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Simplicial complexes are mathematical constructions that describe higher-order

interactions within the interconnecting elements of a network. Such higher-order

interactions become increasingly significant in neuronal networks since biological

backgrounds and previous outcomes back them. In light of this, the current

research explores a higher-order network of the memristive Rulkov model. To that

end, the master stability functions are used to evaluate the synchronization of a

network with pure pairwise hybrid (electrical and chemical) synapses alongside

a network with two-node electrical and multi-node chemical connections.

The findings provide good insight into the impact of incorporating higher-

order interaction in a network. Compared to two-node chemical synapses,

higher-order interactions adjust the synchronization patterns to lower multi-

node chemical coupling parameter values. Furthermore, the e�ect of altering

higher-order coupling parameter value on the dynamics of neurons in the

synchronization state is researched. It is also shown how increasing network

size can enhance synchronization by lowering the value of coupling parameters

whereby synchronization occurs. Except for complete synchronization, cluster

synchronization is detected for higher electrical coupling strength values wherein

the neurons are out of the completed synchronization state.

KEYWORDS

simplicial complex, higher-order network, memristive Rulkov, synchronization, cluster

synchronization

1. Introduction

Understanding the complicated functions of the brain of an individual has been

fascinating and challenging for scientists and academics (Changeux and Dehaene, 1989).

One important component of this pursuit is the development of neural models capable of

capturing the activity and functionality of individual neurons as well as the networks they

compose (Aihara et al., 1990; Boccaletti et al., 2006; Majhi et al., 2019). Neuronal models

provide a framework for investigating the brain’s computational capacities, information

processing, and cognitive function emergence (Ibarz et al., 2011). Over the years, several

neuronal models have been proposed to describe and simulate the behavior of neurons, such

as Hodgkin and Huxley (1952), FitzHugh (1961), Morris and Lecar (1981), and Hindmarsh

and Rose (1984) models defined by differential equations and Chialvo (1995), Rulkov (2002),

Izhikevich andHoppensteadt (2004), and Zandi-Mehran et al. (2020) described by difference

equations. The memristor has recently developed as a novel electrical component with

enormous potential for neuronal modeling. In recent years, the memristor has emerged
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as a revolutionary electronic component with great potential

for neuronal modeling (Lin et al., 2020; Ding et al., 2023; Xu

et al., 2023). The potential of memristors to imitate crucial

synaptic actions makes them significant for neuronal modeling.

Synapses or connections amongst neurons, are critical in the

brain’s information analysis and learning process. They exhibit

plasticity, indicating that their strength and efficiency can alter

depending on the activity and timing of neuronal inputs. Neuronal

models based on memristors, including memristive Hodgkin-

Huxley (Hu and Liu, 2019), memristive FitzHugh-Nagumo

(Chen et al., 2020), memristive Morris-Lecar (Bao et al., 2022),

memristive Hindmarsh-Rose (Bao et al., 2018, 2021), memristive

Rulkov (mRulkov) (Li et al., 2021), and memristive Chialvo

(Vivekanandhan et al., 2023) neuron models, have enormous

potential for various applications. They can, for instance, be used

to study neurological disorders and replicate brain activity.

The study of complex systems has yielded essential insights

into the structures and dynamics of numerous interconnected

systems, ranging from social networks (Shahal et al., 2020) and

biological systems (Ma and Tang, 2017) to network marketing

and trading networks (Kim et al., 2006; Feng et al., 2014; Cho

et al., 2023), in the discipline of network science. Networks

have traditionally been depicted as graphs, with nodes and edges

capturing entities and their pairwise connections (Burgio et al.,

2020; Ghosh et al., 2022). Real-world systems, on the other

hand, frequently demonstrate interactions and linkages that extend

beyond simple pairwise connections (Ince et al., 2009; Alvarez-

Rodriguez et al., 2021; Battiston et al., 2021). To capture the

rich connectivity patterns in complex systems, researchers have

turned to higher-order network representations (Majhi et al.,

2022). Higher-order networks consider interactions among groups

of nodes rather than just pairwise connections, enabling a

more comprehensive understanding of complex systems (Carletti

et al., 2020; Lotito et al., 2022). One powerful mathematical

framework for modeling higher-order networks is simplicial

complexes (Skardal and Arenas, 2020; Gambuzza et al., 2021). A

simplicial complex is a mathematical structure that reflects the

interactions between nodes at various granularities (Gambuzza

et al., 2021). It expands the graph concept by integrating higher-

order interactions such as triangles, tetrahedra, and higher-

dimensional simplices (Ghorbanchian et al., 2021). Each simplex

in a simplicial complex represents a group of nodes connected in

a particular way. A triangle, for example, depicts a group of three

nodes, each connected to the other two. By leveraging simplicial

complexes, researchers can analyze and characterize complex

systems more nuancedly. Higher-order networks derived from

simplicial complexes allow for exploring intricate relationships

that might not be evident when considering only pairwise

connections (Battiston et al., 2021). These higher-order structures

provide a more detailed description of the system’s organization

and dynamics, leading to a deeper understanding of complex

systems.

Synchronization is a phenomenon where elements in a

system coordinate their behavior to achieve coherence (Boccaletti

et al., 2002). This fundamental phenomenon can be witnessed

in a variety of complex systems, including biological (Li et al.,

2022), social (Sorrentino and Ott, 2007), and technological

(Sivrikaya and Yener, 2004) networks. While much study has

concentrated on the synchronization in conventional pairwise

interactions (Lin et al., 2021; Fan et al., 2022, 2023), there

is rising interest in understanding synchronization in higher-

order networks that capture interactions beyond pairwise links

(Battiston et al., 2020; Bick et al., 2023; Boccaletti et al., 2023).

The goal of studying synchronization in higher-order networks

is to decipher the intricate dynamics, emergent behaviors, and

collective phenomena resulting from higher-order interactions.

This emerging subject studies synchronization’s emergence,

development, and evolution in complex network structures

such as simplicial complexes and hypergraphs. Researchers have

been investigating synchronization in higher-order networks to

unravel the fundamental principles driving collective dynamics

and information processing in various fields spanning from

neuroscience to social networks and beyond. For instance, Skardal

et al. (2021) addressed how higher-order interactions effectively

help to achieve optimized synchronization. Employing a random

network of 500 phase oscillators optimized in order to get strongly

synchronized, they found that strengthening the higher-order

interactions resulted in improving the optimal synchronization.

On the other hand, according to Gallo et al. (2022), directed

higher-order interactions were reported as an impediment to

attaining synchrony; otherwise, such interactions may stabilize

unstable synchronized states. More clearly, studying a higher-

order network of 8 Rössler oscillators structures in a random

graph, the authors noticed that applying directed higher-order

interactions could ruin the synchronization state. In contrast, as

the asymmetry varied, synchronization was achievable. Multiplex

higher-order network was the subject that Anwar and Ghosh

(2022) pursued. They looked for synchronization in a two-layer

network within each layer, the 500 Rössler oscillators interacting

via diffusive pairwise and non-pairwise connections and structured

in a scale-free configuration. Their results portrayed that higher-

order interactions enhance intra-layer synchronization, and inter-

layer synchronization becomes more robust compared to the

pure pairwise case. Focusing on higher-order neuronal networks,

Parastesh et al. (2022) analyzed the synchronization of a fully

connected network of 20 Hindmarsh-Rose neurons interacting

through two- and three-node interactions. Assuming different non-

pairwise (electrical and chemical) interactions in combination with

diffusive (electrical) pairwise connections, they showed that even

weak second-order interactions could facilitate synchronization by

reducing the pairwise strengths needed for achieving synchrony.

In this regard, Mirzaei et al. (2022) pictured that scaling the

synchronization patterns to lower coupling strength values was

feasible via higher-dimensional interactions. To demonstrate the

impact of adding three-, four-, and five-node chemical interactions

stepwise on the synchronization state, they took into account a fully

connected network of five conventional Rulkov maps with two-

node diffusive inner linking and chemical connections. Mehrabbeik

et al. (2023) recently investigated the synchronization of different

higher-order networks made up of 10 Hindmarsh-Rose maps. The

authors intended to figure out the impact of higher-order synaptic

functions applied to two-node and three-node communication on

network global synchronization. As a result, it was discovered that

chemical synapses greatly improved synchronization compared to
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FIGURE 1

The dynamical behavior of the mRulkov neuron model represented in (A) x-ϕ state space and (B) time series of variable x over 10, 000 iterations. The

parameters are set at [α,β, ε,µ] = (5, 0.05, 0.05, 0.55) and the initial condition is [x(1), y(1),ϕ(1)] = (0, 0, 0). In the circumstances that were taken into

consideration, the mRulkov model exhibited chaotic behavior. When the mRulkov model is operating in bursting mode, it is possible to witness this

chaotic dynamic.

diffusively defined synapses, which include electrical and inner-

linking functions.

Through the use of electrical and chemical synapses on

two- and three-node interactions, the present study addresses

synchronization in a higher-order network of mRulkov maps.

The acquired results are compared to the case where electrical

and chemical synapses are devoted simultaneously to two-node

connections called hybrid synapses. The consequence of increasing

the network size on synchronization state and synchronization

manifold dynamics is additionally considered. Furthermore, the

largest network (50 nodes) is sought for other synchronization

patterns. The following is how the paper is set up: The mRulkov

model and its dynamics are fully clarified in Section 2. In Sections

3 and 4, the subjected higher-order network model’s linear stability

analysis is covered in detail. Results are presented in Section 5, and

Section 6 recaps the paper by emphasizing the findings.

2. The mRulkov neuron map

The mRulkov map is a mathematical neuron model that

combines the dynamics of the 2D Rulkov map with the memristive

nonlinearity proposed by Li et al. (2021). The original Rulkov

map is a discrete-time dynamical system that exhibits complicated

behavior, such as chaos, and is frequently used to resemble

biological systems. The mRulkov model is a piecewise nonlinear

model described by three dependent nonlinear difference equations

as follows:







































x(n+ 1) =














α

1− x(n)
+ y(n) x(n) ≤ 0

α + y(n) 0 < x(n) < α + y(n)

−1 x(n) ≥ α + y(n)

,

y(n+ 1) = y(n)− β(x(n)− ρ + 1),

(1)

where x(n) and y(n) are the membrane potential and

recovery state variables at time step n, and α, and β are

parameters that determine the system’s behavior. Also, the

parameter ρ involves the effect of external factors on the

model.

The addition of memristive nonlinearity to the Rulkov

map results in a system that exhibits even more complex

behavior, including hyperchaotic behavior and the emergence

of extreme multistability (Li et al., 2021). The mathematical

expression of the mRulkov map proposed in Li et al. (2021),

to which the flux-controlled memristor is applied, is given as

follows:















































































x(n+ 1) = f (x(n), y(n),ϕ(n)) =

µ tanh(φ(n))x(n)+














α

1− x(n)
+ y(n) x(n) ≤ 0

α + y(n) 0 < x(n) < α + y(n)

−1 x(n) ≥ α + y(n)

,

y(n+ 1) = g(x(n), y(n),ϕ(n)) =

y(n)− βx(n),

ϕ(n+ 1) = h(x(n), y(n),ϕ(n)) =

ϕ(n)+ εx(n),

(2)

where ϕ is the flux variable, and µ is the magnetic

induction strength induced by the membrane potential.

For simplicity, ρ = 0 is considered in System (2).

Considering α = 5, β = ε = 0.05, and µ = 0.55, the

Rulkov model exhibits a chaotic dynamic as represented in

Figure 1.

3. Discrete network model

Simplicial complexes, geometric objects that generalize

triangles and tetrahedra to higher dimensions, are a powerful

tool for representing higher-order interactions between groups

of elements in a network. In a simplicial complex, each element

is represented by a vertex, and higher-order interactions are
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FIGURE 2

A schematic representation of a traditional network with only pairwise interactions defined by edges and links and a network with higher-order

(non-pairwise) interactions defined by simplicial complexes. As a result, a d-simplex can represent a group of d+ 1 nodes interacting in a specific

way. In higher-order network structures, nodes/vertices are 0-simplex (shown in black), links are 1-simplex (shown in gray), triangles are 2-simplex

(shown in green), tetrahedra are 3-simplex (shown in red), pentahedra are 4-simplex (shown in blue), and polyhedra are d-simplex. In this example, it

is possible to observe how simplicial complexes can be derived in a conventional graph-based network design, and the contrasts between the two

approaches are underlined.

represented by higher-dimensional simplices, such as edges

(1-simplex), triangles (2-simplex), tetrahedra (3-simplex),

pentahedra (4-simplex), and other polyhedra. As indicated by

Figure 2, simplicial complexes allow for the representation of

more complex relationships between elements than is possible

with traditional network representations. Only links color-

coded in gray have the key role in defining the structure

of a network, as seen in Figure 2 (left panel). On the other

hand, as shown in the right panel, a d-dimensional simplicial

complex is formed when a set of nodes join together to form

a morphological object with d faces. These linked neurons can

also establish a novel network topology in which they interact

in novel ways. For instance, a 2-simplex structure is formed

when three nodes are joined together to create a triangle,

and interactions involving three nodes must be taken into

account.

The mathematical definition of a d-dimensional simplicial

complex in the discrete domain is expressed as:

Xi(n+ 1) = F
(

Xi(n)
)

+

σ1

N
∑

j1=1

A
(1)
ij1
G
(1)

(

Xi(n),Xj1 (n)
)

+

σ2

N
∑

j1=1

N
∑

j2=1

A
(2)
ij1j2

G
(2)

(

Xi(n),Xj1 (n),Xj2 (n)
)

+ ...+

σd

N
∑

j1=1

...

N
∑

jd=1

A
(d)
ij1 ...jd

G
(d)

(

Xi(n),Xj1 (n), ...,Xjd (n)
)

.

(3)

Here, Xi(n) = [xi(n), yi(n),ϕi(n)]
T , where X ∈ R3,

contains the system’s state variables belonging to the i-the system,

F
[

Xi(n)
]

=
[

f
(

Xi(n)
)

, g
(

Xi(n)
)

, h
(

Xi(n)
)]

, where F :R3 → R3,

determines the nodes’ dynamics, N is the number of nodes, and

σ1, ..., σd are the coupling strength of interactions defined by 1

to d dimensional simplices. The network structure is defined

by adjacency tensors A(1), ...,A(d), where A(d) =
[

A
(d)
ij1 ...jd

]

(Wei

and Ding, 2016; Gambuzza et al., 2021). Adjacency tensors are

a generalization of adjacency matrices to higher-order networks.

In an adjacency matrix, each element represents the presence

or absence of a connection between a pair of nodes in a

network, while in an adjacency tensor, each element represents

the presence or absence of a connection between a set of nodes

of arbitrary size (Lucas et al., 2020). For example, A
(1)
ij1

= 1

indicates that the i-th and j1-th nodes are connected through

a link while A
(d)
ij1 ...jd

= 1 shows that nodes with indices

i, j1, ..., jd combine to form a polyhedron (d-simplex; Mirzaei

et al., 2022; Parastesh et al., 2022; Mehrabbeik et al., 2023).

Furthermore, G(1), ...,G(d) are the coupling functions describing

the type of interactions among 2, ..., d + 1 units building simplicial

complexes.

A traditional network of N mRulkov maps coupled

via hybrid (electrical and chemical) pairwise interactions

(G
(1)
1

(

Xi(n),Xj(n)
)

= [xj(n) − xi(n), 0, 0]
T and

G
(1)
2

(

Xi(n),Xj(n)
)

=
[

(v − xi(n))Ŵ(xj(n)), 0, 0
]

) in

a global configuration is mathematically depicted as

follows:



























































xi(n+ 1) = f
(

Xi(n)
)

+

σ1

N
∑

j=1

A
(1)
ij (xj(n)− xi(n))+

σ2(v− xi(n))

N
∑

j=1

A
(1)
ij Ŵ(xj(n)),

yi(n+ 1) = g
(

Xi(n)
)

,

ϕi(n+ 1) = h
(

Xi(n)
)

,

(4)

where v is the reversal potential, Ŵ(x) = 1
1+e−r(x−θ) is the

chemical synaptic function that describes the kinetics of the

neurotransmitter release and modulates the synaptic transmission
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FIGURE 3

The criteria for synchronizing a network of N = 5 globally coupled mRulkov neuron maps with pairwise hybrid synapses represented by 2D (A)

maximum Lyapunov exponent of the linearized System (6) and (B) averaged synchronization error of Network (4) in σ1-σ2 parameter plane. Although

there is a significant amount of the examined parameter plane that is occupied by a synchronous region, the neurons break out of total asynchrony

for values of σ1 that are either very small or very high in value. Thus, the value of σ1 playing a key role in synchronization incidence.

FIGURE 4

The criteria for synchronizing a network of N = 5 globally coupled mRulkov neuron maps with pairwise electrical and non-pairwise chemical

synapses represented by 1D and 2D (A, B) maximum Lyapunov exponent of the linearized System (8) and (C, D) averaged synchronization error of

Network (5). The 2D representations are in the parameter plane σ1-σ2 and the 1D curves are according to σ1 for σ2 = 0.0021, 0.0043, and 0.0098. The

synchronization patterns are scaled to lower values of σ2 as the higher-order chemical interactions are added to the pairwise electrical connections.

As a result, synchronization is improved as a result of its incidence being detected in second-order interactions with weaker strengths.
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FIGURE 5

The dynamics of the synchronization manifold defined in System (9) demonstrated as (A) the bifurcation diagrams and (B) the Lyapunov exponents

spectra as a function of the chemical coupling parameter σ2, which is, here, the higher-order interactions among mRulkov neurons. Here, N = 5 is

considered. For specific values of first- and second-order coupling strength found by the MSF analysis and displayed in Figure 4, the mRulkov

neurons are capable of achieving synchrony while exhibiting chaotic and periodic behaviors. When in the synchronous state, the dynamics of the

neurons are determined by the strength of the higher-order coupling parameter σ2.

using a sigmoidal function with a slope of r and a firing threshold

of θ . The expression [v−xi(n)]Ŵ[xj(n)] represents the postsynaptic

response at a synapse, where xi(n) and xj(n) are, respectively,

the postsynaptic and presynaptic membrane potentials. The

reversal potential v represents the neurotransmitter’s equilibrium

potential at the synapse. There is no net flow of ions when

v = xi(n), and the synapse is said to be at its reversal

potential. Moreover, Ŵ[xj(n)] denotes synaptic conductance

and is influenced by several variables, including presynaptic

activity. It influences how strongly neurotransmitters bind to

receptors, affecting synaptic transmission and the postsynaptic

membrane potential (Yamakou et al., 2020). If v − xi(n) >

0, it results in depolarization (excitatory response), while if

v − xi(n) < 0, it leads to hyperpolarization (inhibitory

response; Shafiei et al., 2020). This response determines whether

an action potential is generated a nd influences information

transmission and processing within the neuronal network.

Nonetheless, based on the general definition in Equation (3),

considering a higher-order network of N globally coupled

mRulkov neuron maps with first-order electrical connections

(G(1)
(

Xi(n),Xj(n)
)

= [xj(n) − xi(n), 0, 0]
T) and second-

order chemical interactions (G(2)
(

Xi(n),Xj(n),Xk(n)
)

=
[

(v −

xi(n))
(

Ŵ(xj(n))Ŵ(xk(n))
)

, 0, 0
]

), Network (4) changes into the

following equations:































































xi(n+ 1) = f
(

Xi(n)
)

+

σ1

N
∑

j=1

A
(1)
ij (xj(n)− xi(n))+ σ2(v− xi(n))×

N
∑

j=1

N
∑

k=1

A
(2)
ijk

(

Ŵ(xj(n))Ŵ(xk(n))
)

,

yi(n+ 1) = g
(

Xi(n)
)

,

ϕi(n+ 1) = h
(

Xi(n)
)

.

(5)

In Networks (4) and (5), σ1 and σ2 denote the strength of the

electrical and chemical synapses, respectively. Here, xj(n) and xk(n)

are both considered as the postsynaptic neurons responsible for

the release of the same neurotransmitters into the synaptic cleft of

the postsynaptic neuron xi(n). For the subsequent investigations,
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FIGURE 6

The dynamical behavior of the synchronous mRulkov neurons obtained from Network (5) represented in (A, C) x-ϕ state space and (B, D) time series

of variable x over 10,000 iterations. The synchronous mRulkov neurons exhibit periodic behavior for (σ1, σ2) = (0.1, 0.002) and chaotic dynamics for

(σ1, σ2) = (0.1, 0.01). These two examples demonstrate that the dynamics of the synchronous neurons engaged in Network (5) are distinct from an

isolated mRulkov model when subjected to the same parameter settings as those used to obtain Figure 1.

the chemical synaptic parameters are set at v = θ = −1.4

and r = 50. The present study focuses on the collective

dynamics of Network (5) to find the impact of higher-order

interactions.

4. Stability analysis

The master stability function (MSF) is considered to assess

the neurons’ stability in the synchronization state (Pecora and

Carroll, 1998). The MSF, which is influenced by the topology

of the network, the degree of coupling between nodes, and

the dynamics of each node, characterizes the linear stability

of a synchronized state in a network. This function provides

the necessary criteria for network synchronization by linearizing

the dynamics of the network around the synchronized state

and analyzing the resulting eigenvalues of the linearized system

(Pecora and Carroll, 1998). To find the linearized system, a

negligible perturbation δX(n) = [δx(n), δy(n), δϕ(n)]T is locally

added to the neurons in their synchronous state X
s(n) =

[xs(n), ys(n),ϕs(n)]T . Thus, δXi(n) = Xi(n) − X
s(n). Assuming

V as a matrix with columns that are the eigenvectors of

the Laplacian matrix generated from the adjacency matrix, the

transformation η(n) = V−1δXi(n) leads to the desired linearized

system.

In the first case, wherein no non-pairwise interactions

are involved, and neurons are interacting through pairwise

hybrid synapses (Network 4), the linearized system

becomes:







































ηx(n+ 1) = Jf
(

X
s(n)

)

− σ1Nηx(n)−

σ2
(

(v− xs(n))Ŵx(x
s(n))+

(N − 1)Ŵ(xs(n))
)

ηx(n),

ηy(n+ 1) = Jg
(

X
s(n)

)

,

ηϕ(n+ 1) = Jh
(

X
s(n)

)

.

(6)

where JF[Xs(n)] is the 3×3 Jacobian matrix of F[X(n)] evaluated at

X
s(n) and Ŵx[x

s(n)] is the derivative of Ŵ(x) in the synchronization

state xs(n). When all neurons evolve synchronously, X1(n) =

X2(n) = ... = XN(n) = X
s(n), and thus, G

(1)
1

[

X
s(n),Xs(n)

]

≡ 0 and

G
(1)
2

[

X
s(n),Xs(n)

]

≡
[

(v − xs(n))Ŵ(xs(n)), 0, 0
]

. Also, for a global

network of N nodes, we have
∑N

j=1 A
(1)
ij = N − 1. Therefore, the
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FIGURE 7

The criteria for synchronizing a network of globally coupled mRulkov neuron maps with pairwise electrical and non-pairwise chemical synapses

represented by 2D (A, C) maximum Lyapunov exponent of the linearized System (8) and (B, D) averaged synchronization error of Network (5). In the

first row, N = 20, and in the second row, N = 50 is considered. When there are more neurons communicating with one another, the synchronization

pattern is scaled down to lower values of the coupling parameters. Therefore, as the size of the network increases, synchronization gets enhanced

more.

dynamics of the synchronous neurons with hybrid synapses obey

the following system:























xs(n+ 1) = Jf
(

X
s(n)

)

+

σ2(N − 1)(v− xs(n))Ŵ(xs(n)),

ys(n+ 1) = Jg
(

X
s(n)

)

,

ϕs(n+ 1) = Jh
(

X
s(n)

)

,

(7)

which differs from the dynamics of an individual

mRulkov neuron.

In the second case, wherein the non-pairwise chemical

interactions, as well as the pairwise electrical connections,

are involved (Network 5), the linearized system change

into:















































ηx(n+ 1) = Jf
(

X
s(n)

)

− σ1Nηx(n)−

σ2(N − 2)
(

2(v− xs(n))×
(

Ŵx(x
s(n)Ŵ(xs(n))

)

+

(N − 1)Ŵ2(xs(n))
)

ηx(n),

ηy(n+ 1) = Jg
(

X
s(n)

)

,

ηϕ(n+ 1) = Jh
(

X
s(n)

)

,

(8)

In the synchronization state, since X1(n) = X2(n) =

... = XN(n) = X
s(n), G

(1)
[

X
s(n),Xs(n)

]

≡ 0 and

G
(2)

[

X
s(n),Xs(n),Xs(n)

]

≡
[

(v − xs(n))Ŵ2(xs(n)), 0, 0
]

.

Moreover, due to the global coupling scheme, we have
∑N

j=1

∑N
k=1 A

(2)
ijk

= (N − 1)(N − 2). Thus, the neurons’

dynamics in the synchronization state can be described as

follows:























xs(n+ 1) = Jf
(

X
s(n)

)

+

σ2(N − 1)(N − 2)(v− xs(n))Ŵ(xs(n)),

ys(n+ 1) = Jg
(

X
s(n)

)

,

ϕs(n+ 1) = Jh
(

X
s(n)

)

,

(9)

which is different from System (7) or even an isolated neuron

behavior.

The negative maximum Lyapunov exponent (3) of

the linearized systems described in Systems (6) and (8)

shows the stability of the synchronization state since the

locally injected perturbations achieve zero, which means

that the neurons remain in their synchronous state.

The Appendix provides more information on how to

conduct MSF analysis for both traditional and higher-order

networks.
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FIGURE 8

The e�ect of network size (N) on the synchronization of Network (5), including pairwise electrical and non-pairwise chemical interactions,

represented in terms of maximum Lyapunov exponent of System (8) as a function of (A) σ1 for σ2 = 0.0001 and (B) σ2 for σ1 = 0.001. An increase in

the number of neurons that communicate with one another has a di�erent e�ect on the synchronization state of the network, depending on

whether the first-order (σ1) or second-order (σ2) coupling strengths are being assessed.

FIGURE 9

(A, C) The spatiotemporal patterns, (B, D) neurons’ time series (upper panel) and snapshots of the last samples (bottom panel) in Network (5) for

(σ1, σ2) = (0.024, 0.00004) (first row) and (σ1, σ2) = (0.023, 0.00004) (second row). For stronger strength of electrical (first-order) coupling strength, the

neurons tend to form two synchronous clusters with chaotic dynamics (first row) or periodic behavior (second row). In the asynchronous region

located on the right side of Figure 4, higher-values of σ1 lead to chaotic behaviors, while in lower values, periodic solutions occur in the synchronous

clusters.
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5. Results

Using the MSF analysis detailed in Section 4, here, the effect

of applying higher-order interaction is investigated by examining

Networks (4) and (5). The averaged synchronization error is also

numerically determined in addition to the MSF technique, which

analytically provides the essential synchronization criteria for the

assessed networks to confirm the outcomes of the MSF method.

The following definition applies to the averaged synchronization

error:

E =

〈

1

N − 1

N
∑

j=2

∥

∥Xj(n)− X1(n)
∥

∥

〉

n

, (10)

where 〈...〉 and ‖...‖ are the functions calculating the averaged value

over discrete time steps n and the Euclidean norm, respectively.

Figure 2 depicts the regions in the parameter plane σ1-σ2 (0 ≤

σ1 ≤ 0.24 and 0 ≤ σ2 ≤ 0.03) wherein N = 5 mRulkov

neurons interacting through the hybrid synapses [Network (4)] are

completely synchronous. Such region can be detected for 3 < 0

(Figure 3A) and E = 0 (Figure 3B). Similarly, Figure 4 provides

the results of Lyapunov analysis of System (8) and synchronization

error calculation of Network (5) in which the chemical synapse

are considered as the second-order interactions alongside the first-

order electrical connections for 0 ≤ σ1 ≤ 0.24 and 0 ≤

σ2 ≤ 0.01. Figure 4 reveals that when second-order chemical

interactions are involved with the pairwise electrical connections,

weaker strength of chemical couplings is needed to have the

same synchronization patterns as shown in Figure 3. More clearly,

higher-order interactions enhance synchronization by scaling the

patterns to lower values of σ2.

The dynamics of synchronous neurons do not follow the

equation for a single isolated neuron, as demonstrated by System

(9); nonetheless, they are dependent on the network settings

as well as the model parameters, specifically the number of

neurons N and the chemical (second-order) coupling parameter

σ2. Figure 5 illustrates how the dynamics of neurons in the

synchronization state, or in other words, the dynamics of System

(9), vary according to the coupling parameter σ2 by performing a

simple dynamical analysis using the bifurcation and the Lyapunov

exponents (LEs) diagrams. It can be seen that if first- and second-

order coupling parameter values are selected in the synchronous

regions demonstrated in Figures 4A, C, the mRulkov neurons are

able to exhibit chaotic and periodic behaviors according to the

dynamical analysis performed in Figure 5. More precisely, it can be

recognized that the neurons synchronize with the dynamics shown

in Figure 5 if the first-order coupling strength σ1 is chosen in the

synchronous zone indicated in Figure 4. For instance, Figures 6A,

B shows that N = 5 mRulkov neurons in a higher-order network

defined in Network (5) achieve synchrony with periodic dynamics

(LE1 = −0.2472, LE2 = −0.0656, and LE3 = 0) for σ1 = 0.1

and σ2 = 0.002; however, if σ1 = 0.1 and σ2 = 0.01 are selected,

as indicated by Figures 6C, D, they behave chaotically (LE1 =

−0.2065, LE2 = 0, and LE3 = 0.0499) in the synchronization state.

To further examine the impact of network size on the

synchronization state of the higher-order network composed of

mRulkov models, larger networks with more interacting neurons

are taken into consideration. Figures 7A, B demonstrates the

synchronous and asynchronous regions of Network (5) for 0 ≤

σ1 ≤ 0.06 and 0 ≤ σ2 ≤ 0.00035 when N = 20 neurons are

involved. Similarly, the stability regions of Network (5) with N =

50 neurons are 0 ≤ σ1 ≤ 0.024 and 0 ≤ σ2 ≤ 0.0000505 shown in

Figures 7C, D. More precisely, the results show that as the network

size increases, the synchronization patterns are scaled to the lower

values of both first-order and second-order coupling parameters.

However, the amount of this decrease is not the same for σ1 and σ2.

Figure 8 illustrates how the number of participating neurons affects

the network’s synchronization according to the variation of σ1 while

σ2 = 0.0001 (Figure 8A), and σ2 while σ1 = 0.001 (Figure 8B).

Focusing on the asynchronous regions in Figures 7C, D,

wherein N = 50 mRulkov neurons are configured in a higher-

order network described by Network (5), cluster synchronization

patterns can be detected. More precisely, it is found that

the neurons evolve asynchronously in lower values of σ1 (in

asynchronous regions) while in higher values, they tend to

participate in forming synchronous clusters. For instance, as shown

in Figures 9A, B, two-cluster synchronization is found for σ1 =

0.024 and σ2 = 0.00004, in which the synchronous neurons

behave chaotically. Based on Figures 9C, D, the same two-cluster

synchronization pattern is also identified for σ1 = 0.023 and σ2 =

0.00004; however, the neurons evolve periodically synchronously in

each cluster.

6. Conclusions

The consequences of applying higher-order interactions on

the synchronization of the mRulkov network were well-explained

in this research. In order to achieve this goal, a network of

globally connected mRulkov neurons was considered, in which

electrical and chemical synapses were respectively applied to the

two- and three-node interactions. Thereafter, the regions of the

coupling parameter space wherein the neurons were completely

synchronous were detected through the MSF approach, which

was then verified by calculating the network’s synchronization

error. The same study was carried out on a network with pure

pairwise hybrid interactions, wherein electrical and chemical

pathways were considered active simultaneously. Our findings

suggest that not neglecting the non-pairwise or multi-node

interactions can improve global synchronization by scaling

synchronization patterns to lower chemical coupling parameter

values while leaving the electrical coupling strength the same.

Furthermore, the higher-order coupling strength and network

size were demonstrated to alter the behavior of neurons in the

synchronization state. Therefore, through the bifurcation analysis,

the behaviors of the synchronous neurons, regardless of the stability

of the synchronization manifold, were investigated concerning

the variation of the second-order chemical coupling parameter.

Additionally, it was demonstrated that the neurons could exhibit

periodic or chaotic behaviors in the synchronous zone of the

parameter space. Through the Lyapunov analysis of the linearized

system developed with the MSF formalism, the influence of the

engaged neurons’ number on the network synchronization was

also investigated. The results showed that the synchronous patterns

scale to smaller values of the coupling parameters as the network
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size grows. Furthermore, looking more closely at the asynchronous

regions, cluster synchronization patterns were detected. It was

shown that the synchronous neurons in the cluster have periodic

or chaotic dynamics.
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