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In recent studies, in the field of Brain-Computer Interface (BCI), researchers have
focused on Motor Imagery tasks. Motor Imagery-based electroencephalogram
(EEG) signals provide the interaction and communication between the paralyzed
patients and the outside world for moving and controlling external devices
such as wheelchair and moving cursors. However, current approaches in the
Motor Imagery-BCI system design require e�ective feature extraction methods
and classification algorithms to acquire discriminative features from EEG signals
due to the non-linear and non-stationary structure of EEG signals. This study
investigates the e�ect of statistical significance-based feature selection on binary
and multi-class Motor Imagery EEG signal classifications. In the feature extraction
process performed 24 di�erent time-domain features, 15 di�erent frequency-
domain features which are energy, variance, and entropy of Fourier transform
within five EEG frequency subbands, 15 di�erent time-frequency domain features
which are energy, variance, and entropy of Wavelet transform based on five EEG
frequency subbands, and 4 di�erent Poincare plot-based non-linear parameters
are extracted from each EEG channel. A total of 1,364 Motor Imagery EEG
features are supplied from 22 channel EEG signals for each input EEG data. In
the statistical significance-based feature selection process, the best one among
all possible combinations of these features is tried to be determined using the
independent t-test and one-way analysis of variance (ANOVA) test on binary
and multi-class Motor Imagery EEG signal classifications, respectively. The whole
extracted feature set and the feature set that contain statistically significant
features only are classified in this study. We implemented 6 and 7 di�erent
classifiers in multi-class and binary (two-class) classification tasks, respectively.
The classification process is evaluated using the five-fold cross-validationmethod,
and each classification algorithm is tested 10 times. These repeated tests
provide to check the repeatability of the results. The maximum of 61.86 and
47.36% for the two-class and four-class scenarios, respectively, are obtained
with Ensemble Subspace Discriminant among all these classifiers using selected
features including only statistically significant features. The results reveal that the
introduced statistical significance-based feature selection approach improves the
classifier performances by achieving higher classifier performances with fewer
relevant components in Motor Imagery task classification. In conclusion, the
main contribution of the presented study is two-fold evaluation of non-linear

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2023.1223307
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2023.1223307&domain=pdf&date_stamp=2023-07-11
mailto:islerya@yahoo.com
https://doi.org/10.3389/fnhum.2023.1223307
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2023.1223307/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Degirmenci et al. 10.3389/fnhum.2023.1223307

parameters as an alternative to the commonly used features and the prediction of
multiple Motor Imagery tasks using statistically significant features.

KEYWORDS

brain-computer interfaces (BCIs), electroencephalogram (EEG), feature selection,

machine learning, Motor Imagery (MI) task classification

1. Introduction

Brain–computer Interfaces (BCIs) help to establish and realize

the interaction between humans and computers using physiological

signals acquired from the brain (Tiwari et al., 2022). It allows

individuals who can not control a part of their resulting from

paralysis or similar diseases but who are conscious to communicate

with the outside world and control the robot arm, wheelchair,

computer, and similar devices with thought power. The basic

concept of BCIs is based on capturing brain’s electrical signals,

analyzing them on the artificial intelligence-powered software,

and converting them to emotions and thoughts for particular

purposes. The first step of BCI system design is data acquisition

to obtain physiological signals. A neuron captures the information

about any thought, which is passed to the other neurons after

being processed. This communication among neurons generates

electrical activities that can be measured from the body surface

(Tan and Nijholt, 2010; Bansal and Mahajan, 2019). If these

activities are originated from the brain, they can be captured

using electroencephalography (EEG) visualization devices. EEG

is a non-invasive method of placing electrodes over the scalp

(just as near to the brain cortex as possible) (Yuan and He,

2014; Tiwari et al., 2022). Motor Imagery (MI) EEG signals are

acquired during mental tasks. In the field of BCI, MI signals

are generated when the subject only imagines a movement of a

body part without actually performing it (Musallam et al., 2021).

Similar to other BCI systems, MI-based BCI systems’ goal is to

control one or more extrinsic devices by translating EEG signals

into commands (Tiwari et al., 2022). Hence, the processing of

these signals plays an important role in the design of assistive

devices for motor-disabled and paralyzed persons (Degirmenci

et al., 2022c).

In recent studies, the traditional handcrafted feature extraction

processes have been studied to classify MI tasks. These studies

analyze EEG signals using traditional machine learning methods.

The handcrafted feature extraction process includes some basic

and definite steps after acquiring EEG signals from subjects.

These are signal preprocessing, feature extraction, feature selection,

and classification. Among these steps, the feature extraction

and selection processes play an important role in EEG-based

studies (Degirmenci et al., 2022b). The preprocessing step includes

different and significant operations such as signal filtering, signal

normalization, artifact removal, and signal segmentation (Altaheri

et al., 2021). In the feature extraction step, various approaches have

been introduced to extract task-related intrinsic information from

EEG signals by researchers. TheMI features are separated into three

categories based on the processing domain which are temporal

features, spectral features, and spatial features.

Temporal features are supplied from the time domain of

signals using time points or different time segments and include

features such as mean value, kurtosis, variance, skewness, root

mean square value, and Hjorth parameters (Pawar and Dhage,

2020; Degirmenci et al., 2022b). Spectral features contain both

frequency domain features such as power spectral density and

fast Fourier transform (Djamal et al., 2017; Degirmenci et al.,

2022c) and time-frequency domain features such as short-time

Fourier transform (Ha and Jeong, 2019) and Wavelet transform

(Chaudhary et al., 2020). Spatial features supply information

about particular electrode locations on the brain cortex. The

common spatial patterns (Blanco-Diaz et al., 2022) and its

different versions such as sparse common spatial patterns (Arvaneh

et al., 2011), stationary common spatial patterns (Samek et al.,

2012), divergence common spatial patterns (Samek et al., 2013),

probabilistic common spatial patterns (Wu et al., 2014), and filter

bank common spatial patterns (Ang et al., 2012) are the mostly-

studied feature extraction methods to capture spatial information

in MI task classification. The compatibility of all these different

feature categories with the non-stationary structure of the EEG

is important in determining the features to be used. According

to the non-stationary structure of the EEG signals, the spectral

components of the these signals change as a function of time. Thus,

signal processing the EEG signals only in the time-domain or the

frequency-domain might not be sufficient to provide information

about the spectral characteristics of the EEG signals (Boashash,

2015). The combination of these different categories should be

analyzed in accordance with the nature of the EEG signals, using

time-frequency domain features and non-linear parameters, in

addition to the frequently used time-domain, frequency-domain,

and spatial-domain features.

Although there are different MI task features to analyze

within MI EEG signals, the correlations among these features

are significant for algorithm performance. The simultaneous

combination of a large number of various features unnecessarily

increases the complexity of classifiers due to confusion caused

by redundant information in the feature set. In addition, the

classifier performance decreases in some cases due to this

confusion (Hart et al., 2000; Isler, 2009; Narin et al., 2014).

As one of the solutions to this problem, all possible feature

subsets can be defined and the separability of each feature subset

can be evaluated based on classifier performance. Then, the

relevant feature subset which provides the highest separability

between MI tasks can be determined. Unfortunately, when too

many features are studied, too many combinations need to be

tried to explore the relevant and effective feature set. However,

such an approach requires and results in the computational

load of classifier algorithms (Narin et al., 2014). These feature
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selection algorithms are classified into two main groups based on

whether they consider a certain criterion for classifier performance

or not, which are wrapper and filter approaches, respectively

(Blum and Langley, 1997; Kohavi and John, 1997; Guyon and

Elisseeff, 2003). Statistical significance-based selection, backward

elimination, forward selection, principal component analysis

(PCA), and genetic algorithms (GAs) are mostly used feature

selection algorithms to analyze biomedical signals in the literature

(Isler, 2009; Narin et al., 2014; Mousa et al., 2016). In the

classification process, various machine learning algorithms have

been computed to classify MI tasks such as Naive Bayes, k-nearest

neighbors (k-NN), linear discriminant analysis, support vector

machine, multi-layer perceptron, radial basis function, extreme

learning machine, and deep neural network (Meziani et al., 2019;

Degirmenci et al., 2022b,c; Tiwari et al., 2022). This study aims

to introduce an effective approach for MI task classification using

various features of EEG signals and different machine learning

algorithms. Themain contributions of this study can be highlighted

as follows:

• We investigated a multi-directional handcrafted feature

extraction-based approach that makes use of different

feature categories including temporal, spectral, and non-linear

features.

• We implemented the non-linear feature extraction method

computing Poincare plot measurements of EEG signals to

ensure the information about non-linear dynamics of signals

in MI task classification.

• We investigated the performance effect of the statistical

significance-based feature selection method on MI task

classification.

• We comparatively evaluated the performance effect of

the seven different machine learning algorithms with the

combination of different MI EEG features.

In the following section, we preferred to give a brief review of

MI task studies separately from this introduction. Then, we gave

methods and materials as a new section to explain the dataset

used in addition to feature extraction, statistical significance-based

feature selection, classifier algorithms, and performance evaluation

metrics utilized in this study. Next, we introduced all the achieved

classifier performances in the Results section. In the last two

separate sections, we discussed what these results mean and we

concluded the outcomes of the study, respectively.

2. Related works

The feature extraction and feature selection methods are

critical steps for the prediction of MI-based EEG tasks since

these steps have a direct impact on the classification performance.

In the literature, different approaches were tested to extract MI

features and determine which of them gives higher classifier

performances than other feature and classifier combinations. MI

EEG signals supply the temporal, spectral, and spatial features

from their intrinsic structure. These features extracted different

features from different categories can be combined to classify MI

tasks in research studies. In 2022, Degirmenci et al. presented a

temporal feature extraction-based approach that uses 24 different

time-domain features. They also investigated the effectiveness

of the statistical significance (ANOVA)-based feature selection

process for the classification of the four MI tasks (Degirmenci

et al., 2022b). In classification, 11 various machine learning

algorithms were tested, and the maximum average accuracy value

was found as 44.00% using linear discriminant analysis. In a

study conducted by Hamedi et al., integrated EEG (IEEG) and

root mean square (RMS) measures were extracted from the time

domain of EEG signals. In the classification of the three-class

MI task, the effectiveness of neural network-based algorithms,

which are multi-layer perceptron and radial basis function neural

networks, was investigated. The results revealed that RMS was

more capable than IEEG for differentiating MI tasks, and radial

basis function was more accurate and faster than multi-layer

perceptron (Hamedi et al., 2014). The fast Fourier transform is

one of the most applied methods to extract spectral features. In

the study by Jusas and Samuvel (2019), band power, time domain

parameters, fast Fourier transform, and channel variance were

evaluated for the feature extraction process, and different feature

selection methods, which are PCA, sequential forward selection,

sequential backward selection, locality preserving projections,

and local Fisher discriminant analysis, were investigated. They

concluded that the combination of fast Fourier transform and

covariance matrix-based feature extraction with PCA-based feature

selection supplied the best classification performance among all

combinations. In the literature, recent studies have investigated

the effect of EEG sub-bands using fast Fourier transform-based

frequency band extraction. In 2019, Isa et al. presented a binary

MI task classification study based on the EEG frequency band

extraction using the fast Fourier transform. The linear discriminant

analysis was applied over these spectral features to minimize the

number of feature dimensions. They evaluated the maximum

accuracy value as 79.23% using the Naive Bayes algorithm for the

classification of right-hand and left-hand tasks (Isa et al., 2019).

The main drawbacks of fast Fourier transform are two-fold: it is

non-suitable for the non-stationary characteristic of EEG signals

and it does not include time information. Therefore, different

methods which include time and frequency information were used

to extract spectral features. Short-time Fourier transform is one

of the time-frequency representation techniques that process the

local characteristics of a signal utilizing a window. It supplies

the spectral features using the time-frequency domain. In the

study by Ha and Jeong (2019), the authors proposed a method

for binary classification of MI tasks using the short-time Fourier

transform, and a capsule network (CapsNet). EEG signals were

converted to 2D images using the short-time Fourier transform and

these images were classified with CapsNet and other well-known

machine learning algorithms. They concluded that CapsNet-based

classification outperforms all the other machine learning-based

classifications with an average classification accuracy of 78.44%

in their presented study. Other time-frequency domain features

can be extracted using Wavelet Transform. It supplies multi-

resolution analysis from EEG signals using several filters with

different bandwidths (Ha and Jeong, 2019). In a study presented

by Luo et al., the effect of the Wavelet packet decomposition-based
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EEG subband extraction approach was investigated for the binary

classification (right-hand and left-handmovement tasks). They also

applied the Dynamic frequency feature selection (DFFS) method to

reduce the extracted features. They calculated the average accuracy

value of 68.32% using random forest algorithm (Lu et al., 2020). In

spatial feature extraction, the common spatial pattern algorithm is

the most preferred method which uses spatial filters. In the study

by Kato et al. (2020), a five-class MI task classification study based

on the multi-class common spatial patterns method was proposed.

Five different finger movements were differentiated with an

accuracy of 40.60% using support vector machine. Unfortunately,

the common spatial patterns’ drawback is the manual frequency

band selection based on individual structures. The filter-bank

common spatial pattern method, which utilizes several different

frequency bands in parallel, has been presented to overcome this

problem. Adopting the FBSCP method improved the classification

performance for MI task studies (Ha and Jeong, 2019). In 2008, a

common spatial pattern and filter-bank common spatial pattern-

based MI task classification study is performed using publicly

available BCI competition III dataset IVa. In the Naive Bayesian

Parzen Window (NBPW)-based classification, filter-bank common

spatial pattern yielded superior averaged test accuracy of 81.10%,

while the common spatial patterns-based approach yielded an

accuracy of 73.30%. They concluded that filter-bank common

spatial patterns supplied statistically outstanding performance than

common spatial patterns (Ang et al., 2008).

In recent studies, it has been observed that three different

feature categories are generally used in the feature extraction

process for MI-based EEG signals, but it has been noted that

the most studied feature extraction approaches are the spectral

domain and spatial domain features. Unfortunately, the effect of

non-linear features on MI task classification has not been studied

much. The Poincare plot measurements are one of the non-linear

feature extraction methods that were studied in the analysis of

different biomedical signals and supplied high classification results.

Its simple visual interpretation and its proven clinical ability as a

predictor of disease and cardiac dysfunction made this technique

popular in the analysis of different physiological signals (Isler and

Kuntalp, 2007; Isler, 2009; Narin et al., 2014; Isler et al., 2019).

Taking into account its performance in other studies (Isler and

Kuntalp, 2009; Cancioglu et al., 2021), Poincare plot measurements

can be an effective method for non-linear dynamics of EEG

signals that complicate the processing of them. Considering the

contributions and deficiencies of the existing studies, in this study,

a feature extraction method based on the combination of Poincare

plot measurements from the non-linear feature extraction methods

with temporal features and spectral features is implemented for MI

task classification.

3. Materials and methods

In this section, the EEG dataset and methodologies that are

adopted and used for feature extraction, feature selection, and

classification for MI-based EEG signals are described in detail.

The flowcharts of the suggested multi-class and binary class Motor

Imagery task classification studies are presented in Figures 1,

2, respectively.

3.1. Dataset

In this study, the publicly available BCI Competition IV

Dataset IIa was used to evaluate the performance of the classifier

methods for binary and multiple MI task classification (Brunner

et al., 2008). The dataset contains the EEG and EOG signals,

which were captured and recorded using 22 EEG channels and 3

EOG channels, respectively. EEG signals were recorded using 22

Ag/AgCl electrodes, and the sampling rate was defined as 250 Hz.

The signals were collected for four different MI tasks which are the

imagination of movement of the left hand (LH), right hand (RH),

feet (F), and tongue (T) from 9 subjects of which 4 were females and

5weremales. Two sessions were organized to collect EEG signals on

different days, and each session includes 6 runs separated by breaks.

In each run, 48 different MI tasks were available, and these trials

were designed to be 12 MI tasks for each of the four classes. During

the recording, a visual cue was shown to the subject to imagine the

movements for four different tasks. The preprocessing step of EEG

signals includes a band-pass filtering process between 0.5 and 100

Hz and an additional 50 Hz notch filter application to eliminate line

noise for this dataset.

3.2. Feature extraction

Initially, the relevant MI EEG segments, where EEG tasks were

performed, are decomposed from original EEG signals for the

feature extraction process. In this study, we extracted four feature

sets of MI EEG features for the classification of MI task segments.

The first set includes temporal features that are supplied from

time-domain information of EEG segments. In the second set,

spectral features are extracted using the fast Fourier transform-

based frequency domain information of EEG segments. As a

third set, time-frequency features are calculated based on Wavelet

Transform. Finally, in the last set, Poincare plot measurements are

calculated to extract non-linear features.

First, the relevant and distinctive temporal features are

extracted based on the time-domain information of EEG signals. A

total of 24 different temporal features, which include information

about amplitude and statistical changes of the EEG signals, are

supplied for each EEG segment (Sayilgan et al., 2021a; Degirmenci

et al., 2022b). These temporal features are minimum, maximum,

mean, standard deviation, integrated EEG value, mean absolute

value, simple square integral value, variance, root mean square

value, waveform length value, average amplitude change value,

absolute difference in standard deviation, mode value of the signal,

kurtosis, skewness, Hjorth parameters (activity, mobility, and

complexity) inter-quarter intervals (1st quartile, 2nd quartile, and

3rd quartile), zero crossing, slope-change value, and signal range.

Next, the EEG subbands’ energy, variance, and entropy

values, and these values are calculated based on the frequency

distribution of EEG signals. Hence, these spectral features include

the information about frequency distribution embedded in EEG

signals (Degirmenci et al., 2022c). The different oscillations are

embedded in EEG signals which are known to be liable for

various cognitive brain functions (Cura and Akan, 2021). These

are known as delta (δ), theta (θ), alpha (α), beta (β), and gamma
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FIGURE 1

The block diagram of the suggested multi-class Motor Imagery task classification study. Three-second segments from EEG signals are used for the
feature extraction process. Well-known classifiers are tested to discriminate the BCI command using selected features among extracted features
(The dashed line representation refers to analyses in which ANOVA-based feature selection is applied, and statistically significant features are applied
to classifiers instead of all features.).

(γ ) waves. The frequency bands of these waves are identified

as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–

30 Hz), and gamma (30–100 Hz) for this study. The delta,

theta, alpha, beta, and gamma bands are decomposed from the

frequency distribution of MI EEG signals using the fast Fourier

transform, and the energy, variance, and entropy values of these

bands are calculated as spectral features. In the various EEG-

based classification problems, machine learning-based approaches

commonly use the energy, variance, and entropy values of EEG

subbands, which are calculated from the frequency domain of

signals as spectral features (Sayilgan et al., 2021c). Here, energy,

variance, and entropy of frequency bands are calculated in the study

by Sayilgan et al. (2021a) and Degirmenci et al. (2022c) as follows:

Energyf =
M∑

i=1

y(i)2 (1)

Variancef =
1

M − 1
·

M∑

i=1

(yi − y)2 (2)
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FIGURE 2

The block diagram of the suggested binary class Motor Imagery task classification study. Three-second segments from EEG signals are used for the
feature extraction process. Well-known classifiers are tested to discriminate the BCI command using selected features among extracted features
(The dashed line representation refers to analyses in which the independent t-test based feature selection is applied, and statistically significant
features are applied to classifiers instead of all features.).

Entropyf =
1

log(M)
·

M∑

i=1

P(y(i))log(P(y(i)) (3)

Here, the energy of each frequency band is calculated based on

the power spectrum, and f indicates the type of EEG subbands

which are δ, θ , α, β , and γ . Energyf corresponds to the energy of

a frequency band, and M corresponds to the maximum frequency.

The Fourier Transform of the EEG segment is indicated as y.

Variancef corresponds to the variance of a frequency band, and

y denotes the average of the y signal. The spectral entropy

measures the regularity of the power spectrum of the EEG signal,

and Entropyf corresponds to the entropy of a frequency band.

P(y(i)) indicates the probability that the signal is in the given

frequency domain.

Then, Wavelet Transform-based feature extraction process

is conducted to calculate time-frequency features. EEG signals

have non-stationarities and their spectral features do not include

any time information. Wavelet Transform uses both time and
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frequency information and supplies multi-resolution analysis using

several filters and bandwidths. It is a smooth and fast oscillation

function that is well-localized in frequency and time (Sayilgan

et al., 2021b). It can be used as a specially prepared dual

Finite-Impulse Response (FIR) filter. The high-frequency and

low-frequency components of EEG signals are extracted using

frequency responses of FIR filters. Half of the data sampling rate

is known as Nyquist frequency. The dividing point of the signal

frequency is generally between 0 Hz and the specified Nyquist

frequency. The same wavelet coefficients are employed in both

low-pass (LP) and high-pass (HP) filters for the multi-resolution

algorithm of Wavelet Transform (Gandhi et al., 2011). The LP

filter coefficients are linked with a scaling parameter that defines

the oscillatory frequency and the length of the wavelet, whereas

the HP filter is linked with the wavelet function. The outputs of

the LP filters and HP filters are denoted as the approximation

(a) coefficients and detail (d) coefficients, respectively. EEG time

signals can be completely divided into (a) and (d) coefficients

depending on the decomposition level. The analysis of different

statistical and non-statistical parameters over time and frequency

can be performed by applying the Wavelet Transform to EEG

signals. The subsets of the relevant coefficients of decomposition

levels are categorized based on the frequency domain of EEG

subbands for the extraction of EEG frequency bands. In this study,

the Wavelet packet decomposition-based EEG subband extraction

is used to calculate time-frequency features. TheMI EEG signals are

decomposed into seven decomposition levels. The approximation

ai and detail di coefficients were obtained for the decomposition

levels of i = 1, 2,..., 7 for 250 Hz sampling frequency.

The various Discrete Wavelet Transform functions (Haar, Db2,

Sym4, Coif1, Bior3.5, and Rbior2.8) can be used in Wavelet

Transform-based feature extraction. There are several types of

mother wavelets; therefore, determining a suitable mother wavelet

is an important step. In the study by Sayilgan et al. (2021a),

researchers conducted a study to define the effective wavelet

function in steady-state visual-evoked potential (SSVEP) signals.

The results of the study showed that the most successful wavelet

function was the Haar wavelet. Hence, in this study, the Haar

wavelet function was applied to the Wavelet packet decomposition

process. MI EEG signals are subdivided into frequency bands (δ, θ ,

α, β , and γ ) from ai and di coefficients. The energy, variance, and

entropy of these frequency bands are calculated as time-frequency

features. The energy of each decomposition level was computed

corresponding to the following equation (Gandhi et al., 2011):

Energydi =
N∑

j=1

|dij|2, i = 1, 2, 3, ..., l (4)

Energyai =
N∑

j=1

|aij|2, i = 1, 2, 3, ..., l (5)

In the equations, detail (di) and approximate (ai) coefficients

are used to supply subsets of each EEG frequency band (δ, θ , α, β ,

and γ ) from the decomposition tree. The (a) and (d) coefficients

of these frequency band subsets are denoted with dij and aij,

respectively. i = 1,2,3,l corresponds to the wavelet decomposition

level that takes value from 1 to l. The number of d and a coefficients

at each decomposition level is indicated with N.

By using the following equation, the entropy of each

decomposition level is calculated (Isler, 2009).

Entropyi =
N∑

j=1

dij
2log(dij

2), i = 1, 2, 3, ..., l (6)

The variance of each decomposition level is computed as

follows (Gandhi et al., 2011):

Variancei =
1

N − 1
·

N∑

j=1

(dij − µi)
2, i = 1, 2, 3, ..., l

µi =
1

N
·

N∑

j=1

dij, i = 1, 2, 3, ..., l (7)

Hence, µi expresses the mean of the decomposition level.

In the last feature extraction process, the non-linear parameters

are extracted in addition to the temporal, spectral, and time-

frequency features. MI EEG signals have non-linear dynamics in

their characteristics. In recent studies, Poincare plot measures were

commonly used as non-linear measures to analyze the different

EEG signals. It characterized the non-linear dynamics inherent in

the signal. The Poincare plot is a graph of each EEG sample (xi) on

the x-axis and the next EEG sample (xi+lag) on the y-axis (Isler,

2009). In the x and y axes, (xi) and (xi+lag) intervals are placed

to ensure the Poincare plot, respectively. The Poincare plot-based

feature extraction process is adopted for this study, considering

its favorable outcomes in the literature such as its simple visual

interpretation and proven clinical ability (Isler and Kuntalp, 2007;

Isler, 2009; Narin et al., 2014; Isler et al., 2019; Cancioglu et al.,

2021). These drawings are procured from raw MI EEG segment

data after defining (xi) and (xi+lag) intervals within EEG segments.

An ellipse is fitted to the Poincare plot graph, and the standard

deviation of the distance of the points on these plots indicates the

width (SD1) and length (SD2) of the ellipse (Brennan et al., 2001).

Poincare plot measures can be calculated as follows (Isler, 2009;

Isler and Kuntalp, 2009):

xi = (x0, x1, ...,XN−m) (8)

xi+lag = (xm, xm+1, ...,XN) (9)

xa =
xi+lag − xi√

2

xb =
xi+lag + xi√

2
(10)

SD1 = SD(xa)

SD2 = SD(xb) (11)

where xi and xi+lag represent the EEG segment data and the

next EEG data interval in the Equations (8) and (9), respectively.

With respect to defined intervals, SD1 and SD2 measurements

were calculated utilizing Equations (10) and (11). SD indicates
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the standard deviation of the extracted time interval vectors in

Equation (11). The m-lagged Poincare plot measurements were

conducted to define different intervals. SD1 and SD2 measurements

are calculated considering lag=m and m was set as 1 and 9 for this

study. In this study, Poincare plot measures for lag=9 were also

calculated due to the positive effect on MI EEG signal classification

(Degirmenci et al., 2022a). In our previous study (Degirmenci

et al., 2022a), we investigated the performances of different feature

vectors which were extracted from 10 lag values and the feature

vector which is the combination of these vectors, separately. The

results demonstrated that the most discriminative and effective

feature set is the ninth feature vector that includes the features

extracted when the lag value is defined as 9. The values of (SD1)

and (SD2), for which we determined the m values as 1 and 9, were

calculated. In addition, in addition to (SD1) and (SD2) calculations,

the products (SD1SD2) and the rates (SD1/SD2) are calculated to

investigate the relationships between these components. A total of

four non-linear features were extracted for lag=1 condition. In our

Poincare plot process, eight non-linear features were extracted from

lag=1 and lag=9 conditions for each EEG segment.

3.3. Statistical significance-based feature
selection

The feature selection process aims to determine the relevant

and effective features that will supply the highest discrimination

between the classes of interest and also can minimize the

complexity of classifiers (Isler et al., 2023). In this study,

the statistical significance-based feature selection is applied to

indicate the most effective combination of temporal, spectral,

time-frequency, and non-linear features which provides the best

discrimination of the MI tasks (Narin et al., 2014; Sayilgan et al.,

2021b; Degirmenci et al., 2022b). This statistical significance-

based feature selection approach is applied for each MI EEG

feature set separately. In this study, two different classification

models, which are binary and multi-class MI task classifications,

are studied. Hence, two different types of statistical significance-

based feature selection were used, i.e., the independent t-test and

one-way analysis of variance (ANOVA test). The selected tests

were determined considering the class number of the classification

models. In binary classification, the independent t-test, which is

commonly applied to define the significance of differences between

measures of two different classes, is used for feature selection (Narin

et al., 2014; Degirmenci et al., 2022c). In multi-class classification,

the ANOVA test is adopted for feature selection (Bulut et al.,

2022; Degirmenci et al., 2022b). ANOVA is a test applied when

it is required to determine whether there is a difference between

the means in conditions where there are two or more groups.

Thus, the effects of the independent t-test and ANOVA test-based

feature selectionmethods were investigated with temporal, spectral,

time-frequency, and non-linear features. The statistical significance

of every MI EEG feature were defined by calculating p-values.

The statistical significances are measured based on the statistical

significance level (α) equal to 0.05. A total of two feature sets

containing the features that provide the statistical evidence range

were obtained after the significant features were determined using

the feature selection models (the independent t-test and ANOVA)

for both two classification models. These selected feature vectors

were given to the classification algorithms as input data to predict

the MI tasks.

3.4. Classification

In this study, the MI EEG features described in the previous

feature extraction section are used to predict MI tasks of EEG

segments. We also compare the performance of the binary (RH

and LH) and multi-task (RH, LH, F, and T) classifications using

extracted features from temporal, spectral, time-frequency, and

non-linear methods. The different versions of six different basic

classifiers are computed to classify the extracted features (Hart

et al., 2000). Hence, 24 different classification methods are tested

considering the different sub-parameters of 6 classifier algorithms

(Sayilgan et al., 2021a; Degirmenci et al., 2022a). The set of

classifiers contains decision trees (fine, medium, and coarse),

discriminant analysis (linear, quadratic), Naive Bayes (Gaussian,

Kernel), support vector machine (linear, quadratic, cubic, fine

Gaussian, medium Gaussian, and coarse Gaussian), k-NN (fine,

medium, coarse, cubic, cosine, and weighted), and ensemble

learning (boosted, bagged, subspace discriminant, subspace k-

NN, and RUSBoosted Trees) algorithms. All these classification

algorithms with different sub-parameters are available in the

“Classification Learner” application of Matlab. Additionally, the

logistic regression algorithm is tested for binary classification

(Degirmenci et al., 2022c).

3.4.1. Decisions trees
The decision tree is a machine learning algorithm that can

divide the data into several different sub-groups and can also be

utilized for classification outside of the regression process. The

characteristic tree-like structure of this algorithm which includes

branches and nodes gives the name of the algorithm (Tzallas et al.,

2009). The training process is carried out based on learning a set of

decision rules. A leaf node is created when the decision is made,

whereas a decision node which is another branch is generated

when the decision is not definite (Cura and Akan, 2021). In the

decision tree-based classification process, the fine, medium, and

coarse algorithms are used for this study.

3.4.2. Discriminant analysis
The discriminant analysis classifier is one of the pattern

recognition methods, and its main purpose is to correctly divide

the independent variables in the data into homogeneous groups.

In this study, the classification is carried out using both linear

and quadratic algorithms from the discriminant analysis. Linear

discriminant analysis from these classifiers determines the group

elements and calculates the probability that each element belongs to

different groups. Then, the element is assigned to the groupwith the

highest probability score. Linear discriminant analysis assumes that

the predictors are normally distributed (Gaussian distribution). It

also creates a linear discrimination function that assumes different

classes have class-specific elements and equal variance/covariance.
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Unlike the linear discriminant analysis algorithm, in the quadratic

discriminant analysis algorithm, variance/covariance equality is

not accepted. The covariance matrix for quadratic discriminant

analysis may be different for each class category. Hence, it

configures the discriminant function to be quadratic (Hart et al.,

2000; Lotte et al., 2018).

3.4.3. Naive Bayes
Naive Bayes is a classifier algorithm that utilizes Bayes’ theorem

based on probability which is connected to the relationship between

marginal and conditional probabilities (Hart et al., 2000). In the

working principle of the algorithm, all features are regarded to be

independent, and this is also the reason for using the name “Naive”.

However, all features have the same effect value on classification,

which means each of the features has an equal weight in the

training (Tzallas et al., 2009). It is the mostly preferred algorithm

in machine learning approaches due to its simple calculation

mechanism created by the non-realistic approach (Cura and Akan,

2021; Sayilgan et al., 2021a; Degirmenci et al., 2022b). The Gaussian

and Kernel algorithms of this Naive Bayes classifier were computed

for this study.

3.4.4. Support vector machine
Support vector machine is a well-known supervised learning

algorithm, which is a non-probabilistic approach that uses the

geometric characteristics of input data. It is mostly used in

both classification and regression studies. N dimensional space is

created utilizing the elements of the coordinate systems. These

elements consist of the data including n features. The decision

boundaries, which are named “hyperplane”, are generated to

discriminate the input data into different classes. Although many

hyperplanes can be defined to categorize the different classes in

the process, the optimum hyperplane that separates the different

classes best is selected to provide a more accurate classification.

The distance between the “support vectors” that belong to different

class categories is defined as the “margin”. In this algorithm, the

maximum margin is a critical parameter. The data placed on

different parts of the hyperplane are indicated as a component of a

different class (Vapnik, 1999; Hart et al., 2000; Lotte et al., 2018). All

different types of support vector machine classifiers were computed

in this study, i.e., linear, quadratic, cubic, fine Gaussian, medium

Gaussian, and coarse Gaussian algorithms.

3.4.5. K-nearest neighbors (KNN)
KNN is a successful machine learning algorithm that is

mostly preferred in classification and regression processes. The

learning process is carried out based on the data in this algorithm

(Isler et al., 2023). As a first step, the distance between the

sample to be predicted and all input data in the training set is

calculated. Among the k-nearest neighbors, those which provide

the minimum distance are determined. Then, the class of the new

sample is indicated as the most common class among these k-

Nearest Neighbors (Isler, 2009; Tzallas et al., 2009). The distance

calculation can be performed using different distance measurement

methods such as Euclidean, Manhattan, Minkowski, and Hamming

(Hart et al., 2000). In this study, fine, medium, coarse, cubic, cosine,

and weighted algorithms of the k-NN classifier were executed.

“Euclidean” distance measurement method is one of the most

selected distance calculation methods (Isler, 2009; Cura and Akan,

2021). Hence, it was selected and adopted for the execution of

fine, medium, coarse, and weighted algorithms in this study.

Additionally, “cubic” and “cosine” distance metrics were used in

cubic and cosine algorithms, respectively.

3.4.6. Logistic regression
The basic concept of logistic regression is the modeling of

the probability of an event. The probability value is defined as

a continuous variable, and two different outputs are available

in logistic regression-based classifications. Hence, this algorithm

can be used for binary classification studies. In the process, the

logistic function which is also defined as the sigmoid function is

fitted to the input data utilizing probability (Tzallas et al., 2009).

The logistic regression algorithm projects the data points based

on a line and all log-odd values evaluated. These log-odd values

which are considered inputs are converted to probability values.

These calculated probability values are defined as outputs of the

algorithm. Hence, the sigmoid function is fitted using this input–

output transformation. The different line rotations are tested by

calculating, logging, and summing conditional probabilities for all

steps. Then, the best fitting function which obtained the maximum

probability is evaluated (Alkan et al., 2005).

3.4.7. Ensemble learning
Ensemble learning is a meta-algorithm that combines multiple

machine learning techniques into a single prediction model

(classifier) to reduce variance (bagging), bias (boosting), and/or

improve predictions by preventing the overfitting problem. This

algorithm generally assumes that a single classifier cannot achieve

certain and precise classification accuracy due to possible noise,

overlapping data distributions, and outliers in the data. Hence,

this algorithm supposes that there is no single model (classifier)

that works best for every classification problem (Sayilgan et al.,

2021b). Consequently, recently, ensemble learning methods have

become frequently preferred classification algorithms in the recent

literature. In this study, the algorithms of Boosted, Bagged,

Subspace Discriminant, Subspace k-NN, and RUSBoosted Trees

which are developed under ensemble learning classifiers are tested

since they have been implemented in Matlab already.

3.5. Performance evaluation metrics

In the performance evaluation of classification results, the

reel label of MI EEG segments was compared with the predicted

label assigned by classifier algorithms. The MI tasks classification

results of the classifiers are calculated using true positive (TP), true

negative (TN), false positive (FP), and false negative (FN). These

values are calculated from the confusion matrix, and they are used

to calculate accuracy (ACC) performance metric.

On the other hand, the k-fold cross-validation (CV) method is

computed to evaluate classifier performance. k-fold CV randomly
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separated the extracted feature set as k different folds with equal

sizes. Among these folds, the (k-1) fold is used as training data,

and the remaining one-fold is used as test/validation data. In each

classification, this process is repeated k times, and accuracy values

are calculated for each iteration. At the end of the k iterations,

the average accuracy value of the classification is calculated.

In this study, the k value is chosen as 5 to apply the k-fold

CV method. Additionally, 10 repeated tests were performed to

check the repeatability of classification results. The mathematical

formulas of performance metric computed to evaluate the classifier

performance are expressed in the following equations (Hart et al.,

2000; Isler, 2009; Degirmenci et al., 2021):

ACC (%) =
TP + TN

TP + TN + FP + FN
× 100 (12)

Here, while the number of data that actually belongs to a class

and is marked to the same class by the classifier is expressed as TP,

the number of data incorrectly marked to a different class is also

expressed as FN. However, the number of data that actually belongs

to a different class and is marked to a different class by the classifier

is expressed as TN, and the number of data incorrectly marked to

the same class is expressed as FP.

4. Results

In this study, we aim to classify MI tasks of EEG segments using

all extracted features and statistically significance-based selected

features only. As the implementation details of this study, the

segmentation of EEG signals, feature extraction, and classification

steps in the study was performed in MATLAB application. In the

feature selection process, the software package “IBM SPSS Statistics

25”, which is generally used in statistical analysis, was used to

perform the independent t-test for the 2-class task and the ANOVA

test for the multiple-class task. The p-values which define the

statistical significance are also found using this software program.

EEG signals are supplied from BCI Competition IV Dataset IIa

in this study. MI EEG segments are extracted for 22-channel EEG

recordings of 9 subjects. The feature set is calculated from temporal,

spectral, time-frequency, and non-linear methods. In the time

domain, 24 different features were extracted from 22 EEG channels

for each MI EEG task sample. Hence, a total of 528 temporal

features were supplied for each sample. The detailed description of

528 temporal features is “(number of EEG channels)× (number of

features)”. The spectral features, energy, entropy, and variance of

EEG sub-frequency bands (δ, θ , α, β , and γ ) were calculated using

fast Fourier transform-based frequency band extraction. These

spectral features were extracted from 22 EEG channels for each

MI EEG task sample. Hence, a total of 330 spectral features were

supplied for each sample. In the time-frequency domain, energy,

entropy, and variance of EEG sub-frequency bands (δ, θ , α, β , and

γ ) were calculated usingWavelet Transform-based frequency band

extraction. These time-frequency features were calculated from 22

EEG channels for each MI EEG task sample. Then, a total of

330 spectral features were supplied for each sample. The detailed

description for both 330 spectral and 330 time-frequency features

is “(number of EEG channels) × (number of frequency subbands)

× (number of features)”. As non-linear features, the values of (SD1)

and (SD2), the product (SD1xSD2), and the ratio (SD1/SD2) were

calculated from 22 EEG channels for eachMI EEG task sample. The

non-linear features were calculated for 2 different lag conditions,

and a total of 176 non-linear features were supplied for each sample

in the assumption of both lag=1 and lag=9. The detailed description

for 176 non-linear features is “(number of lag conditions) ×
(number of EEG channels) × (number of features)”. The “(2592

× 1364)” feature vector which includes 2,592 samples and 1,364

features was supplied for multi-task classification at the end of the

feature extraction process for all subjects. The “(1296 × 1364)”

feature vector which includes 1,296 samples and 1,364 features was

supplied for binary classification at the end of the feature extraction

process for all subjects. In addition to the feature extraction process,

we also aimed to investigate the effectiveness of the statistical

significance-based feature selection method for both multi-task

and binary classification. The statistically significant features were

defined based on the statistical significance level using the ANOVA

test and independent t-test for multi-task and binary classification

processes, respectively. The results of ANOVA-based statistical

analysis show that 673 out of 1,364 features yielded a significant

p-value for multi-task classification. The independent t-test-based

statistical analysis showed that 91 out of 1,364 features yielded

a significant p-value for binary classification. The extracted and

selected feature sets were given to the classifier algorithms using

five-fold cross-validation to predict theMI tasks of samples. Finally,

various classifiers such as decision tree, discriminant analysis, Naive

Bayes, support vector machine, k-NN, logistic regression, and

ensemble learning were utilized for the classification. The results

of each classifier algorithm were evaluated based on the 10 repeated

tests. Then, the average accuracy values of these repeated tests were

evaluated for each classification process.

Tables 1, 2 show the accuracy-based performance evaluation

results of the study. In the tables, the highest classification result

for the related component is indicated with boldface numbers. The

performance evaluation of the binary classification is presented in

Table 1. In the table, “1st Task” indicates that the classifications

were performed using the feature set combining the time-domain,

frequency-domain, time-frequency domain features, and non-

linear parameters. On the other hand, “2nd Task” denotes that

classifications were performed using the selected feature set by

a statistically significant (the independent t-test) based feature

selection method. Among all 1st task classifications, the highest

average accuracy value of 57.30% is achieved using the ensemble

boosted trees algorithm and all features. In the 1st task, there

are N/A results among classification results due to the fact that

the prepared feature set does not provide suitable parameters for

the structure of the classifier. In addition, the highest average

accuracy value of 61.86% is achieved using the ensemble subspace

discriminant algorithm and selected features by the independent

t-test among all 2nd task classifications.

To investigate the effect of the study on the four-task

classification task, the feature set is prepared to extract the same

features from EEG signals. Additionally, the significant features are

determined using the statistical significance (ANOVA test)-based

feature selection method, and the selected feature set is obtained.
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The four-task classification performance results are presented

in Table 2. As the previous table, “1st Task” indicates that the

classifications are performed using the feature set by combining the

time-domain, frequency-domain, time-frequency domain features,

and non-linear parameters. On the other hand, the “2nd Task”

indicates that the classifications are performed using the selected

feature set by statistical significance (ANOVA test)-based feature

selection method. The highest classification average accuracy value

of 35.60% is obtained using ensemble boosted trees among all 1st

task classifications. On the other hand, the highest classification

average accuracy value of 47.36% is obtained with the ensemble

subspace discriminant algorithm among all 2nd Task classifications.

In addition to accuracy-based performance evaluations, the

sensitivity and specificity values were also calculated for only

ensemble subspace discriminant algorithm-based classification

since it provides the highest average accuracy value for both the

binary and four-task classifications. These results are presented in

Table 3. SEN and SPE values are calculated as 47.61% and 82.54%

for the four-task classification in the 2nd Task, respectively. On

the other hand, for the binary MI task classification, 65.28% SEN

and 58.49% SPE values are calculated with the ensemble subspace

discriminant classifier in the 2nd Task.

5. Discussion

In this study, we introduced a multi-directional handcrafted

feature extraction-based approach for the representation and

classification of multi-channel MI EEG signals. In the study,

temporal features, spectral features, time-frequency features, and

non-linear parameters of EEG signals are extracted. In addition, the

effect of the statistical significance-based feature selection method

is investigated to indicate significant and effective features from

extracted feature set which includes the combination of various

MI EEG features. The binary and multi-task classification studies

were performed with the same feature extraction approach. In these

studies, two different scenarios are available. “1st Task” denotes the

classifications of the feature set that includes all features. “2nd Task”

denotes the classifications of the selected feature set that includes

statistically significant features. The extracted and selected feature

sets are classified using 24 different classifier algorithms. In the

binary classification process, logistic regression is also used. The

accuracy, sensitivity, and specificity-based performance evaluations

are performed to analyze the classifier performances implemented

in this study.

In the binary classification task, classification could not be

performed in 9 of all classifiers, and the highest average accuracy

among the remaining classifications was achieved with ensemble

boosted trees for the 1st task. On the other hand, for the 2nd

task, it was possible to classify with all classifiers and the highest

average accuracy value was obtained with the ensemble subspace

discriminant algorithm. Moreover, the aim of the study included

the investigation of statical significance-based feature selection

in binary classification. To investigate the effectiveness of the

independent t-test-based feature selection approach, 1st and 2nd

scenarios of Table 1 are compared. It was observed that the feature

selection method based on the independent t-test increased the

performance in 13 classifiers, decreased the performance in 2

TABLE 1 Binary classification performance of the time-domain,

frequency-domain, time-frequency domain, and non-linear features and

the e�ectiveness of the independent t-test-based feature selection.

Classifier algorithms Classifier accuracies (%)

1st Task 2nd Task

Fine Tree 54.10 56.50

Medium Tree 56.10 55.20

Coarse Tree 56.60 55.90

Linear Discriminant Analysis N/A 52.10

Quadratic Discriminant N/A 52.00

Logistic Regression N/A 51.10

Gaussian Naive Bayes 48.20 57.10

Kernel Naive Bayes 48.50 55.70

Linear Support Vector Machine N/A 51.40

Quadratic Support Vector Machine N/A 51.10

Cubic Support Vector Machine N/A 50.70

Fine Gaussian Support Vector Machine N/A 49.40

Medium Gaussian Support Vector Machine N/A 51.20

Coarse Gaussian Support Vector Machine N/A 51.20

Fine K-Nearest Neighbors 49.80 50.20

Medium K-Nearest Neighbors 49.80 50.30

Coarse K-Nearest Neighbors 49.80 49.80

Cosine K-Nearest Neighbors 49.80 50.40

Cubic K-Nearest Neighbors 49.80 50.70

Weighted K-Nearest Neighbors 49.80 50.80

Ensemble Boosted Trees 57.30 58.40

Ensemble Bagged Trees 53.14 55.91

Ensemble Subspace Discriminant 51.94 61.86

Ensemble Subspace K-Nearest Neighbors 50.28 50.69

Ensemble RUSBoosted Trees 55.84 56.32

The 1st task indicates that all features are used, and the 2nd task shows that only t-test-

selected features are used in the classifier inputs. Bold values indicate the maximum classifier

performances for the given task.

classifiers, and did not change the performance in 1 of them.

We should note that considering the significant improvement

in classifier performances, the independent t-test-based feature

selection may be used as an effective feature extraction approach

for binary classification studies.

In multi-task classification approaches for the 1st task,

two algorithms from all classifiers could not be used for the

classification of MI tasks, and the ensemble boosted trees

algorithm yielded the highest average accuracy value among the

remaining classifiers. In the 2nd Task, all classifiers were used

for classification, and the highest average accuracy value was

acquired with the ensemble subspace discriminant algorithms.

ANOVA test-based feature selection process was performed to

predict statistically significant features. Hence, the 1st and 2nd

tasks of Table 2 are compared to determine the effectiveness of this
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TABLE 2 Multi-task classification performance of the time-domain,

frequency-domain, time-frequency domain, and non-linear features and

the e�ectiveness of the independent t-test-based feature selection.

Classifier algorithms Classifier accuracies (%)

1st Task 2nd Task

Fine Tree 31.80 32.51

Medium Tree 34.50 34.50

Coarse Tree 33.10 33.61

Linear Discriminant Analysis N/A 27.31

Quadratic Discriminant N/A 25.73

Gaussian Naive Bayes 27.90 29.09

Kernel Naive Bayes 27.30 29.43

Linear Support Vector Machine 25.00 27.42

Quadratic Support Vector Machine 25.00 27.09

Cubic Support Vector Machine 25.00 27.00

Fine Gaussian Support Vector Machine 25.00 26.20

Medium Gaussian Support Vector Machine 25.00 26.78

Coarse Gaussian Support Vector Machine 25.00 26.85

Fine K-Nearest Neighbors 24.90 25.65

Medium K-Nearest Neighbors 24.90 25.80

Coarse K-Nearest Neighbors 24.90 25.68

Cosine K-Nearest Neighbors 24.90 26.21

Cubic K-Nearest Neighbors 24.90 25.67

Weighted K-Nearest Neighbors 24.90 26.00

Ensemble Boosted Trees 35.60 36.41

Ensemble Bagged Trees 32.83 35.28

Ensemble Subspace Discriminant 27.14 47.36

Ensemble Subspace K-Nearest Neighbors 25.28 28.48

Ensemble RUSBoosted Trees 34.92 34.77

The 1st task indicates that all features are used, and the 2nd task shows that only ANOVA-

selected features are used in the classifier inputs. Bold values indicate the maximum classifier

performances for the given task.

statistical significance-based feature selection process on multiple

MI task classification. According to Table 2, the classification was

performed using ANOVA test selected features for two classifiers.

It was observed that the feature selection method based on the

ANOVA test increased the performance in 20 classifiers, decreased

the performance in 1 classifier, and did not change the performance

in 1 of them. Hence, the ANOVA test-based dimensionality

reduction of EEG features approach is an effective feature selection

method that provides a significant improvement in classifier

performances for multiple MI task classification studies. In binary

and multiple MI task classification, experimental results revealed

that the selected statistically significant features introduced in this

study outperform the results achieved using all EEG features.

In Table 3, we summarize some of the previous binary

and multiple MI task classification studies and compare their

performances with the performance of the study. The details of

the studies including dataset, channel selection, feature extraction

approaches, feature selection method, classes (binary or multiple),

classifier algorithms, and classification performances based on the

various metrics (ACC, SEN, and SPE) are given in Table 3 for

effective comparison of these studies. In the study by Degirmenci

et al. (2022b), the multiple (left hand, right hand, feet, and tongue)

tasks were tried to be differentiated using 24 different time-

domain features which were extracted from 22 channel EEG signals.

On the other hand, the effectiveness of ANOVA-based feature

selection was investigated, and the highest average accuracy was

calculated as 44.30% using only statistically significant features.

Each introduced feature extraction method of EEG signals is a

factor that plays a significant role in the classification success of

the study. In our study, the frequency domain, time-frequency

domain, and non-linear parameters are also introduced, and these

features provide higher success rates than that of their study.

In the study by Degirmenci et al. (2022c), the independent t-

test-based feature selection approach was performed using time-

domain and frequency-domain features. All EEG channels of the

BCI Competition IV Dataset-IIa were used for binary classification,

and the highest average accuracy value of 62.52% was obtained.

Their results revealed that the independent t-test-based feature

selection process of that study generally improves the classifier

performances. They reported higher average accuracy values than

the ones in our study, but in their study, they did not use the time-

frequency domain and non-linear features. In another study, Lu

et al. (2020) used BCI Competition IV Dataset-IIa, and Wavelet

packet decomposition-based binary classification was adopted. The

accuracy value of 68.32% was achieved with the random forest

classifier algorithm, and the reported value is higher than our

binary classification results. However, in that study, both channel

selection (C3 and C4) and DFSS-based feature selection processes

were conducted. Since the feature selection provides the important

features among all features from all EEG channels, a channel

selection process is not adopted in our study. In the study by

Kato et al. (2020), five finger movements are predicted using 21

EEG channels of the MISCP dataset. Multi-class common spatial

pattern-based features were differentiated using support vector

machine, and an accuracy value of 40.60% was achieved. Although

more EEG channels were evaluated, the reported accuracy value

was lower. If they adopted a feature selection algorithm for their

study, theymight reach a higher classifier performance. In addition,

as the number of classes to be classified increases, the success

of multi-task classifications remains at lower levels compared

to the binary classification as in that study and our study. In

another study, Sakhavi et al. (2015), filter-bank common spatial

patterns and energy-based features are extracted using 22 EEG

channels of BCI Competition IV Dataset-IIa. Then, convolutional

neural networks were used to classify four different MI tasks,

and an accuracy value of 70.60% was achieved. The reported

classification result was higher than the accuracy achieved in our

study. Although convolutional neural network-based approaches

might increase the classification success, the training time generates

a high computational load for the designed system. However,

the computational complexity of our feature extraction, feature

selection, and classification processes is lower than in convolutional

neural network-based studies. In the study by Garcia-Laencina et al.

(2014), a feature extraction process including band power features,
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TABLE 3 Comparison of various multi-class and binary Motor Imagery task classification studies with the results of the study.

Study Channels Classes Classifier ACC (%)

Degirmenci et al. (2022b) 22 4 Linear Discriminant Analysis 44.00

Degirmenci et al. (2022c) 22 2 Ensemble Subspace Discriminant 62.52

Lu et al. (2020) 2 2 Random Forests 68.32

Kato et al. (2020) 21 5 Support Vector Machines 40.60

Sakhavi et al. (2015) 22 4 Convolutional Neural Network 70.60

Garcia-Laencina et al. (2014) 2 5 Linear Discriminant Analysis 77.30

Jusas and Samuvel (2019) 8 4 Support Vector Machines 56.00

Nguyen et al. (2018) 22 4 Fuzzy Logic System 65.00

Lindig-Leon and Bougrain (2015) 26 4 Linear Discriminant Analysis 51.67

Ma et al. (2018) 64 5 Recurrent Neural Networks 68.20

Xu et al. (2019) 3 2 Convolutional Neural Network 74.20

Zhao et al. (2019) 22 2 Convolutional Neural Network 69.00

Lee et al. (2019) 64 4 Linear Discriminant Analysis 58.20

This study 22 4 Ensemble Subspace Discriminant 47.36

This study 22 2 Ensemble Subspace Discriminant 61.86

ACC is the highest accuracy achieved in the cited paper. In the list, Kato et al. (2020) used the MISCP dataset, Ma et al. (2018) used EEG Movement/Imagery Database (eegmmidb) dataset,

Garcia-Laencina et al. (2014) used 5 different BCI-EEG datasets together, Lindig-Leon and Bougrain (2015) and Lee et al. (2019) used their own datasets, Xu et al. (2019) used the BCI

Competition IV Dataset-IIb dataset, and other studies used BCI Competition IV Dataset-IIa dataset.

Hjorth parameters, and adaptive auto-regressive coefficients is

presented using five BCI-EEG datasets. Local Fisher discriminant

analysis is applied for feature selection. Five-finger movements

are classified using the linear discriminant analysis algorithm with

an accuracy of 77.30%. The reported accuracy value is higher

than the accuracy in our study, but the channel reduction process

is conducted in addition to the feature selection, and only C3

and C4 channels are evaluated for their proposed methods. In

another study by Jusas and Samuvel (2019), the channel reduction

and feature selection processes were conducted, and the authors

performed an analysis with 8 EEG channels by applying channel

selection and also used the PCA-based feature selection process.

PCA-based selected fast Fourier transform and channel variance

features of EEG signals are classified with an accuracy of 56.00%

using the least squares support vector machine. In the study by

Nguyen et al. (2018), common spatial patterns and in the study

by Lindig-Leon and Bougrain (2015) common spatial patterns and

band power feature extraction methods were applied to classify

multiple tasks, achieving higher classification performances than

the accuracy in our study. Although more EEG channels are

evaluated, only the spatial features are considered, and time domain

features, time-frequency domain features, and non-linear features

were not included in their feature extraction process. Although

common spatial pattern-based feature selection was applied, which

is known to have a positive effect on MI task classification

performance success, the performance is still not at very high

levels for these studies. In another study by Ma et al. (2018),

the sliding window method and transposed matrix were used to

represent 64-channel EEG signals. They used EEG signals from

Movement/Imagery Database (eegmmidb) for the prediction of

five classes, and these classes were eye closed (baseline), and tasks

imagining moving both feet, both fists, left fist, and right fist. The

accuracy value of 68.20% is yielded with recurrent neural networks.

The classification accuracy is higher than the accuracy achieved in

our multi-task classification task. On the other hand, such deep

learning approaches have more computational complexity than

our study since they combine feature selection and classification

processes. In a binary task classification study by Xu et al. (2019),

the time-frequency representations of EEG signals are obtained

using the short-time Fourier transform method, and 2D EEG

images are given to convolutional neural network structure for

classification. The accuracy value of 74.20% is calculated by their

proposed approach. Although the success of the study appears

to be higher than our study, the computational complexity due

to image transformation of EEG signals and convolutional neural

network-based classification should not be ignored. In addition

to computational load, less number of channels (C3, Cz, and C4)

are only evaluated. Considering the high performance of deep

learning approaches and the effectiveness of channel reduction

on performance, better classification results could be achieved. In

another binary classification study by Zhao et al. (2019), Wavelet

Transform and convolutional neural network-based approach

using 22 EEG channels of BCI Competition IV Dataset-IIa are

introduced. The classification result showed that the accuracy value

is calculated as 69.00%. As in the previous study, there is no

significant performance improvement considering the advantages

and drawbacks of convolutional neural network-based approaches,

despite the occurred additional computational complexity. In

the study by Lee et al. (2019), time-domain parameters are

extracted from 64 EEG channels, and a private dataset is used.

Four different tasks which are Grasp, Spread, Pronation, and

Supination are differentiated with an accuracy of 58.20% using the
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shrinkage-regularized linear discriminant analysis algorithm. They

used more EEG channels and different multiple-task categories,

but only temporal features were extracted as EEG features, and the

other feature extraction categories were ignored.

Considering the contributions, benefits, and drawbacks of these

binary and multiple-task classification studies, some parameters

play important roles in the MI task classification process. These are

dataset, number of channels, channel selection, feature extraction

methods, feature selection methods, classifier algorithms, and

number of classes. Themain drawback is computational complexity

due to feature extraction methods and the classification process

of EEG signals. In EEG signal processing, the basic goal is to

achieve high-performance values using all channels of EEG signals.

Another important aspect is adopting an effective feature selection

method that indicates the relevant and discriminative MI EEG

features and improves the classifiers’ performance. The statistically

significant feature-based approach we used in the study, which

has computational advantages, resulted in an accuracy of 61.86

and 47.36% for binary classification and four-task classification,

respectively. In addition, 22 channels of EEG signals are evaluated

for process, and different feature categories which are time-domain,

frequency-domain, time-frequency domain, and non-linear are

used for feature extraction. The classification results indicate that

the statistically significance-based feature selection process is an

effective feature selection method that generally improves classifier

performances. Therefore, the encouraging performance results of

this study with the computational advantages demonstrate that the

statistically significant feature-based approach may be applied to

other EEG-based studies.

6. Conclusion

Decoding ofMI tasks has an important role to provide a reliable

and convenient way of information interaction for paralyzed

patients to control external devices. EEG signals are commonly

used in the classification of MI tasks due to ease of recording and

low cost. However, the monitoring and analysis of long-term EEG

signals are time-consuming and not reliable because of changes in

the experiences of experts. Hence, the selection of effective signal

processing and classification approaches plays an important role in

the accurate analysis of MI EEG signals.

In this study, we extracted features using time-domain,

frequency-domain, time-frequency domain features, and non-

linear methods. In addition, the effectiveness of the statistically

significance-based feature selection method is investigated. The

statistically significant MI EEG features are determined using

statistical significance (ANOVA test and independent t-test)-based

feature selection for four tasks and binary task classifications.

The results showed that the ensemble learning classifiers (boosted

trees and subspace discriminant algorithms) yielded the maximum

classifier performance in four tasks and binary task classifications.

Ensemble subspace discriminant algorithm yielded accuracy

values of 47.36 and 61.86% using the selected feature set

including statistically significant MI EEG features for four-task

and binary task classifications, respectively. The main contribution

of this study is the implementation of Poincare plot measures

based on non-linear features to commonly use time-domain,

frequency-domain, and time-frequency domain features. In our

experiments, we observed that the ANOVA test-based and

the independent t-test-based feature selection processes provide

significant improvements in classifiers’ performance. Hence, the

statistically significance-based selection is a practical feature

selection method and may be used to analyze different EEG

signal-based studies. Additionally, this study has the advantage

of low computational complexity in terms of feature extraction,

feature selection, and classification approaches. Therefore, the

statistically significant time-domain, frequency-domain, time-

frequency domain features, and non-linear parameters are

presented as the novel effective features in this study and

successfully implemented to predict binary and multiple MI tasks.
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