ |
||p(i) − p(t)|| . (7)

If Ri is larger than a given threshold Rtr, then p(t) is marked as having a false
nearest neighbour. Equation (7) has to be calculated for the whole time series and
for various m = 1, 2, . . . until the fraction of points for which Ri > Rtr is negligible.
According to Kennel et al. [9], Rtr = 10 has proven to be a good choice for most data
sets, but a formal mathematical proof for this conclusion is not known. Therefore,
if for Rtr = 10 the method yields non-convincing results, it is advisable to repeat
the calculations for various Rtr. Before we finally turn to the obtained results, let
us mention that by introducing some additional criteria to the described procedure,
the false nearest neighbour method can also be used to determine the presence of
determinism in a time series. However, since there exist some conceptually simpler
methods to be introduced below, we just advise the reader to the relevant article by
Hegger and Kantz [22], and use the method here solely for determining the minimal
required embedding dimension.

The results obtained with the false nearest neighbour method are presented in
Fig. 3. It can be well observed that the fraction of false nearest neighbours (fnn)
convincingly drops to zero for m = 3. Thereby, this result is in excellent agree-
ment with the dimensionality of the dynamical system (Lorenz equations) that
produced the time series. Again, this result can be easily reproduced with our pro-
gram fnn.exe, which can be downloaded from our web page [20]. Parameter values
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Fig. 3. Determination of the
minimal required embedding
dimension. The fraction of
false nearest neighbours (fnn)
drops convincingly to zero at
m = 3.

that have to be provided are the minimal and the maximal embedding dimension
for which the fraction of false nearest neighbours is to be determined (m = 1, . . . 5),
the previously obtained embedding delay (τ = 17), the initial ǫ, a factor for in-
creasing the initial ǫ (the latter is increased until ǫ reaches the standard deviation
of data), the threshold Rtr, and the percent of data that is allowed to be wasted.
The last parameter is useful when data is sparse so that there exists a possibility
that not all phase space points will have a neighbour inside the maximally allowed
ǫ. Besides being displayed graphically, the results are also stored in the file fnn.dat,
which consists of two ASCII columns. The first column is the embedding dimension
and the second column is the pertaining fraction of false nearest neighbours. Ad-
ditionally, the program displays the standard deviation of data to allow an easier
estimation of the initial ǫ (in our case set to 0.05) as well as the factor for increasing
the initial ǫ (1.41 in our case).

By now we have equipped ourselves with the knowledge that is required to suc-
cessfully reconstruct the embedding space from an observed variable. This is a very
important task since basically all methods of nonlinear time series analysis require
this step to be accomplished successfully in order to yield meaningful results. No
exceptions thereby are also the stationarity and the determinism tests introduced
below. Recall that stationarity and determinism are important properties of a time
series that to some extent have to be present in order to guarantee relevancy of in-
variant quantities, such as the maximal Lyapunov exponent, that can be extracted
from the data.

Let us now describe a stationarity test, which was originally proposed by
Schreiber [23], in order to determine if the studied time series originated from
a stationary process. In the Introduction, we demanded that every time series must
be obtained from a system whose parameters are constant during measurements.
Let us think about how a parameter that changes during the experiment could
affect the outcome of the measurements. The simplest yet completely uninterest-
ing possibility is that parameter variations are so small that they don’t affect the
measurement. A more interesting and far more likely case would be that different
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parts of the time series have different characteristics such as the mean

〈x〉P =
1

P + 1

P
∑

t=0

xt , (8)

or the standard data deviation

σP =

√

√

√

√

1

P

P
∑

t=0

(xt − 〈x〉P )2 . (9)

Note that Eqs. (8) and (9) are formulated with respect to P , which is the number of
data points inside a particular time series segment. Sometimes quantities 〈x〉P and
σP are also refereed to as the running mean and standard deviation, respectively,
since they are not calculated on the whole data set at once, but pertain only to
a particular segment of the time series (for example to the first, the second...1000
data points). A time series is considered to originate from a stationary process if
statistical fluctuations of 〈x〉P and σP are negligible for various non-overlapping
data segments. However, this simple approach for testing the stationarity of data
suffers from the same drawbacks as the autocorrelation function, since it is also
based solely on linear statistic. Therefore, we have to come up with a suitable
nonlinear statistic that would enable us to compare properties in one part of the
time series with properties in other parts, thus providing an appropriate tool for
testing the stationarity of data.

To this purpose, Schreiber [23] proposed the usage of the so-called cross-
prediction error statistic. In order to better understand the elaborate sounding sta-
tistic, let us consider the meaning of words “prediction error” and “cross-prediction”
separately. First, let us turn to the prediction error. At this point, we first come
across the word prediction. While the word is pretty self-explanatory, let us nev-
ertheless elucidate its meaning in the context of nonlinear-time series analysis. A
prediction is usually a statement about things that will happen in the future based
on the knowledge we have about events that happened in the past. In the language
of nonlinear time series analysis, this means that we consider some data points up
to time t in order to predict the value of an unknown data point at time t + ∆t,
where ∆t is a small time interval usually in the order of magnitude of couple of
time steps. However, we can still make the same prediction even if we already know
the value of x at the time t + ∆t (xt+∆t). In particular, this test is done if we
want to evaluate the successfulness of our prediction algorithm by calculating the
prediction error. If we denote the predicted value of xt+∆t by x̃t+∆t, then we can
calculate the average prediction error according to the equation

δ =

√

√

√

√

1

N

N
∑

k=1

(x̃t+∆t − xt+∆t)2 , (10)
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where N is the number of trials we have made, i.e. for how many different points xt

we have predicted the value x̃t+∆t and compared it with the true value xt+∆t. Note
that the counter k in Eq. (10) does not directly pertain to the time of variable x,
but solely counts the number of trials for different xt. Since we now know how to
estimate the error of a prediction, it remains of interest to describe how to actually
make one.

The most common and simple prediction of an event one can make is to consider
similar events that have happened in the past, and from that knowledge deduce
the most likely event that will happen in the future. For example, if you are not
living in a desert, you have probably experienced several times that thick dark
clouds usually bring along rain. So if today you see thick dark clouds in the sky
you immediately assume, based on the knowledge you have from the past, that
it will probably rain in the near future. In order to integrate this basic idea into
the concept of nonlinear time series analysis, we first have to think about how to
determine events that we call similar. The answer is perhaps far more simple than
you imagine. If we consider a point p(t) in the reconstructed embedding space as
an event, than similar events will simply be points that are close to this particular
point. By close, we mean closer than some ǫ, which is in the order of magnitude
of the data resolution, and certainly not larger than the standard data deviation.
How can we then estimate a future value of xt? The answer is simply to calculate
the average value of all xi+∆t, which pertain to all points p(i) that are less than
ǫ apart from p(t). If we denote by |Θǫ| the number of points p(i) that satisfy the
relation ||p(i)−p(t)|| < ǫ, then the prediction x̃t+∆t of xt can finally be calculated
using the equation

x̃t+∆t =
1

|Θǫ|

|Θǫ|
∑

k=1

xi+∆t , (11)

where the counter k, as in Eq. (10), doesn’t pertain to the time of variable x but
solely counts the number of all found neighbours. The above-described prediction
algorithm is described in the book by Kantz and Schreiber [6], while the original
idea allegedly belongs to Pikovksy [24]. In general, there exists a minimal number
of neighbours |Θǫ| that are necessary to make a relevant prediction. If, for example,
|Θǫ| for a given point p(t) is less than 10, then it is safe to say that the prediction will
be inaccurate, and thus the value x̃t+∆t should not be considered in Eq. (10) when
calculating the average prediction error. If there exist many data points that don’t
have enough neighbours inside ǫ that is smaller than the standard data deviation,
then you cannot use this statistic on your data set. Alternatively, if not enough
neighbours for a particular point are found, you can simply calculate the average
value of the variable in the data set according to Eq. (8), and use it as the best
possible prediction for such points. With these remarks we conclude the description
of how to make a prediction and evaluate the pertaining error, and devote ourselves
to explaining the second part of our statistic that we plan to use for stationarity
testing, namely the “cross-prediction”.

First, let us briefly recall what we intend to do. We plan to use the cross-

102 FIZIKA A 15 (2006) 2, 91–112



perc: introducing nonlinear time series analysis in undergraduate courses

prediction error in order to reveal possible differences between various non-
overlapping segments of the time series, to test if the data originate from a station-
ary process. With this in mind, the main idea to which the word “cross-prediction”
pertains should be clear. It is simply to use one segment of the data (say the first
1000 points) to make predictions in another segment of the data (for example the
second 1000 points). In terms of variables we have introduced above, this means
that for every point p(t) in a particular data segment, we have to find close neigh-
bours p(i) in another non-overlapping data segment in order to predict the future
value of xt. Thereby, we check if the dynamics that produced the second data
segment is similar to the one that yielded the first data segment. Obviously, this
will be the case only if the whole data set originates from the same dynamics. In
terms of stationarity, this means that parameters during measurements, i.e. while
obtaining the first, second, third. . . data segment, remained unaltered. Further-
more, our statistic rigorously checks also the second notion of stationarity, which
is sufficient sampling of data. This condition for stationarity is simply fulfilled if a
data segment can provide enough neighbours for a point in another data segment
to make a proper prediction.

At this point, we have all in place to summarize the algorithm for testing the
stationarity of a data set as proposed by Schreiber [23]. First, the time series has
to be partitioned into equally sized non-overlapping segments of sufficient length.
Then, for each point of the segment j, we perform predictions according to Eq.
(11), however, by searching for neighbours in a distinct segment i. Subsequently, we
evaluate the accuracy of obtained predictions by calculating the average prediction
error δ according to Eq. (10), where N now counts all points that are inside segment
j. At this stage, it is convenient to replace the symbol δ by the symbol δji, to
indicate on which data segments predictions were performed (j), and which data
set provided the neighbours (i). Finally, this procedure has to be repeated for all
combinations of j and i. If a specific combination of j and i yields an error δji that is
significantly larger than the average, then the dynamics that produced the segment
j is obviously not the same as the one that produced i. The second possibility is
that the observed phenomenon was not sufficiently sampled while obtaining i, thus
providing an insufficient amount of neighbours to make a good prediction for points
in the segment j. In both cases, the resulting exceptionally high prediction error δji

is a clear indicator that the stationarity requirements in the examined time series
are not fulfilled. Especially in cases where i is substantially different (substantially
in this case depends on the number of data segments) from j, the cross-prediction
error is expected to be maximal, since in this case the largest temporal separation
between xt and the neighbours constitutes the largest probability that the dynamics
during this time has changed. The final remark concerns the special case when i = j.
In such cases, the cross-prediction error is simply a prediction error that is expected
to be minimal since xt and the neighbours pertain to the same data segment, and
thus the possibility of an altered dynamics is small.

Results obtained with the described algorithm are shown in Fig. 4. We have cal-
culated the cross-prediction error for two time series, each occupying 40000 points
that were split into 40 segments of 1000 points. In both cases we used the embed-
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ding parameters obtained with the mutual information method (τ = 17) and the
false nearest neighbour method (m = 3). The results presented in Fig. 4a pertain
to the original time series (σ = 10, r = 25, b = 8/3) used also in all previous cal-
culations, whereas the results presented in Fig. 4b were obtained by using a time
series that was generated with the Lorenz equations with a variable parameter r.
In particular, every 1000 integration steps r was set to r+1. Thereby, we simulated
a non-stationary process to enable a better evaluation of the method. As expected,
the cross-prediction error is in both cases minimal when i = j (diagonal). However,
while for the original time series δji remains equally low basically for all cross-
predictions, the error increase for the non-stationary time series is clearly evident
at off-diagonal entries. In particular, the first half of the time series (i < 20) is a
terrible source of useful neighbours for the second half of the time series (j > 20),
whereas the error increase is also evident, but in a more moderate manner. The
presented results clearly confirm that the original time series originates from a sta-
tionary process, and thus qualifies for further analysis. As in previous cases, this
result can be easily reproduced with our program stationarity.exe, which can be
downloaded from our web page [20]. Crucial parameter values that have to be pro-
vided are the previously obtained embedding delay and dimension, the number of
points in one segment (in our case 1000), the initial ǫ (usually set to 1/4 of stan-
dard data deviation), a factor for increasing the initial ǫ (1.41 in our case), and
the number of time steps for prediction (by default 1). The obtained colour map is
displayed graphically, so no additional programs are required.

Fig. 4. Stationarity test. a) Cross-prediction errors obtained for the original time se-
ries. b) Cross-prediction errors obtained for the time series calculated with variable
parameters during recording.

Before we can definitely qualify our time series as suitable for further analyses,
there is still one last test we have to make. That is the determinism test [25 – 27].
What properties has a deterministic time series in comparison to a stochastic one
that would allow us to make the distinction? To answer this question consider the
fact that a deterministic time series always originates from a deterministic process,
which in turn can always be described by a set of more or less complex first-order
ordinary differential equations. The relevant consequence of this fact, which follows
from the mathematical theory of ordinary differential equations, is that solutions of
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such systems exist and are unique. Uniqueness of solutions is the property on which
we will build up our determinism test. If a system is described by a set of ordinary
differential equations, its vector field can be drawn easily. The length as well as the
rotation of each vector in every point of the phase space is uniquely determined with
the differential equations. However, in case we are faced solely with a time series,
the differential equations are obviously not available. Consequently, the uniqueness
of solutions of the system that produced the time series cannot be tested directly.
What we need is a method that would allow us to construct the vector field of the
system directly from the time series, and subsequently test if it assures uniqueness
of solutions in the phase space. This awareness led Kaplan and Glass [25] to a
beautiful and effective determinism test, which we are going to describe next.

The first step towards a successful realization of the test is, as so often, to
construct a good embedding space from the observed variable. Thereby, we obtain
the path of the trajectory in the phase space. To construct an approximate vector
field of the system, the phase space has to be coarse grained into equally sized boxes
with the same dimension as the embedding space. To each box that is occupied by
the trajectory, a vector is assigned, which will finally be our approximation for the
vector field. The vector pertaining to a particular box is obtained as follows. Each
pass i of the trajectory through the k-th box generates a unit (the fact that it is
unit is crucial) vector, which we will denote as ei, whose direction is determined by
the phase space point where the trajectory first enters the box and the phase space
point where the trajectory leaves the box. In fact, this is the average direction of
the trajectory through the box during a particular pass. The approximation for the
vector field Vk in the k-th box of the phase space is now simply the average vector
of all passes obtained according to the equation

Vk =
1

Pk

Pk
∑

i=1

ei , (12)

where Pk is the number of all passes through the k-th box. Completing this task
for all occupied boxes gives us a directional approximation for the vector field of
the system. Note that the word directional is stressed since the described method
provides no information about how fast the trajectory moves through particular
boxes. Therefore, we cannot say anything about the absolute lengths of the obtained
vectors. The absolute magnitude of the vector field is, however, not important
for the determinism test. What is important is the fact that, if the time series
originated from a deterministic system, and the coarse grained partitioning is fine
enough, the obtained vector field should consist solely of vectors that have unit
length (remember that each ei is a unit vector). This follows directly from the
fact that we demand uniqueness of solutions in the phase space. If solutions in the
phase space are to be unique, then the unit vectors inside a particular box must all
point in the same direction. In other words, the trajectories inside each box may
not cross, since that would violate the uniqueness condition at each crossing. Note
that each crossing decreases the size of the average vector Vk. For example, if the
crossing of two trajectories inside the k-th box would occur at right angle, then the
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size of Vk would be, according to Pythagoras,
√

2/2 ≈ 0.707 < 1. Hence, if the
system is deterministic, i.e. no trajectory crossings inside a particular box occur,
each average resultant vector obtained according to Eq. (12) will be exactly of unit
length. Accordingly, the average length of all resultant vectors Vk will be exactly
1, while for a system with a stochastic component this value will be substantially
smaller than 1. In the original paper [25], a definite measure for determinism (κ) was
proposed to be a weighted average of Vk with respect to the average displacement
per step, Rm

k , of a random walk, which can be calculated according to the equation

κ =
1

A

A
∑

k=1

(Vk)2 − (Rm
k )2

1 − (Rm
k )2

, ((13)

where A is the total number of occupied boxes, and Rm
k is obtained according to

the equation

Rm
k = cmP

−1/2
k , (14)

where cm is a constant that depends on the embedding dimension and equals
π1/2/2, 4/(6π)1/2, 3π1/2/321/2 for m = 2, 3, 4, respectively. As already mentioned,
the determinism factor for a deterministic system is κ = 1, while due to the weighted
average with respect to Rm

k , κ = 0 for a random walk.

Fig. 5. Determinism test. a) The approximated vector field for the embedding
space reconstructed with τ = 17 and m = 3. The pertaining determinism factor is
κ = 0.99. b) The approximated vector field for the embedding space reconstructed
with τ = 500 and m = 3. The pertaining determinism factor is κ = 0.31.

Results obtained with the described method are presented in Fig. 5. We have
performed the determinism test on the original time series for two different embed-
ding delays to better evaluate the method, and in particular, to show how a large
embedding delay destroys determinism by introducing uncorrelated points as close
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neighbours in the phase space. For both calculations, the three-dimensional embed-
ding space was coarse grained into a 24×24×24 grid. In Fig. 5a, the approximated
vector field for the embedding space reconstructed with the optimal embedding
delay, obtained with the mutual information method (τ = 17), is presented. The
pertaining determinism factor is κ = 0.99. It can be well observed that basically all
vectors are of unit length, and indeed it would be difficult to distinguish between
the approximated and the actual vector field if the latter existed (for the embedding
space). You may also compare the vector field with the phase space presented in
Fig. 1b, since they are both obtained with exactly the same embedding parame-
ters. In Fig. 5b, however, the situation is significantly different. The approximated
vector field pertains to the embedding space obtained with τ = 500. For that delay,
the autocorrelation function as well as the mutual information are nearly zero (see
Fig. 2), which means that values of the time series that are separated by such a
temporal gap are completely uncorrelated. Thus, the embedding at this delay is
quite similar to a reconstructed phase space one would obtain with a completely
stochastic time series. Accordingly, only few vectors are of unit length, and perhaps
the vector field is indeed best described with the words used by the authors of the
original article: “it is a spaghetti mess” [25]. The pertaining determinism factor
is, not surprisingly, κ = 0.31 (very low). As always, the presented results can be
reproduced in an easy manner with our program determinism.exe, which can be
downloaded from our web page [20].

At last, we have successfully established that the studied time series originates
from a stationary deterministic process. Prior to that, we have explained how to
obtain optimal embedding parameters, and so it is now safe to say that we are
equipped with enough skills to take on nearly any challenge of nonlinear time series
analysis. Of course there is still a lot to learn, and tedious work lies ahead of us
trying to understand and implement new, perhaps more sophisticated, methods.
Nevertheless, so far we are on the right way, and a good start is always important.
At the end, let us calculate the maximal Lyapunov exponent of the examined data
set to confirm the presence of deterministic chaos in the underlying system.

Lyapunov exponents [28 – 30] determine the rate of divergence or convergence of
initially nearby trajectories in phase space. This is true for the phase space obtained
from differential equations, as well as for the reconstructed phase space obtained
from a single variable. Generally, an m-dimensional phase space is characterized by
m different Lyapunov exponents, which we will denote as Λi, where i = 1, 2, . . . ,m.
They can be ordered from the largest to the smallest to form the Lyapunov ex-
ponent spectrum Λ1,Λ2, . . . ,Λm. It is a well-established fact that if one or more
of these exponents is larger than zero, the system is chaotic [28]. If this is the
case, two arbitrary close trajectories of the system will diverge apart exponentially,
eventually ending up in completely different phase space areas as time progresses.
This, so-called, extreme sensitivity to changes in initial conditions is the hallmark of
chaos. It is this extreme sensitivity on the initial state that makes chaotic systems
inherently unpredictable. If, for example, we measure the temperature only with
0.1% inaccuracy, this little measurement error will eventually lead to a completely
wrong prediction, even if we would have a complete set of differential equations
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that would absolutely describe temporal temperature variations on Earth. This is
certainly an astonishing fact. At this point, however, let us concentrate on the fact
that the maximal Lyapunov exponent Λ1 uniquely determines whether the system
is chaotic or not. For our purposes it will, therefore, be sufficient to concentrate only
on the calculation of the maximal Lyapunov exponent. There exist several effective
and robust algorithms [31,32] that have been developed for this task. However, we
decided to trade some of this efficacy and robustness for a conceptually simpler and
direct approach. Therefore, we will describe the algorithm developed by Wolf et al.
[33] that implements the theory in a very direct fashion.

As already noted, the Lyapunov exponents determine the rate of divergence or
convergence of initially nearby trajectories in phase space. So what we need to do
in order to calculate the maximal Lyapunov exponent is the following. For a point
of the embedding space p(t) find a near neighbour p(i), which satisfies the relation
||p(i) − p(t)|| ≤ ǫ. Then iterate both points forward in time for a fixed evolution
time ν, which should be a couple of times larger than the embedding delay τ , but
not much larger than mτ . If the system is chaotic, the distance after the evolved
time ||p(i + ν) − p(t + ν)|| = ǫν , will be larger than the initial ǫ, while in case of
regular behaviour ǫ ≈ ǫν . After each evolution ν, a so-called replacement step is
attempted in which we look for a new point p(j) in the embedding space, whose
distance to the evolved point p(t + ν) should be small (ǫ), under the constraint
that the angular separation between the vectors constituted by the points p(t + ν)
and p(i + ν), and p(t + ν) and p(j) is small. This procedure is repeated until the
initial point of the trajectory reaches the last one. Finally, the maximal Lyapunov
exponent can be calculated according to the equation

Λ1 =
1

Mν

M
∑

i=1

ln
ǫν

ǫ
, (15)

where M is the total number of replacement steps. The successive replacement
steps are crucial for a correct estimation of the maximal Lyapunov exponent. If
the embedding space is properly constructed and densely populated with points,
the algorithm performs extremely well. However, if data is sparse, it might happen
that we have to except a rather large initial distance or angular separation in a
replacement step. If this is the case, it cannot be argued that the obtained maximal
Lyapunov exponent is always precisely accurate. Nevertheless, if the algorithm is
implemented with a variable acceptable initial distance and angular separation,
then the obtained result is always accurate enough at least for a “yes/no chaos”
assessment.

The result obtained with the above-described algorithm for the optimal embed-
ding parameters is presented in Fig. 6. It can be well observed that the maximal
Lyapunov exponent converges extremely well to Λ1 = 0.88, which is in good agree-
ment with Λ1 = 0.82 that can be calculated with the help of differential equations.
More importantly, however, the obtained positive maximal Lyapunov exponent is
a clear indicator that the studied time series originated from a chaotic system. To-
gether with the results obtained from the stationarity and determinism test, it is

108 FIZIKA A 15 (2006) 2, 91–112



perc: introducing nonlinear time series analysis in undergraduate courses

safe to say that deterministic chaos is inherently present in the studied time se-
ries, and thus that the underlying system [1] is, for the studied parameter values,
deterministically chaotic.
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Fig. 6. Calculation of the maximal Lyapunov exponent for the embedding space
reconstructed with τ = 17 and m = 3. The maximal Lyapunov exponent converges
well to Λ1 = 0.88.

3. Discussion

In the present paper, we describe essential nonlinear time series analysis meth-
ods that are required to establish the presence of chaos in an observed time series.
We emphasize that chaos in a time series cannot be positively established, without
first checking whether the data set originated from a stationary and deterministic
process. Only if both these criteria are met, the obtained invariant quantities, such
as the maximal Lyapunov exponent, truly characterize the system as we believe
they do. For example, a positive maximal Lyapunov exponent can then be consid-
ered as a convincing evidence for the presence of chaos in the studied time series.
If, however, stationarity and determinism are not tested for, it cannot be claimed
that the exponential divergence of nearby trajectories originates from the system
dynamics, for it might be solely a consequence of stochastic inputs or variable
parameters during data acquisition.

The knowledge one obtains when mastering the above-described methods
presents a good starting point for performing further analysis, such as calcula-
tion of dimensions [10 – 12] or noise reduction [13 – 14]. In fact, these tasks would
be appropriate subjects for a sequel paper. Currently, these topics are covered in
existing monographs on nonlinear time series analysis [5 – 7], and in the original
papers. An excellent source of information for these methods is also the TISEAN
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project [34]. Together with the pertaining paper [35] and the book by the same
authors [6], the TISEAN project presents a very valuable source of information
as well as useful programs for virtually all topics of nonlinear time series analysis.
Therefore, particularly for students that would like to dig deeper into the nonlinear
time series analysis, we recommend to exploit the benefits offered by the project.

It is our sincere hope that the reader will find interest and inspiration in the
nonlinear time series analysis. Therefore, we have invested a lot of effort in mak-
ing the presented results as easily reproducible as possible [20]. Our goal was to
make the methods accessible to undergraduate students, to whom this article may
represent the first contact with the presented theory. The paper is also devoted to
teachers who would like to integrate nonlinear time series analysis methods into
the physics curriculum.

Appendix

Since it is our sincere hope that the interested reader will find great joy in non-
linear time series analysis, we have developed user-friendly programs that allow a
quick and easy reproduction of all presented results in this paper. The whole pack-
age, that can be downloaded from our web page [20], consists of six programs (em-
bedd.exe, mutual.exe, fnn.exe, stationarity.exe, determinism.exe, and lyapmax.exe)
and a sample input file (ini.dat). All programs have a graphical interface and dis-
play results in forms of drawings or colour maps. In order to function, they require
a Windows environment and an input file named ini.dat in the working directory.
After download, the content of the package.zip file should be extracted into an ar-
bitrary (preferably empty) directory. Thereafter, the programs are ready to run via
a double-click on the appropriate icon. Initially, a parameter window will appear,
which allows you to insert proper parameter values (by default they are set equally
to those used in this paper). Once this step is completed, just press the OK button
to execute the program. A progress bar will appear, which lets you know how fast
the program is running, and when it will eventually finish. After completion re-
sults are displayed graphically in a maximized window. To avoid exceptionally high
memory allocation and running times, all programs are currently limited to operate
maximally on 250000 data points with 10 degrees of freedom. Upon request, we can
provide programs that can handle also larger data sets. Finally, we strongly advise
the reader to read the manual pertaining to the programs on our web page, where
more detailed instructions are given.
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UVOD– ENJE ANALIZE NELINEARNIH VREMENSKIH NIZOVA U
DODIPLOMSKI STUDIJ

Ovaj smo članak napisali za dodiplomske studente i nastavnike koji se žele upoznati
s osnovnim metodama analize nelinernih vremenskih nizova. Postupno proučavamo
jednostavan primjer takvog niza i dajemo programe za lako ponavljanje izloženih
ishoda računa. Taj je primjer umjetan vremenski niz stvoren Lorenzovim sus-
tavom jednadžbi. Podrobno objašnjavamo metode uzajamnih informacija i krivog
najbližeg susjeda, koje se primjenjuju za najbolje nalaženje nakupinskih točaka. Za-
tim se ispituju stacionarnost i determinizam vremenskih nizova, koji su važna svo-
jstva za ispravno tumačenje nepromjenljivih veličina koje se mogu izvesti iz skupa
podataka. Na kraju računamo najveći Ljapunovljev eksponent koji je najvažnija
nepromjenljiva veličina za razlikovanje pravilnog i kaotičnog ponašanja niza. Slije-
dom ovih koraka utvrd–ujemo uvjerljivo da je Lorenzov sustav kaotičan, izravno iz
izvedenog niza, bez upotrebe diferencijalnih jednadžbi. U radu se poklanja velika
pažnja naputcima i izravnoj primjeni metoda kako bi i dodiplomski studenti mogli
ponoviti izložene račune i tako se potaknuli da bolje upoznaju prikazanu teoriju.
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