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Introduction:Neural interactions in the brain are a�ected by transmission delays

which may critically alter signal propagation across di�erent brain regions in

both normal and pathological conditions. The e�ect of interaction delays on

the dynamics of the generic neural networks has been extensively studied by

theoretical and computational models. However, the role of transmission delays

in the development of pathological oscillatory dynamics in the basal ganglia (BG)

in Parkinson’s disease (PD) is overlooked.

Methods: Here, we investigate the e�ect of transmission delays on the discharge

rate and oscillatory power of the BG networks in control (normal) and PD states

by using a Wilson-Cowan (WC) mean-field firing rate model. We also explore

how transmission delays a�ect the response of the BG to cortical stimuli in

control and PD conditions.

Results: Our results show that the BG oscillatory response to cortical stimulation

in control condition is robust against the changes in the inter-population

delays and merely depends on the phase of stimulation with respect to cortical

activity. In PD condition, however, transmission delays crucially contribute to the

emergence of abnormal alpha (8–13 Hz) and beta band (13–30 Hz) oscillations,

suggesting that delays play an important role in abnormal rhythmogenesis in the

parkinsonian BG.

Discussion: Our findings indicate that in addition to the strength of connections

within and between the BG nuclei, oscillatory dynamics of the parkinsonian

BG may also be influenced by inter-population transmission delays. Moreover,

phase-specificity of the BG response to cortical stimulation may provide further

insight into the potential role of delays in the computational optimization of

phase-specific brain stimulation therapies.
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FIGURE 5

Delay-dependent changes in the firing rates of the BG nuclei in the PD condition. Firing rates of D2-MSN (A), GPe-TAN (B), GPe-TIN (C), and STN (D)

when the GPe-TAN → STN delay is varied from d = 1 ms (top) to d = 9 ms (bottom). Note that di�erent vertical scales in subplots show di�erent

ranges for a better representation.
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B

FIGURE 6

Mean firing rates of the BG nuclei in the PD condition in the

presence of delays. Mean firing rates (A) of D2-MSN, GPe-TAN,

GPe-TIN and STN when the GPe-TAN → STN transmission delay is

varied from d = 1 ms to d = 9 ms (as in Figure 5). Standard

deviations (B) are a measure of the amplitude of the oscillations of

the mean firing rates.

and the stimulation, given by Equation (8), was considered as a

short pulse stimulus (Figure 2B). Figure 9 shows examplary ARCs

of the GPe-TAN, GPe-TIN, STN and GPi for three representative

delays in the D2-MSN→ GPe-TAN pathway (each row).

Finally, in Figures 10, 11 we inspected delay-dependency and

phase-specificity of the ARC of STN and GPi to transient cortical

stimuli. To this end, we systematically varied D2-MSN → GPe-

TAN delay (Figure 10) and GPe-TAN → STN delay (Figure 11)

in the range d = [1, 15] ms as well as the onset phase of

cortical stimulation with respect to cortical oscillatory activity

in the range θstim = [−π ,π] rad, and measured the ARC in

each case both in the control and PD conditions. As shown in

Figures 10A1, A2, 11A1, A2, in the control condition oscillatory

dynamics of both the STN and GPi are robust against delays so that

in a given stimulation phase (either delayed or advanced), the ARC

remains fairly unchanged, i.e., the response of BG nuclei to cortical

stimulation depends only on the phase of stimulation not on the

delays. Note that in Figures 10, 11 the stimulation phase is rescaled

to unity, i.e., θstim = [−1, 1].

However, as shown in Figure 10B1 in the PD condition the

ARC amplitude of STN is maximized (red color) for small D2-

MSN → GPe-TAN delays (i.e., <6 ms) and delayed stimulation

phases (i.e., −π < θstim < 0), and for large delays (i.e., >9

ms) typically irrespective of the stimulation phase. In the case

of GPi, Figure 10B2 shows that in the PD condition the ARC

amplitude is mainly maximized for small delays (i.e., <6 ms) and

delayed stimulation phases (i.e., −π < θstim < 0). The ARC is

suppressed (green color) by increasing the D2-MSN → GPe-TAN

delay and advancing the stimulation phase (i.e., 0 < θstim < π). In

Figures 11B1, B2 in the PD condition, it can be observed that the

ARCs of STN and GPi crucially depend on the GPe-TAN → STN

delay such that for large delays (i.e., >8 ms) the ARC is typically

enhanced (red color). Taken together, these results indicated that in

the control condition the BG oscillatory dynamics is fairly robust

Frontiers inCellularNeuroscience 09 frontiersin.org



Asadi et al. 10.3389/fncel.2024.1344149

against changes of inter-population transmission delays, whereas

in the PD condition transmission delays may crucially support the

emergence of abnormal rhythmogenesis in the BG.

4 Discussion

In this study, we employed a mean-field model of the BG and

investigated the effect of inter-population transmission delays on

the firing rate and power spectrum of the BG oscillations as well as

the phase-specific amplitude response to transient cortical stimuli

both in control and PD conditions. Our findings indicate that inter-

population delays in the indirect pathway (i.e., cortex → striatal

D2-MSN→GPe⇋ STN→GPi) may alter the firing pattern of the

BG oscillations but the corresponding mean firing rates are almost

robust to delay changes. Moreover, delays in the indirect pathway

may enhance the susceptibility of the BG oscillatory dynamics to

display abnormal alpha and beta oscillatory activity in the PD

condition in comparison to the control condition, suggesting that

delays play an important role in abnormal rhythmogenesis in the

parkinsonian BG.

The oscillations in response to transient cortical stimuli were

previously attributed to the changes in the coupling strengths

between the populations in similar mean-field models of the

BG (Bahuguna et al., 2017). However, here we show that

besides changes in the coupling strengths during transition

from the control condition to the PD condition in the model,

stimulation-induced oscillations are regulated by transmission

delays between populations. In fact, delays crucially determine

synchronization tendency of spiking neural networks by the

modification of their phase response to stimuli (Madadi Asl and

Ramezani Akbarabadi, 2023). By the same token, phase-specific

response of the parkinsonian BG to transient cortical stimuli in

our model is delay dependent. More specifically, in the control

condition the BG oscillatory dynamics is robust against changes

of delays, whereas in the PD condition delays and the phase of

cortical stimulation shape the response of the BG nuclei to cortical

stimulation. Significant amplitude response in the GPi, for example,

can be achieved for small delays (i.e., <6 ms) in the indirect

pathway and delayed phases of stimulation (i.e., −π < θstim < 0)

with respect to cortical oscillatory activity.

Movement impairment in PD is correlated with exaggerated

beta oscillations in the cortex and STN (Levy et al., 2002;

Mallet et al., 2008b). The reduction of abnormal beta oscillations

by high-frequency (>100 Hz) deep brain stimulation (HF-

DBS) positively correlates with improvement of PD motor

symptoms (Meissner et al., 2005; Kühn et al., 2006, 2008). As

shown computationally, beta oscillations can be modulated by

phase-dependent administration of stimulation, where stimuli

are time-locked to a certain phase of the ongoing beta

oscillation (Weerasinghe et al., 2019; Duchet et al., 2020; West

et al., 2022). For example, as shown computationally, precisely

timed stimulation can recover physiological network states both

in biologically inspired models of PD and essential tremor which

reproduced the phase dependency of the response to phase-locked

DBS (Duchet et al., 2020; West et al., 2022). The utility of such a

strategy can be seen in suppressing pathological beta oscillations

and controlling tremor, where stimulation is locked to a specific

phase of the behavioral oscillation in patients (Cagnan et al., 2017;

Holt et al., 2019). Our results shed light on phase-specificity of the

response of the parkinsonian BG to stimulation andmay contribute

to a further understanding of phase relationships between the

cortex and different BG nuclei in physiological and pathological

states which paves the way toward developing novel and efficient

phase-specific stimulation approaches.

A number of experimental studies suggested that PD is

associated with exaggerated oscillatory activity in the BG at

frequencies over alpha band (8–13 Hz) as well as beta band

(13–30 Hz) (Levy et al., 2002; Stoffers et al., 2007; Kühn et al.,

2009; Belova et al., 2023). For instance, STN field potential

spectra recorded during rest from PD patients displayed inter-

individual variability which can be categorized as those patients

who show: (i) only high-frequency oscillations in the beta band

(13–30 Hz), (ii) only low-frequency oscillations in the alpha

band (8–13 Hz), and (iii) significant low- and high-frequency

oscillations (Levy et al., 2002). Moreover, local field potentials

(LFPs) recorded from inside the STN of PD patients during

DBS surgeries revealed alpha-beta oscillatory peaks associated

with disease duration, bradykinesia, and rigidity scores (Belova

et al., 2023). This observation suggests that increased alpha-beta

oscillations may emerge as additional phenomena complementing

pathological beta oscillations in PD (Belova et al., 2023). Our

model successfully reproduced such observations by incorporating

realistic transmission delays (see Figures 7, 8). Delay-dependent

changes in the power spectrum of parkinsonian oscillations suggest

that patient-specific variability of delays in the BG (possibly due

to nerve damage) may be a potential candidate to explain inter-

individual variability in the STN field potential spectra of PD

patients from a computational perspective.

Population models typically fail to capture the biological

properties of realistic networks of neurons. Yet, mean-field models

may be able to relate the microscopic-level neural dynamics

to the macroscopic-level imaging measurements obtained in

experimental studies (Di Volo et al., 2019; Lea-Carnall et al.,

2023a,b). It has been shown that a mean-field model of

conductance-based networks of spiking neurons with adaptation

can accurately predict the spontaneous activity in asynchronous

irregular regimes similar to in vivo activity as well as transient

network response to external inputs (Di Volo et al., 2019). Here,

we considered a simple mean-field firing rate model that merely

represents the evolution of the mean firing activity in each BG

population. Such a model inherently neglects the underlying

dynamics and restricts information about the system, e.g., the

structure of individual spike trains within a population. Although

classical rate-based view of the functional structure of the BG was

challenged by contradictory observations (Calabresi et al., 2014;

Spix and Gittis, 2020), the advantage of simple models is that

the limited parameter space minimizes the computational cost

as opposed to more detailed simulation models such as spiking

neural networks.

Another limitation of our model is that we tuned the strength

of inter-population couplings to mimic parkinsonian oscillatory

activity within the BG networks. Furthermore, cortical input was

simplified as an external current. However, cortical input may

shape abnormal rhythmic activity in the parkinsonian STN-GPe

network (Mallet et al., 2006). During parkinsonism, beta band
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FIGURE 7

Delay-dependent changes in the power spectrum of BG oscillations in the PD condition. The color-coded power of oscillations in D1-MSN (A),

D2-MSN (B), FSI (C), GPi (D), GPe-TAN (E), GPe-TIN (F), and STN (G) when the GPe-TAN → STN delay is varied from d = 1 ms to d = 15 ms. Note that

di�erent vertical scales in subplots show di�erent ranges for a better representation.
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FIGURE 8

Delay-dependent changes in the power of alpha (8–13 Hz) and beta band (13–30 Hz) oscillations in the parkinsonian STN. The power of the STN

alpha (red) and beta (green) oscillations when GPe-TAN → STN (A), STN → GPe-TAN (B), GPe-TAN → GPe-TAN (C), GPe-TIN → STN (D), STN →

GPe-TIN (E), GPe-TIN → GPe-TIN (F), D2-MSN → GPe-TAN (G), D2-MSN → GPe-TIN (H), or D2-MSN → D2-MSN (I) delay is varied from d = 1 ms to

d = 15 ms. Note that di�erent vertical scales in subplots show di�erent ranges for a better representation.

oscillatory activity of the cortex and STN are coherent and the

beta band synchrony is significantly enhanced between the GPe

and STN as well as between the STN and cortex (Sharott et al.,

2005; Mallet et al., 2008b). As shown computationally, the excessive

beta activity in the STN-GPe circuit is phase-locked to cortical beta

input (Koelman and Lowery, 2019). Our model fails to capture

the complex network interactions that give rise to pathological

beta oscillations in PD, but still can make qualitative predictions
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FIGURE 9

Amplitude response of the indirect pathway to transient cortical stimuli. Amplitude response curve (ARC) of the GPe-TAN (A), GPe-TIN (B), STN (C),

and GPi (D) for three representative delays in the D2-MSN → GPe-TAN pathway (each row), i.e., d = 1 ms, d = 5 ms and d = 9 ms in the control

condition. The ARC (green) was defined as the di�erence between the stimulus-induced amplitude of oscillatory activity (red) and the

none-stimulated setting (gray). Note that di�erent vertical scales in subplots show di�erent ranges for a better representation.

A1 B1

A2 B2

FIGURE 10

Delay-dependent amplitude response to transient phase-specific cortical stimuli. The color-coded ARC of the STN and GPi when the D2-MSN →

GPe-TAN transmission delay and the phase of stimulation are systematically varied in the control (A1, A2) and PD (B1, B2) conditions. Note that

di�erent vertical scales in subplots show di�erent ranges for a better representation.

about the potential role of transmission delays in the normal and

parkinsonian BG dynamics.

Furthermore, for the sake of simplicity, we limited our

analysis to the STN-GPe oscillatory dynamics and BG output.

Consequently, due to lack of knowledge other nuclei such as

thalamus as well as other projections such as thalamo-striatal and

striatal cholinergic interneuron inputs were not considered in the

model. Although there is limited information about the thalamo-

striatal system and the regulatory effects of dopamine on thalamic

transmission compared to the cortico-striatal system, these inputs

may play a role in the PD pathophysiology (Smith et al., 2004,

2014; McCarthy et al., 2011; Kondabolu et al., 2016). For instance,

besides the cortico-striatal projections, the MSNs are also targeted

by the thalamo-striatal projections. These thalamic inputs may

modulate cortico-striatal transmission via regulation of striatal

cholinergic interneurons, possibly contributing to some symptoms

of PD (Smith et al., 2011). Furthermore, as shown experimentally,

activation of striatal cholinergic interneurons can generate beta

oscillations in cortical-striatal circuits, leading to parkinsonian-like

motor deficits in animal models (Kondabolu et al., 2016).

Here, we investigated differences in responses of normal and

PD model states to a wide range of transmission delays within

the BG. These transmission delays can be attributed to potential

inter-individual delay variations from subject to subject due to
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A1 B1
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FIGURE 11

Delay-dependent amplitude response to transient phase-specific cortical stimuli. The color-coded ARC of the STN and GPi when the GPe-TAN →

STN transmission delay and the phase of stimulation are systematically varied in the control (A1, A2) and PD (B1, B2) conditions. Note that di�erent

vertical scales in subplots show di�erent ranges for a better representation.

anatomical and neurophysiological variability in brains across

patients, which may contribute to inter-individual variations in the

clinical expression of PD. For instance, experimentally observed

differences in power spectral densities in different PD patients may

be related to such anatomical and neurophysiological differences

from one patient to another (Levy et al., 2002). Yet, future

experiments must be devoted to measure transmission delays

within and between BG nuclei to determine whether these delays

are changed with disease progression which seems crucial for

understanding the mechanisms behind oscillatory dynamics in

the BG.

Finally, synaptic connections in brain circuits as well as

other biological systems are constantly modified by plasticity

mechanisms (Burke and Barnes, 2006; Madadi Asl and

Ramezani Akbarabadi, 2021). In our model, however, the

connection strengths were assumed to be static, i.e., they do not

dynamically evolve. Taking into account the effect of plasticity

in future studies allows for a more accurate inspection of

maladaptive/compensatory patterns of activity and connectivity

shaped by plasticity mechanisms during parkinsonism (Madadi Asl

et al., 2022b). For instance, spike-timing-dependent plasticity

(STDP) (Gerstner et al., 1996; Markram et al., 1997; Bi and Poo,

1998), a temporally precise model for synaptic plasticity to modify

the synaptic strengths based on correlated neural firings, promotes

strong connections between correlated neurons and suppresses

synapses between uncorrelated neurons in a computational PD

model (Madadi Asl et al., 2022a). Therefore, activity of neurons

shapes the overall connectivity pattern which, in turn, modulates

the firing activity (Aoki and Aoyagi, 2009; Madadi Asl et al., 2018c;

Madadi Asl and Ramezani Akbarabadi, 2023).

In this context, functional consequences of synaptic plasticity

such as phase synchronization of oscillations critically depend on

the transmission delays in neural interactions (Lubenov and Siapas,

2008; Madadi Asl et al., 2017, 2018a). For example, it has been

shown that STDP combined with delayed neural interactions can

lead to the emergence of multistable states in a computational

model of PD (Madadi Asl et al., 2022a), i.e., physiological states

(weak synchrony, weak connectivity) as opposed to pathological

states (strong synchrony, strong connectivity). Future studies

should incorporate phase-dependent plasticity rules (Seliger et al.,

2002; Aoki and Aoyagi, 2009) in large adaptive networks

described by mean-field approximations (Duchet et al., 2022) to

investigate how regimes of delay-dependent response to phase-

specific stimuli (Madadi Asl et al., 2023) as well as neural firing

and spectral properties are modified by plasticity mechanisms.

Such a prospect may provide a useful framework for the

development of new therapeutic approaches aimed at shifting the

brain dynamics from pathological states to more physiologically

favored states.
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