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Introduction:Neural interactions in the brain are a�ected by transmission delays

which may critically alter signal propagation across di�erent brain regions in

both normal and pathological conditions. The e�ect of interaction delays on

the dynamics of the generic neural networks has been extensively studied by

theoretical and computational models. However, the role of transmission delays

in the development of pathological oscillatory dynamics in the basal ganglia (BG)

in Parkinson’s disease (PD) is overlooked.

Methods: Here, we investigate the e�ect of transmission delays on the discharge

rate and oscillatory power of the BG networks in control (normal) and PD states

by using a Wilson-Cowan (WC) mean-field firing rate model. We also explore

how transmission delays a�ect the response of the BG to cortical stimuli in

control and PD conditions.

Results: Our results show that the BG oscillatory response to cortical stimulation

in control condition is robust against the changes in the inter-population

delays and merely depends on the phase of stimulation with respect to cortical

activity. In PD condition, however, transmission delays crucially contribute to the

emergence of abnormal alpha (8–13 Hz) and beta band (13–30 Hz) oscillations,

suggesting that delays play an important role in abnormal rhythmogenesis in the

parkinsonian BG.

Discussion: Our findings indicate that in addition to the strength of connections

within and between the BG nuclei, oscillatory dynamics of the parkinsonian

BG may also be influenced by inter-population transmission delays. Moreover,

phase-specificity of the BG response to cortical stimulation may provide further

insight into the potential role of delays in the computational optimization of

phase-specific brain stimulation therapies.
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1 Introduction

Parkinson’s disease (PD) is a multiscale movement-related

disorder, affecting the entire cortico-basal ganglia (BG)-thalamo-

cortical (CBGTC) circuits involved in motor control at the level

of single neurons as well as network interactions (McGregor and

Nelson, 2019; Scherer et al., 2022). Degeneration of dopaminergic

neurons in the substantia nigra pars compacta (SNc) triggers

a cascade of maladaptive or compensatory changes during

parkinsonism which alter the dynamics of the striatum and,

consequently, the thalamus and cortex (Madadi Asl et al., 2022b).

Changes in cortico-striatal dynamics following dopamine (DA)

loss massively modulates downstream projections (Day et al.,

2006; Fan et al., 2012; Miguelez et al., 2012). Motor symptoms

of PD are traditionally viewed as the result of alterations in

discharge rates of different CBGTC circuits (Wichmann and

DeLong, 2006; Galvan et al., 2015; Asadi et al., 2022). For instance,

elevated discharge rates of the subthalamic nucleus (STN) (Mallet

et al., 2008b) and globus pallidus internus (GPi) (Kita and Kita,

2011a), and reduced activity of the globus pallidus externus

(GPe) (Mallet et al., 2008a) were often observed experimentally.

However, discharge rate changes, alone, are not sufficient to explain

experimental findings. Rather, changes in the power spectrum of

the BG oscillations are pathophysiologically important as well. For

example, neural correlates of PD include changes of oscillatory

brain activity in alpha (8–13 Hz) and beta band (13–30 Hz)

in the electroencephalogram (EEG) and magnetoencephalogram

(MEG) (Soikkeli et al., 1991; Bosboom et al., 2006; Stoffers

et al., 2007) as well as enhanced synchronized oscillations at beta

frequencies in the BG, thalamus, and cortex (Gatev et al., 2006;

Galvan et al., 2015).

Experimental findings during the past years refined our

understanding of the BG circuitry, e.g., due to the recognition

of distinct subpopulations of neurons within the striatum and

GPe as well as additional projections (Gertler et al., 2008; Planert

et al., 2010; Mallet et al., 2012; Mastro et al., 2014). Any attempt

to model the role of these subpopulations and projections in the

BG dynamics rapidly runs into difficulties either due to lack of

knowledge or computational cost of detailed, biologically-realistic

models. In this context, simple models may ignore some details

but they are still able to make reasonable predictions. For instance,

mean-fieldmodels of the BGwere able to explain firing rate changes

during parkinsonism (van Albada and Robinson, 2009) as well

as oscillations and spectral changes in the EEG recordings (van

Albada et al., 2009). The consistency of these predictions were

later improved by reducing complex BG dynamics to a lower

dimensional space of sensibly chosen dynamical features enabling

more accurate parameter estimation for the firing rate models of

PD (Bahuguna et al., 2017).

Altered response of the BG to transient cortical stimuli is one

of the dynamical changes due to DA loss in PD (Kita and Kita,

2011a; Chiken et al., 2021). More precisely, in control (normal)

condition the response of the BG to cortical stimulation is triphasic

composed of early excitation, inhibition, and late excitation in

the GPi and GPe (Jaeger and Kita, 2011; Chiken et al., 2021).

In PD, this response is altered such that cortical stimulation-

induced inhibition in the GPi is reduced, whereas late excitation

in the GPe is elongated (Jaeger and Kita, 2011; Chiken et al.,

2021). Since motor commands originate in the cortex, a number

of computational studies employed mean-field models to shed

light on complex, network-level changes in the BG that may be

responsible for pathological cortical information flow in PD (van

Albada and Robinson, 2009; van Albada et al., 2009; Kerr et al.,

2013; Bahuguna et al., 2017). However, signal transmission across

the brain is not instantaneous. Rather, neural interactions and,

consequently, the emergent dynamics are significantly affected by

transmission delays (Barardi et al., 2014; Madadi Asl et al., 2017,

2018b).

During the past years, a number of studies took into

account the role of transmission delays in generating pathological

beta oscillations in computational models of the parkinsonian

BG (Humphries et al., 2006; Nevado-Holgado et al., 2010;

Dovzhenok and Rubchinsky, 2012; Pavlides et al., 2012; Pasillas-

Lépine, 2013). For example, Nevado-Holgado et al. (2010) as well

as Pasillas-Lépine (2013) developed amean-fieldmodel of the STN-

GPe network and showed that transmission delays between the

STN and GPe neurons are necessary for the emergence of beta

oscillations in the model. In a conductance-based model of the

STN-GPe circuit, Dovzhenok and Rubchinsky (2012) introduced

two delay units representing synaptic and conductance delays in

the CBGTC loop and showed that delayed feedback loop may be

essential for tremor-like oscillations in the model. In a mean-field

model of the BG, Pavlides et al. (2015) showed that the frequency

of STN oscillations mostly depends on the range of delays assigned

to the pathway within which the oscillations were driven, i.e., the

frequency is lowest (highest) when oscillations are driven by the

long (short) delayed loop.

Still, to what extent delays may affect signal transmission in the

BG pathways is not well understood. In this study, we investigate

how introducing transmission delays into the communication

between BG nuclei affects information transmission in the BG

driven by cortical stimuli. The goal of the study is to address

the following questions: (i) How do changes in inter-population

transmission delays alter the discharge rate of the BG nuclei in

the control and PD states? (ii) How do phase-specific cortical

stimuli compensate for delayed information transmission in the

normal and parkinsonian BG? And (iii) on a macroscopic scale,

how do these changes influence oscillations and their spectral

properties in the control and PD states? To this end, we

considered a Wilson-Cowan (WC) model as a mean-field firing

rate model with physiologically plausible parameter estimates that

can predict discharge rate and power spectrum changes in relation

to the control and PD conditions. Our BG model consists of

striatum, GPe, STN and GPi, as schematically shown in Figure 1.

The model incorporates three distinct subpoplations within the

striatum, namely, D1-receptor-expressing medium spiny neurons

(D1-MSNs), D2-receptor-expressing medium spiny neurons (D2-

MSNs) and fast-spiking interneurons (FSIs) (Gertler et al., 2008;

Planert et al., 2010) as well as two distinct subpoplations within

the GPe, i.e., tonically active neurons (TANs) and tonically inactive

neurons (TINs) (Mallet et al., 2012; Mastro et al., 2014). The

advantage of a mean-field model is that it can predict large-scale

properties of neural populations with few parameters and evaluate

their dependence on inter-population connection strengths and,
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furthermore, directly assess rate and spectral changes due to

transmission delays.

Specifically, we investigated the effect of inter-population

transmission delays on the dynamics of BG oscillatory activity.

Our results show that changes of delays in the indirect pathway

may change the firing pattern of oscillations while the mean firing

rates of the BG nuclei are mainly preserved. Moreover, the power

of alpha and beta oscillatory activity have the potential to be

significantly enhanced in the PD condition in comparison to the

control condition due to the presence of inter-population delays.

This suggests that delays play a modifying role in generating

abnormal oscillations in the parkinsonian BG. Furthermore, we

investigated the response of the networks to a transient cortical

stimulus and demonstrated that in the control condition the BG

oscillatory dynamics is fairly robust against changes of inter-

population delays, whereas in the PD condition delays and the

phase of cortical stimulation may jointly determine the response

of the network to cortical stimuli. Our findings highlight the role of

inter-population transmission delays in the emergence of abnormal

oscillations in PD. The delay-dependency and phase-specificity of

the response of the parkinsonian BG to cortical stimulation may be

potentially useful for therapeutic purposes.

2 Methods

2.1 Mean-field model of the BG

As it is schematically shown in Figure 1, we considered a WC

model of the mean activity of different BG nuclei including D1-

MSNs, D2-MSNs, FSIs, GPe-TANs, GPe-TINs, STN, and GPi. The

model was implemented in MATLAB. Specifically, the striatum is

organized into three subpopulations of neurons (Gertler et al., 2008;

Planert et al., 2010), i.e., D1-MSNs, D2-MSNs, and FSIs. The D1-

MSNs project to the GPi and D2-MSNs project to the GPe cells,

whereas the FSIs only project to the neurons within the striatum.

The GPe incorporates two subpopulations of neurons (Mallet

et al., 2012; Mastro et al., 2014), i.e., TANs and TINs. Both GPe

subpopulations project to the striatum as well as STN, whereas

TINs also project to the GPi. The TANs fire in-phase with cortical

slow-wave activity (SWA) and beta activity in parkinsonian state.

The TINs, on the other hand, fire anti-phase with cortical SWA

and beta activity in parkinsonian state. The STN receives input

from the cortex and GPe, and projects to the GPe as well as GPi.

Experiments on the synaptic properties of the STN suggested an

absence of intrinsic connectivity (Steiner et al., 2019), therefore, we

did not assume an intrinsic input for the STN (i.e., STN → STN

projection) in our model.

The dynamics of the system obeys the following differential

equation (Bahuguna et al., 2017):

τ Ẏ = −Y + S(A · Y + B · λCTX), (1)

where τ = 15ms is the time constant and λCTX = ICTX + Istim
represents the sum of the firing rates of cortical input ICTX and

cortical stimulation current Istim (see below).

Moreover, Y(t) is the population firing rate vector and

S(x) is a sigmoidal activation function given by the following

FIGURE 1

Schematic illustration for the mean-field model of the BG circuitry.

The BG model consists of seven nuclei including D1-MSNs,

D2-MSNs, FSIs, GPe-TANs, GPe-TINs, STN and GPi interacting via

excitatory (red) or inhibitory (gray) connections. The classical

functional organization of the BG includes the direct pathway

(cortex → striatal D1-MSN → GPi), indirect pathway (cortex →

striatal D2-MSN → GPe ⇋ STN → GPi) and hyperdirect pathway

(cortex → STN → GPi).

relations, respectively:

Y(t) =
[

λD1(t), λD2(t), λFSI(t), λTAN(t), λTIN(t), λSTN(t), λGPi(t)

]T
,

(2)

S(x(t − d)) =
λmax

1+ e−a(x(t−d)−θ)
, (3)

where d represents the delay in the transmission of signals

between populations. The values of θ and λmax shown in Table 1

were tuned to mimic realistic instantaneous firing rates under

different input conditions (Bahuguna et al., 2017). For each

nucleus, the parameters θ and λmax were fixed for both the control

and PD conditions.

The temporal derivative of the firing rate vector is given by:

Ẏ =
dY

dt
=

[

dλD1

dt
,
dλD2

dt
,
dλFSI

dt
,
dλTAN

dt
,
dλTIN

dt
,
dλSTN

dt
,
dλGPi

dt

]T

,

(4)

where the letter T stands for the matrix transpose.

The coupling matrices A and B represent the recurrent and

input connection matrices, respectively. An element Ji,j of A and

B denotes the effective connection strength (j → i) between the

populations. The coupling matrices are given by:
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TABLE 1 Model parameters for the sigmoidal activation function S(x) in

Equation (3) (Bahuguna et al., 2017).

Population θ λmax

D1-MSN 0.1 65

D2-MSN 0.1 65

FSI 0.1 80

TAN 0.4 75

TIN 0.4 125

STN 0.4 500

GPi 0.1 250

TABLE 2 Connection strengths of the BG projections that are fixed for

both the control and PD conditions (Bahuguna et al., 2017) and the

corresponding transmission delays (Jaeger and Kita, 2011; Kita and Kita,

2011a).

Projection Strength (mVs) Delay (ms)

D1-MSN→ D1-MSN –0.69 0

D1-MSN→ D2-MSN –0.32 0

D1-MSN→ GPi –2.8 12

D2-MSN→ D1-MSN –1.15 0

D2-MSN→ D2-MSN –2.9 0

FSI→ D1-MSN –0.66 0

FSI→ D2-MSN –0.318 0

FSI→ FSI –0.0012 0

TIN→ GPi –0.78 1

STN→ STN 0.05 0

STN→ GPi 0.26 2

A =























JD1,D1 JD1,D2 JD1,FSI JD1,TAN JD1,TIN 0 0

JD2,D1 JD2,D2 JD2,FSI JD2,TAN JD2,TIN 0 0

0 0 0 JFSI,TAN JFSI,TIN 0 0

0 JTAN,D2 0 JTAN,TAN JTAN,TIN JTAN,STN 0

0 JTIN,D2 0 JTIN,TAN JTIN,TIN JTIN,STN 0

0 0 0 JSTN,TAN JSTN,TIN 0 0

JGPi,D1 0 0 0 JGPi,TIN JGPi,STN 0























.

(5)

B =

[

JD1,CTX, JD2,CTX, JFSI,CTX, 0, 0, JSTN,CTX, 0
]T

. (6)

In the model, some of the projections were considered as a

fixed parameter (listed in Table 2) for both the control and PD

conditions, whereas others were assumed to be different in order to

distinguish the control and PD conditions (listed in Table 3). These

parameters were previously estimated (Bahuguna et al., 2017) based

on animal experimental data (Connelly et al., 2010; Planert et al.,

2010; Chuhma et al., 2011) used to tunemean-field networkmodels

of the control and parkinsonian BG.

TABLE 3 Connection strengths of the BG projections that discriminate

the control and PD states (Bahuguna et al., 2017) and the corresponding

transmission delays (Jaeger and Kita, 2011; Kita and Kita, 2011a).

Projection
Strength (mVs)

Delay (ms)
Ctrl PD

D2-MSN→ TAN –0.4 –2.1 7

D2-MSN→ TIN –0.45 –1.6 7

TAN→ D1-MSN –0.83 –0.93 1

TAN→ D2-MSN -1.2 –1.4 1

TAN→ FSI –1.6 –0.25 1

TAN→ TAN –0.6 –1.2 1

TAN→ TIN –0.27 –0.25 1

TAN→ STN –0.75 –0.4 1

TIN→ D1-MSN –0.3 –0.18 1

TIN→ D2-MSN –0.2 –0.6 1

TIN→ FSI –0.8 –1.5 1

TIN→ TAN –0.9 –0.5 1

TIN→ TIN –0.64 –0.03 1

TIN→ STN –2.0 –1.2 1

STN→ TAN 1.7 1.4 2

STN→ TIN 0.92 0.2 2

2.2 Cortical input

The cortical input (ICTX) in the model is considered as a

feedforward excitatory input in the form of a sinusoidal current

wave shown in Figure 2A (Bahuguna et al., 2017), targeting D1-

MSN, D2-MSN, FSI and STN (also see Figure 1). The sinusoidal

wave with amplitude A = 2 spikes/s and frequency f = 20 Hz acts

as cortical input in the beta activation mode in the model (Mallet

et al., 2005; Bahuguna et al., 2017):

ICTX(t) = A sinωt + C, (7)

where ω = 2π f is the angular frequency of the sinusoidal wave and

C = 2.5 spikes/s.

Of note, in vivo neurophysiological recordings in control

condition in animal models are typically carried out during two

well-defined and controlled brain states, i.e., cortical SWA and

cortical beta activation (Magill et al., 2006; Mallet et al., 2008a).

The SWA state is dominated by low-frequency oscillations (1–2Hz)

and is qualitatively similar to activity observed during natural sleep,

whereas the cortical activation mode contains patterns of activity

that are more analogous to those observed during wakefulness,

behaving state characterized by physiological levels of beta (13–

30 Hz) oscillations. In PD condition, however, oscillatory activity

in the STN-GPe network becomes excessively and selectively

synchronized at beta frequencies in a brain state dependent manner

after lesion of DA neurons in animal models (Mallet et al., 2008a).

Motivated by experimental data, previous modeling studies

usually implemented cortical SWA or beta activation state by

assuming a frequency-specific cortical drive to the BG (Ahn et al.,
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2016; Bahuguna et al., 2017). For instance, Ahn et al. (2016) used

a f = 20 Hz cortical drive in their model of the parkinsonian BG.

Instead, Bahuguna et al. (2017) modeled SWA state as a f = 2 Hz

cortical input and beta activation state as a f = 20 Hz cortical input

to construct the physiological (normal) as well as the pathological

(parkinsonian) model. In their model, f = 20 Hz cortical input in

the beta activation mode in the control condition did not produce

abnormal beta rhythms and led to normal ranges of mean firing

rates. Hence, f = 20Hz cortical input in the beta activationmode in

the PD condition does not simply transfer beta oscillations from the

cortex to the BG since the same input in the control condition led

to normal ranges of mean firing rates. Rather, here beta oscillations

are generated due to parameter changes mentioned in Table 3.

Accordingly, in this study, we used a f = 20 Hz cortical input to

the BG to model both the control and PD networks in the cortical

beta activation state.

2.3 Response to transient cortical stimuli

To test the response of the BG to transient cortical stimulation

in both the control and PD conditions, we considered a short (with

a duration of 1 ms) pulse stimulus (see Figure 2B). The cortical

stimulation current is given by:

Istim(t) = k
[

H(t − ta)−H(t − tb)
]

, (8)

where k = 5 spikes/s is the amplitude of the stimulus pulse, δt =

tb − ta = 1 ms determines the width of the stimulus pulse andH(t)

is the Heaviside step function, i.e.,H(t) = 1, if t ≥ 0, andH(t) = 0,

otherwise. The total time of the simulation was 3,000 ms and the

stimulus onset time was at ta = 2, 000 ms (see Figure 2B).

2.4 Transmission delays in the BG

The responses of downstream neural populations to motor

cortex stimulation is typically characterized by an excitation-

inhibition sequence with a specific latency (Kita and Kita, 2011a).

In this study, we sought to investigate the dynamics of parkinsonian

oscillations in the BG in the presence of transmission delays

between different nuclei. These inter-population delays represent

the latency of motor cortex stimulation-induced responses in the

BG downstream networks (Nambu et al., 2000; Tachibana et al.,

2008). The ranges of inter-population delays in the model were

chosen based on previous experimental estimations in animal

models (Jaeger and Kita, 2011; Kita and Kita, 2011a), which are

given in Tables 2, 3. We also addressed the question that how

changing transmission delays between different nuclei can alter

population firing rates as well as oscillatory dynamics following

cortical stimulation.

2.5 Power spectrum

The power spectrum of oscillatory signals was calculated by the

fast Fourier transform (FFT) function implemented in MATLAB

with a sampling frequency of fs = 10 kHz.

3 Results

3.1 Firing rate modulation by transmission
delays

Significant changes in the mean discharge rates and the pattern

of neural oscillations in the CBGTC circuits following DA depletion

are widely reported in experimental models of PD (Galvan et al.,

2015; Asadi et al., 2022). While the discharge rate and pattern of

the striatal neurons are under debate (Kita and Kita, 2011b; Valsky

et al., 2020), increased firing rate of the STN cells and decreased

firing rate of the GPe neurons have been verified in numerous

experimental studies (Mallet et al., 2008b; Kita and Kita, 2011b).

The mean-field model used in this study is intrinsically

identified by population firing rates. To check if the model

output qualitatively mimics physiological estimates of firing rates

in the BG, the mean firing rate of each nuclei is reported in

Table 4 and the results are visualized in Figure 3 for a better

comparison. The control and PD conditions were constructed by

changing the coupling strengths between some of the BG nuclei,

as indicated in Tables 2, 3, and the transmission delays were also

included in the model. Together, these results confirm that the

increasing/decreasing trend of the mean firing rate in the PD

condition in comparison to the control condition in the model

qualitatively agrees with experimental observations (Galvan et al.,

2015; Asadi et al., 2022).

For example, Figure 3 shows that the mean firing rate of D1-

MSNs (D2-MSNs) is decreased (increased) in the PD condition

with respect to the control condition whether or not delays

are considered in the model. This is consistent with previous

experimental observations that the mean firing rate of D1-MSNs

is typically decreased (0.11 ± 0.04 Hz, PD vs. 1.61 ± 0.19 Hz,

ctrl) (Ryan et al., 2018), whereas the mean firing rate of D2-MSNs

is increased in the PD condition compared to the control condition

in rodents (6.4 ± 2.7 Hz, PD vs. 2.1 ± 1.2 Hz, ctrl) (Kita and Kita,

2011b). Moreover, a study on parkinsonian rodents revealed that

the firing rate of FSIs is increased in the PD condition compared to

the control condition (Hernandez et al., 2013). Consistently, such

an increase is successfully reproduced by our model as shown in

Figure 3.

As it is validated in animal models of PD (Mallet et al., 2008a,

2012), the two main subtypes of GP neurons, i.e., GPe-TANs and

GPe-TINs, can be identified by different firing rates and opposing

phase relationships with STN neurons. As shown in Figure 3,

distinct firing activity of the GPe subpopulations is reproduced in

our model such that the mean firing rate of GPe-TAN is increased

in the PD condition with respect to the control condition whether

or not delays are present in the computational model. On the

contrary, the mean firing rate of GPe-TIN is slightly decreased in

the PD condition.

On the other hand, since the inhibitory input from the GPe

to STN is suppressed following DA loss in PD, one expects that

the firing rate of STN must be higher in the PD state compared

to the normal condition. In fact, abnormally enhanced firing rate

of the STN cells is a widely reported pathophysiological marker

of PD (Brown et al., 2001; Hammond et al., 2007). The results in

Figure 3 shows that the mean firing rate of the STN is increased

in the PD condition compared to the control condition both in
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FIGURE 2

Cortical input and transient cortical stimuli. (A) Time course of the cortical input given by Equation (7) with amplitude A = 2 spikes/s and frequency

f = 20 Hz. (B) Time trace of the transient cortical stimulation given by Equation (8) with amplitude k = 5 spikes/s and parameters ta = 2, 000 ms and

tb = 2, 001 ms.

TABLE 4 Changes in the mean firing rates of di�erent BG nuclei in the control and PD conditions when delay is introduced in the model based on values

given in Tables 2, 3.

Condition
Mean firing rate (spikes/s)

D1-MSN D2-MSN FSI TAN TIN STN GPi

Ctrl
Nondelayed 17.1 1.79 5.26 4.97 13.98 3.44 0.01

Delayed 16.96 1.73 4.49 5.59 14.42 3.96 0.06

PD
Nondelayed 1.34 5.96 13.64 9.27 13.69 13.11 26.39

Delayed 2.07 5.56 5.26 7.7 14.07 10.74 9.42

the nondelayed and delayed configurations in our model. This

is also qualitatively consistent with experimental evidence on the

increasing trend for the mean firing rate of STN in the PD

condition, e.g., in parkinsonian rodents (17.1±1.0 Hz, PD vs. 11.8±

0.70 Hz, ctrl) (Breit et al., 2007) as well as parkinsonian monkeys

(25.8± 14.9 Hz, PD vs. 18.8± 10.3 Hz, ctrl) (Bergman et al., 1994).

Furthermore, lower STN firing rates in the control condition are in

agreement with in vitro and in vivo recordings in rats (i.e., 3.6± 1.0

Hz, ctrl) (Bevan and Wilson, 1999). Furthermore, as it is shown

in Figure 3 the mean firing rate of GPi is significantly increased in

the PD condition in comparison to the control condition which is

in agreement with experimental findings in parkinsonian monkeys

(77.9 ± 26.4, PD vs. 57.3 ± 17.3, ctrl) (Leblois et al., 2006). Taken

together, abnormally enhanced mean firing rate of the BG output

nucleus (i.e., GPi) increases the inhibitory drive to the thalamo-

cortical circuits and, in this way, may contribute to the symptomatic

expression of PD which is one of the widely accepted dynamical

changes observed in PD.

It was previously suggested that pathological beta oscillations

in the PD condition may emerge due to bifurcation of the mean

firing rates in the BG (Nevado-Holgado et al., 2011; Hu et al., 2022).

To elucidate the relevance between inter-population transmission

delays in ourmodel and firing ratemodulation in control (blue) and

PD (red) conditions, the bifurcation diagrams for the mean firing

rates of different BG nuclei includingD1-MSN, D2-MSN, FSI, GPe-

TAN, GPe-TIN, STN, and GPi are shown in Figure 4 for GPe-TAN

⇋ STN and GPe-TIN ⇋ STN delays. These bifurcation diagrams

were obtained by calculating the minimum and maximum of the

mean firing rates as a function of delays (Sun et al., 2023). Figure 4

indicates that in the control condition (blue) the minimum and

maximum values of the mean firing rates in the BG overlap, but in

the PD condition (red) bifurcation of the mean firing rates occurs,

suggesting that parkinsonian oscillatory dynamics is more prone to

modulation by transmission delays.

During the past years, several computational and experimental

models emphasized on the role of the indirect pathway (i.e.,

cortex → D2-MSN → GPe ⇋ STN → GPi) and, specifically, the

STN-GPe network in the emergence of pathological oscillations

as well as alterations in the firing rates in the BG during

parkinsonism (Bevan et al., 2002; Mallet et al., 2008a; Nevado-

Holgado et al., 2010; Koelman and Lowery, 2019; Madadi Asl

et al., 2022a). The STN-GPe network plays the role of a pacemaker

for beta oscillation in the BG where its malfunction can spread

the pathological dynamics in the entire CBGTC circuits (Brown

et al., 2001; Mallet et al., 2008a). The GPe neurons may coordinate

and propagate beta oscillations across the BG in a cell-type-

specific manner (Mallet et al., 2008a, 2012). For instance, in-

phase synchronization of GPe-TANs and STN neurons at beta

frequencies likely reinforces abnormal beta oscillations in the STN-

GPe network. Based on this background, in the current study we

focus on the GPe-TAN→ STN delay-dependent changes in the BG

oscillatory activity.
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A B

FIGURE 3

Changes in the mean firing rates of the BG nuclei due to transmission delays. Changes in the mean firing rates in the BG nuclei that were listed in

Table 4 are visualized in the control (A) and PD (B) conditions for a better comparison between instantaneous (green) and delayed (red) BG network

configurations.

To systematically investigate the effect of transmission delays

on the oscillatory dynamics in the D2-MSN → GPe ⇋ STN

pathway as the main part of the indirect pathway, we varied the

GPe-TAN→ STN transmission delay and recorded changes in the

firing pattern (Figure 5) and mean firing rates (Figure 6) of the

D2-MSN, GPe-TAN, GPe-TIN and STN. Together, these results

suggest that while the firing patterns of the neural populations

were altered by increasing the transmission delay (Figures 5A–D,

top to bottom), their corresponding mean firing rates remained

almost unchanged (Figures 6A, B). Interestingly, this observation

is in agreement with experimental findings suggesting that changes

of the BG dynamics during parkinsonism is accompanied by altered

neural firing patterns (i.e., spiking, bursting and pausing properties)

or firing regularity, rather than neural firing rates (Kita and Kita,

2011b; McConnell et al., 2012; Holt et al., 2019; Valsky et al.,

2020). Figure 6 suggests that this phenomenon can be influenced by

transmission delays between the BG nuclei in addition to changes

in the connection strengths as it is usually considered.

3.2 Delay-dependent changes of
oscillatory power

PD is typically characterized by excessive oscillatory activity in

the BG at frequencies over alpha (8–13 Hz) and beta band (13–

30 Hz) frequencies (Hammond et al., 2007; Kühn et al., 2009).

Conditions required for generation of abnormal BG oscillations

such as strengths of inter-population connections, imbalance

of excitatory-inhibitory inputs and the role of transmission

delays were previously addressed in a number of computational

studies (Nevado-Holgado et al., 2010; Pavlides et al., 2012; Shouno

et al., 2017). In Figures 7, 8 we have shown how changes in

inter-population transmission delays in the BG could influence its

oscillatory power.

In Figure 7, the GPe-TAN→ STN transmission delay is varied

from d = 1 ms to d = 15 ms and changes in the power spectrum

of oscillations over alpha and beta frequencies are observed in

different BG nuclei. Changes of transmission delays between other

BG nuclei did not result in a significant change in the power

spectrum of oscillations in the PD condition. The results presented

in Figure 7 indicate that in all shown BG nuclei the power of

alpha peak (∼ 10 Hz) is increased when the GPe-TAN → STN

transmission delay is increased from d = 1 ms to d = 15 ms. The

beta peak (∼ 20 Hz), however, showed no significant dependence

on the GPe-TAN → STN delay in D1-MSN (A), FSI (C), GPi (D),

GPe-TAN (E), and STN (G). Meanwhile, it was relatively decreased

with increasing the GPe-TAN → STN transmission delay in the

case of D2-MSN (B) and GPe-TIN (F).

To take a closer look at the changes of STN oscillations

due to transmission delays in the PD condition, alpha and

beta power spectra of the STN oscillatory activity are shown in

Figure 8 when transmission delays between different nuclei in

the D2-MSN → GPe ⇋ STN pathway are varied. Particularly,

there seems to be a threshold transmission delay beyond

which the STN oscillatory activity shows significant increase

in the alpha frequency power (Figure 8, red curve), except for

GPe-TIN → GPe-TIN (Figure 8F) and D2-MSN → GPe-TAN

(Figure 8G) cases where alpha power was robust to the transmission

delay changes.

On the other hand, the STN oscillatory power shows a

descending trend when GPe-TAN → GPe-TAN (Figure 8C, green

curve) and D2-MSN → GPe-TIN (Figure 8H, green curve) delays

were increased from d = 1 ms to d = 15 ms. On the contrary,

increasing delay in the GPe-TIN→ STN (Figure 8D) and D2-MSN

→ GPe-TAN (Figure 8G) resulted in an ascending trend of the
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FIGURE 4

The bifurcation diagrams for di�erent BG nuclei. The bifurcation diagrams for the mean firing rates of di�erent BG nuclei (each row) including

D1-MSN, D2-MSN, FSI, GPe-TAN, GPe-TIN, STN and GPi in the control (blue) and PD (red) conditions, when transmission delays in GPe-TAN ⇋ STN

and GPe-TIN ⇋ STN pathways (each column) are varied. The bifurcation diagrams were obtained by calculating the minimum and maximum of the

mean firing rates as a function of delays.

STN oscillatory power. Changes of delays in other pathways did not

result in a significant change in the beta oscillatory power.

Together, these results suggest that at small transmission delays

(i.e., <5 ms), the STN oscillatory activity is typically characterized

by high-frequency oscillations in the beta frequency band (13–30

Hz), whereas at large delays (i.e., 8–15 ms), the STN oscillatory

activity is mainly characterized by low-frequency oscillations in the

alpha band (8–13 Hz). These findings suggest that in our model

alpha oscillation emerges as a subharmonic of beta oscillation. As

suggested by a number of experimental studies such a phenomenon

may be disrupted in PD (Hughes and Crunelli, 2005; Lee et al.,

2019).

3.3 Delay-dependent response to
phase-specific stimuli

Abnormal neural oscillations in the parkinsonian BG are

tightly related with abnormal STN-GPe dynamics (Bevan

et al., 2002). However, experimental evidence highlighted

the necessity of cortical inputs to the STN-GPe network for

generating exaggerated beta band (12–30 Hz) oscillations during

parkinsonism (Sharott et al., 2005; Mallet et al., 2006). As it was

tested in computational models of parkinsonian BG, cortical

excitatory input to the STN can either promote or suppress

abnormal STN oscillations depending on their phase and

strength (Shouno et al., 2017).

To shed light on delay-dependent changes of the BG response

to cortical stimulation, we investigated how the transmission of

transient cortical stimuli to the BG output nucleus (i.e., GPi) is

mediated by delays in the indirect pathway, i.e., cortex → D2-

MSN → GPe ⇋ STN → GPi pathway, both in the control and

PD conditions. Specifically, our aim was to address the question

that to what extent the BG oscillatory dynamics are robust against

changing the phase of stimulus onset with respect to cortical

oscillations. This was assessed by amplitude response curve (ARC)

of each nuclei (Figure 9, green curve), i.e., the difference between

the stimulus-induced amplitude of oscillatory activity (Figure 9, red

curve) and the none-stimulated setting (Figure 9, gray curve). The

cortical input, given by Equation (7), was modeled as an excitatory

input in the form of a sinusoidal current, as shown in Figure 2A,
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FIGURE 5

Delay-dependent changes in the firing rates of the BG nuclei in the PD condition. Firing rates of D2-MSN (A), GPe-TAN (B), GPe-TIN (C), and STN (D)

when the GPe-TAN → STN delay is varied from d = 1 ms (top) to d = 9 ms (bottom). Note that di�erent vertical scales in subplots show di�erent

ranges for a better representation.

A

B

FIGURE 6

Mean firing rates of the BG nuclei in the PD condition in the

presence of delays. Mean firing rates (A) of D2-MSN, GPe-TAN,

GPe-TIN and STN when the GPe-TAN → STN transmission delay is

varied from d = 1 ms to d = 9 ms (as in Figure 5). Standard

deviations (B) are a measure of the amplitude of the oscillations of

the mean firing rates.

and the stimulation, given by Equation (8), was considered as a

short pulse stimulus (Figure 2B). Figure 9 shows examplary ARCs

of the GPe-TAN, GPe-TIN, STN and GPi for three representative

delays in the D2-MSN→ GPe-TAN pathway (each row).

Finally, in Figures 10, 11 we inspected delay-dependency and

phase-specificity of the ARC of STN and GPi to transient cortical

stimuli. To this end, we systematically varied D2-MSN → GPe-

TAN delay (Figure 10) and GPe-TAN → STN delay (Figure 11)

in the range d = [1, 15] ms as well as the onset phase of

cortical stimulation with respect to cortical oscillatory activity

in the range θstim = [−π ,π] rad, and measured the ARC in

each case both in the control and PD conditions. As shown in

Figures 10A1, A2, 11A1, A2, in the control condition oscillatory

dynamics of both the STN and GPi are robust against delays so that

in a given stimulation phase (either delayed or advanced), the ARC

remains fairly unchanged, i.e., the response of BG nuclei to cortical

stimulation depends only on the phase of stimulation not on the

delays. Note that in Figures 10, 11 the stimulation phase is rescaled

to unity, i.e., θstim = [−1, 1].

However, as shown in Figure 10B1 in the PD condition the

ARC amplitude of STN is maximized (red color) for small D2-

MSN → GPe-TAN delays (i.e., <6 ms) and delayed stimulation

phases (i.e., −π < θstim < 0), and for large delays (i.e., >9

ms) typically irrespective of the stimulation phase. In the case

of GPi, Figure 10B2 shows that in the PD condition the ARC

amplitude is mainly maximized for small delays (i.e., <6 ms) and

delayed stimulation phases (i.e., −π < θstim < 0). The ARC is

suppressed (green color) by increasing the D2-MSN → GPe-TAN

delay and advancing the stimulation phase (i.e., 0 < θstim < π). In

Figures 11B1, B2 in the PD condition, it can be observed that the

ARCs of STN and GPi crucially depend on the GPe-TAN → STN

delay such that for large delays (i.e., >8 ms) the ARC is typically

enhanced (red color). Taken together, these results indicated that in

the control condition the BG oscillatory dynamics is fairly robust
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against changes of inter-population transmission delays, whereas

in the PD condition transmission delays may crucially support the

emergence of abnormal rhythmogenesis in the BG.

4 Discussion

In this study, we employed a mean-field model of the BG and

investigated the effect of inter-population transmission delays on

the firing rate and power spectrum of the BG oscillations as well as

the phase-specific amplitude response to transient cortical stimuli

both in control and PD conditions. Our findings indicate that inter-

population delays in the indirect pathway (i.e., cortex → striatal

D2-MSN→GPe⇋ STN→GPi) may alter the firing pattern of the

BG oscillations but the corresponding mean firing rates are almost

robust to delay changes. Moreover, delays in the indirect pathway

may enhance the susceptibility of the BG oscillatory dynamics to

display abnormal alpha and beta oscillatory activity in the PD

condition in comparison to the control condition, suggesting that

delays play an important role in abnormal rhythmogenesis in the

parkinsonian BG.

The oscillations in response to transient cortical stimuli were

previously attributed to the changes in the coupling strengths

between the populations in similar mean-field models of the

BG (Bahuguna et al., 2017). However, here we show that

besides changes in the coupling strengths during transition

from the control condition to the PD condition in the model,

stimulation-induced oscillations are regulated by transmission

delays between populations. In fact, delays crucially determine

synchronization tendency of spiking neural networks by the

modification of their phase response to stimuli (Madadi Asl and

Ramezani Akbarabadi, 2023). By the same token, phase-specific

response of the parkinsonian BG to transient cortical stimuli in

our model is delay dependent. More specifically, in the control

condition the BG oscillatory dynamics is robust against changes

of delays, whereas in the PD condition delays and the phase of

cortical stimulation shape the response of the BG nuclei to cortical

stimulation. Significant amplitude response in the GPi, for example,

can be achieved for small delays (i.e., <6 ms) in the indirect

pathway and delayed phases of stimulation (i.e., −π < θstim < 0)

with respect to cortical oscillatory activity.

Movement impairment in PD is correlated with exaggerated

beta oscillations in the cortex and STN (Levy et al., 2002;

Mallet et al., 2008b). The reduction of abnormal beta oscillations

by high-frequency (>100 Hz) deep brain stimulation (HF-

DBS) positively correlates with improvement of PD motor

symptoms (Meissner et al., 2005; Kühn et al., 2006, 2008). As

shown computationally, beta oscillations can be modulated by

phase-dependent administration of stimulation, where stimuli

are time-locked to a certain phase of the ongoing beta

oscillation (Weerasinghe et al., 2019; Duchet et al., 2020; West

et al., 2022). For example, as shown computationally, precisely

timed stimulation can recover physiological network states both

in biologically inspired models of PD and essential tremor which

reproduced the phase dependency of the response to phase-locked

DBS (Duchet et al., 2020; West et al., 2022). The utility of such a

strategy can be seen in suppressing pathological beta oscillations

and controlling tremor, where stimulation is locked to a specific

phase of the behavioral oscillation in patients (Cagnan et al., 2017;

Holt et al., 2019). Our results shed light on phase-specificity of the

response of the parkinsonian BG to stimulation andmay contribute

to a further understanding of phase relationships between the

cortex and different BG nuclei in physiological and pathological

states which paves the way toward developing novel and efficient

phase-specific stimulation approaches.

A number of experimental studies suggested that PD is

associated with exaggerated oscillatory activity in the BG at

frequencies over alpha band (8–13 Hz) as well as beta band

(13–30 Hz) (Levy et al., 2002; Stoffers et al., 2007; Kühn et al.,

2009; Belova et al., 2023). For instance, STN field potential

spectra recorded during rest from PD patients displayed inter-

individual variability which can be categorized as those patients

who show: (i) only high-frequency oscillations in the beta band

(13–30 Hz), (ii) only low-frequency oscillations in the alpha

band (8–13 Hz), and (iii) significant low- and high-frequency

oscillations (Levy et al., 2002). Moreover, local field potentials

(LFPs) recorded from inside the STN of PD patients during

DBS surgeries revealed alpha-beta oscillatory peaks associated

with disease duration, bradykinesia, and rigidity scores (Belova

et al., 2023). This observation suggests that increased alpha-beta

oscillations may emerge as additional phenomena complementing

pathological beta oscillations in PD (Belova et al., 2023). Our

model successfully reproduced such observations by incorporating

realistic transmission delays (see Figures 7, 8). Delay-dependent

changes in the power spectrum of parkinsonian oscillations suggest

that patient-specific variability of delays in the BG (possibly due

to nerve damage) may be a potential candidate to explain inter-

individual variability in the STN field potential spectra of PD

patients from a computational perspective.

Population models typically fail to capture the biological

properties of realistic networks of neurons. Yet, mean-field models

may be able to relate the microscopic-level neural dynamics

to the macroscopic-level imaging measurements obtained in

experimental studies (Di Volo et al., 2019; Lea-Carnall et al.,

2023a,b). It has been shown that a mean-field model of

conductance-based networks of spiking neurons with adaptation

can accurately predict the spontaneous activity in asynchronous

irregular regimes similar to in vivo activity as well as transient

network response to external inputs (Di Volo et al., 2019). Here,

we considered a simple mean-field firing rate model that merely

represents the evolution of the mean firing activity in each BG

population. Such a model inherently neglects the underlying

dynamics and restricts information about the system, e.g., the

structure of individual spike trains within a population. Although

classical rate-based view of the functional structure of the BG was

challenged by contradictory observations (Calabresi et al., 2014;

Spix and Gittis, 2020), the advantage of simple models is that

the limited parameter space minimizes the computational cost

as opposed to more detailed simulation models such as spiking

neural networks.

Another limitation of our model is that we tuned the strength

of inter-population couplings to mimic parkinsonian oscillatory

activity within the BG networks. Furthermore, cortical input was

simplified as an external current. However, cortical input may

shape abnormal rhythmic activity in the parkinsonian STN-GPe

network (Mallet et al., 2006). During parkinsonism, beta band
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FIGURE 7

Delay-dependent changes in the power spectrum of BG oscillations in the PD condition. The color-coded power of oscillations in D1-MSN (A),

D2-MSN (B), FSI (C), GPi (D), GPe-TAN (E), GPe-TIN (F), and STN (G) when the GPe-TAN → STN delay is varied from d = 1 ms to d = 15 ms. Note that

di�erent vertical scales in subplots show di�erent ranges for a better representation.

A B C

D E F

G H I

FIGURE 8

Delay-dependent changes in the power of alpha (8–13 Hz) and beta band (13–30 Hz) oscillations in the parkinsonian STN. The power of the STN

alpha (red) and beta (green) oscillations when GPe-TAN → STN (A), STN → GPe-TAN (B), GPe-TAN → GPe-TAN (C), GPe-TIN → STN (D), STN →

GPe-TIN (E), GPe-TIN → GPe-TIN (F), D2-MSN → GPe-TAN (G), D2-MSN → GPe-TIN (H), or D2-MSN → D2-MSN (I) delay is varied from d = 1 ms to

d = 15 ms. Note that di�erent vertical scales in subplots show di�erent ranges for a better representation.

oscillatory activity of the cortex and STN are coherent and the

beta band synchrony is significantly enhanced between the GPe

and STN as well as between the STN and cortex (Sharott et al.,

2005; Mallet et al., 2008b). As shown computationally, the excessive

beta activity in the STN-GPe circuit is phase-locked to cortical beta

input (Koelman and Lowery, 2019). Our model fails to capture

the complex network interactions that give rise to pathological

beta oscillations in PD, but still can make qualitative predictions
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FIGURE 9

Amplitude response of the indirect pathway to transient cortical stimuli. Amplitude response curve (ARC) of the GPe-TAN (A), GPe-TIN (B), STN (C),

and GPi (D) for three representative delays in the D2-MSN → GPe-TAN pathway (each row), i.e., d = 1 ms, d = 5 ms and d = 9 ms in the control

condition. The ARC (green) was defined as the di�erence between the stimulus-induced amplitude of oscillatory activity (red) and the

none-stimulated setting (gray). Note that di�erent vertical scales in subplots show di�erent ranges for a better representation.
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FIGURE 10

Delay-dependent amplitude response to transient phase-specific cortical stimuli. The color-coded ARC of the STN and GPi when the D2-MSN →

GPe-TAN transmission delay and the phase of stimulation are systematically varied in the control (A1, A2) and PD (B1, B2) conditions. Note that

di�erent vertical scales in subplots show di�erent ranges for a better representation.

about the potential role of transmission delays in the normal and

parkinsonian BG dynamics.

Furthermore, for the sake of simplicity, we limited our

analysis to the STN-GPe oscillatory dynamics and BG output.

Consequently, due to lack of knowledge other nuclei such as

thalamus as well as other projections such as thalamo-striatal and

striatal cholinergic interneuron inputs were not considered in the

model. Although there is limited information about the thalamo-

striatal system and the regulatory effects of dopamine on thalamic

transmission compared to the cortico-striatal system, these inputs

may play a role in the PD pathophysiology (Smith et al., 2004,

2014; McCarthy et al., 2011; Kondabolu et al., 2016). For instance,

besides the cortico-striatal projections, the MSNs are also targeted

by the thalamo-striatal projections. These thalamic inputs may

modulate cortico-striatal transmission via regulation of striatal

cholinergic interneurons, possibly contributing to some symptoms

of PD (Smith et al., 2011). Furthermore, as shown experimentally,

activation of striatal cholinergic interneurons can generate beta

oscillations in cortical-striatal circuits, leading to parkinsonian-like

motor deficits in animal models (Kondabolu et al., 2016).

Here, we investigated differences in responses of normal and

PD model states to a wide range of transmission delays within

the BG. These transmission delays can be attributed to potential

inter-individual delay variations from subject to subject due to
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FIGURE 11

Delay-dependent amplitude response to transient phase-specific cortical stimuli. The color-coded ARC of the STN and GPi when the GPe-TAN →

STN transmission delay and the phase of stimulation are systematically varied in the control (A1, A2) and PD (B1, B2) conditions. Note that di�erent

vertical scales in subplots show di�erent ranges for a better representation.

anatomical and neurophysiological variability in brains across

patients, which may contribute to inter-individual variations in the

clinical expression of PD. For instance, experimentally observed

differences in power spectral densities in different PD patients may

be related to such anatomical and neurophysiological differences

from one patient to another (Levy et al., 2002). Yet, future

experiments must be devoted to measure transmission delays

within and between BG nuclei to determine whether these delays

are changed with disease progression which seems crucial for

understanding the mechanisms behind oscillatory dynamics in

the BG.

Finally, synaptic connections in brain circuits as well as

other biological systems are constantly modified by plasticity

mechanisms (Burke and Barnes, 2006; Madadi Asl and

Ramezani Akbarabadi, 2021). In our model, however, the

connection strengths were assumed to be static, i.e., they do not

dynamically evolve. Taking into account the effect of plasticity

in future studies allows for a more accurate inspection of

maladaptive/compensatory patterns of activity and connectivity

shaped by plasticity mechanisms during parkinsonism (Madadi Asl

et al., 2022b). For instance, spike-timing-dependent plasticity

(STDP) (Gerstner et al., 1996; Markram et al., 1997; Bi and Poo,

1998), a temporally precise model for synaptic plasticity to modify

the synaptic strengths based on correlated neural firings, promotes

strong connections between correlated neurons and suppresses

synapses between uncorrelated neurons in a computational PD

model (Madadi Asl et al., 2022a). Therefore, activity of neurons

shapes the overall connectivity pattern which, in turn, modulates

the firing activity (Aoki and Aoyagi, 2009; Madadi Asl et al., 2018c;

Madadi Asl and Ramezani Akbarabadi, 2023).

In this context, functional consequences of synaptic plasticity

such as phase synchronization of oscillations critically depend on

the transmission delays in neural interactions (Lubenov and Siapas,

2008; Madadi Asl et al., 2017, 2018a). For example, it has been

shown that STDP combined with delayed neural interactions can

lead to the emergence of multistable states in a computational

model of PD (Madadi Asl et al., 2022a), i.e., physiological states

(weak synchrony, weak connectivity) as opposed to pathological

states (strong synchrony, strong connectivity). Future studies

should incorporate phase-dependent plasticity rules (Seliger et al.,

2002; Aoki and Aoyagi, 2009) in large adaptive networks

described by mean-field approximations (Duchet et al., 2022) to

investigate how regimes of delay-dependent response to phase-

specific stimuli (Madadi Asl et al., 2023) as well as neural firing

and spectral properties are modified by plasticity mechanisms.

Such a prospect may provide a useful framework for the

development of new therapeutic approaches aimed at shifting the

brain dynamics from pathological states to more physiologically

favored states.
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