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Introduction: Brain-computer interfaces (BCIs) are systems that acquire the

brain’s electrical activity and provide control of external devices. Since

electroencephalography (EEG) is the simplest non-invasive method to capture

the brain’s electrical activity, EEG-based BCIs are very popular designs. Aside

from classifying the extremity movements, recent BCI studies have focused

on the accurate coding of the finger movements on the same hand through

their classification by employing machine learning techniques. State-of-the-art

studies were interested in coding five fingermovements by neglecting the brain’s

idle case (i.e., the state that brain is not performing any mental tasks). This may

easily cause more false positives and degrade the classification performances

dramatically, thus, the performance of BCIs. This study aims to propose a more

realistic system to decode the movements of five fingers and the no mental task

(NoMT) case from EEG signals.

Methods: In this study, a novel praxis for feature extraction is utilized.

Using Proper Rotational Components (PRCs) computed through Intrinsic

Time Scale Decomposition (ITD), which has been successfully applied in

di�erent biomedical signals recently, features for classification are extracted.

Subsequently, these features were applied to the inputs of well-known classifiers

and their di�erent implementations to discriminate between these six classes.

The highest classifier performances obtained in both subject-independent and

subject-dependent cases were reported. In addition, the ANOVA-based feature

selection was examined to determine whether statistically significant features

have an impact on the classifier performances or not.

Results: As a result, the Ensemble Learning classifier achieved the highest

accuracy of 55.0% among the tested classifiers, and ANOVA-based feature

selection increases the performance of classifiers on five-finger movement

determination in EEG-based BCI systems.

Discussion: When compared with similar studies, proposed praxis achieved a

modest yet significant improvement in classification performance although the

number of classes was incremented by one (i.e., NoMT).

KEYWORDS

brain-computer interfaces (BCIs), electroencephalogram (EEG), feature reduction,

machine learning, finger movements (FM) classification, intrinsic time-scale

decomposition (ITD)

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2024.1362135
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2024.1362135&domain=pdf&date_stamp=2024-03-05
mailto:islerya@yahoo.com
https://doi.org/10.3389/fnhum.2024.1362135
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2024.1362135/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Degirmenci et al. 10.3389/fnhum.2024.1362135

1 Introduction

Neuroimaging covers various direct and indirect techniques

used to visualize both the structure and the function of the

nervous system. These methods include MR (Magnetic Resonance

Imaging), CT (Computed Tomography), PET (Positron Emission

Tomography), and EEG (electroencephalography). Among them,

aside from being non-invasive, EEG retains some advantages over

others such as high temporal resolution, easy accessibility, and

low cost. Since EEG can capture brain activity in real-time in

millisecond precision, it has become popular in neuroscience

research, clinical diagnostics, and BCI (Brain-Computer Interface)

systems. BCIs translate neural signals into commands for

controlling external devices through software applications. In

recent developments, researchers have delved into analyzing EEG

patterns linked to particular finger movements. BCIs engineered to

decipher these patterns offer the prospect of individuals operating

external devices or interfaces solely through brain activity,

eliminating the necessity for physical muscle movements. This

advancement holds immense promise in crafting prosthetic hands

capable of individual finger control, managing numerous devices,

facilitating neurorehabilitation, and extending into applications

within gaming and entertainment industries (Aricò et al., 2018).

In the following subsections, after a literature review on both

brain-computer interfaces and state-of-the-art finger movement

classification studies, we mentioned our aim, our contributions

to the literature, and the structural organization of this article,

respectively.

1.1 Brain-computer interfaces

BCIs are computer-assisted systems that record the brain’s

electrical signals based on different brain monitoring techniques,

analyze the signals on the interface, and convert them to

specific commands to control external devices such as computers,

wheelchairs, and prostheses without any physical movement

(Belkacem et al., 2020). Consequently, BCI technology can help

people suffering from various motor disabilities such as stroke

patients to communicate with the outside, and indirectly perform

motor function (Wolpaw et al., 2002). Among several different

neuroimaging modalities, Electroencephalography (EEG) is widely

used to capture brain activities. It is preferred for designing BCI

systems due to the fact that EEG has many advantages such as

its high temporal resolution, non-invasiveness, easy operation,

relatively low cost, and portability (Vidal, 1977; Chen et al., 2015).

EEG-based BCI systems that manipulated motor imagery

signals generated through the movements of large body parts

such as hands, feet, and tongue have been proposed to control

assistive devices throughout the past several decades (Pfurtscheller

and Neuper, 2001; Alazrai et al., 2019; Degirmenci et al., 2023).

However, such systems propose only limited control dimensions for

prosthetic devices, thereby, the potential of utilizing these systems

to control further complex assistive devices is restricted (Sciaraffa

et al., 2022). In the last decade, numerous research studies have

examined the decoding of movements of fine body parts to improve

such systems (Alazrai et al., 2019).

The decoding of the movements performed by various fingers

of a hand may increase the control dimensions of the EEG-

based BCI systems. This, in turn, might provide subjects who

utilize assistive devices to better carry out numerous skillful tasks.

However, the decoding of finger movements (FM) within the same

hand is considered as a demanding research area among motor

imagery signal analysis studies (Alazrai et al., 2019). Employing

and analyzing different kinds of feature extraction methods, feature

selection methods, and classification algorithms play an important

role in order to improve the efficiency of EEG-based BCI systems,

which analyze FM and generate relevant commands from the

recorded EEG data. In the literature, various feature extraction

methods, feature reduction methods, and classification algorithms

have been suggested for decoding FM. Different time-domain,

frequency-domain, and spatial-domain EEG features have been

calculated to predict FM in the past decade. The raw EEG time

series (Kaya et al., 2018; Mwata-Velu et al., 2022; Zahra et al.,

2022), different amplitude-based, and statistical-based EEG signal

features (Degirmenci et al., 2024) were utilized to examine the

effectiveness of the time domain. As for the spectral-domain

features, different frequency-domain [Fourier transform (Kaya

et al., 2018)] and time-frequency domain [Wavelet transform

(Yahya et al., 2019), Short-time Fourier transform (Azizah et

al., 2022), Empirical mode decomposition (Mwata-Velu et al.,

2021)] representation algorithms and their various versions were

investigated to classify FM. Common spatial pattern (Anam et al.,

2019, 2020) and its different versions (Kato et al., 2020) are one of

the most experimented methods for the analysis of spatial domain

in FM classification. These different extracted features have been

successfully classified using various machine learning algorithms.

However, it is a challenging scientific task to determine and

choose the most efficient combination of these methods. Providing

optimal and relevant features is important for improving classifier

performance (Narin et al., 2014; Degirmenci et al., 2023). Therefore,

the implementation of effective feature extraction methods and

feature reduction methods is essential for facilitating the following

task of machine learning algorithms.

1.2 State of the art for finger movement
classification

In the last decade, various signal processing and classification

methods have been successful in FM classification (up to 91.70%)

applied in the classification of EEG signals for FM tasks.

Kaya et al. (2018) conducted a Support Vector Machine (SVM)

based classification study to classify the five FM of a hand. In their

study, they used the data set they collected from a total of eight

subjects who agreed to participate. They exploited the power of

EEG subbands, Fourier Transform (FT) amplitudes, and EEG time

series to represent 19-channel EEG signals as features. An average

accuracy of 43.00% was obtained. Moreover, a subject-dependent

classification study was also carried out and the performances of

eight subjects were found to vary in the range of (20.00, 60.00%).

In Anam et al. (2019), the classification of five FM for

the subject-dependent condition using the EEG signals of four

subjects was aimed. To this purpose, the Common Spatial Pattern
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(CSP) based feature extraction process was performed and the

Random Forest (RF) algorithm was executed. The classification

performance was found to be 100% for training accuracy for each

subject and the test accuracy performances ranged between 51.00

and 56.00%.

In 2022, Azizah et al. (2022) carried out a subject-dependent

FM classification study. They performed channel selection based

on One vs. Rest Common Spatial Pattern (CSP-OVR) and four

out of 19 EEG channels were defined as relevant channels in their

study. They extracted the spectrogram features from these selected

channels. Their subject-dependent experimental results showed

that the accuracy in classifications employing SVM ranged from

21.20 to 66.60%.

In the study conducted by Kato et al. (2020) in 2020, a

multi-class CSP and Complex Fourier amplitudes-based feature

extraction process was presented. They extracted features using 19

EEG channels for FM classification. According to their subject-

dependent results, the training results of classifications carried out

with the SVM algorithm were reported in the range of 23.90–

58.30%.

Recently, deep learning approaches from machine learning

methods have been the focus of attention by researchers in

many different research areas such as disease detection from

medical images (Narin and Isler, 2021), emotion recognition from

biological signals (Ozdemir et al., 2021) and Electrocardiography

(ECG) based arrhythmia detection (Degirmenci et al., 2022a) due

to the fact that these architectures provide improved performance

of classification. In addition, the main reason for this is that feature

extraction and classification stages can be performed together in

the hidden layers of deep learning structures. Considering these

structures’ benefits and advantages, deep learning approaches are

also included for the classification of FM and motor imagery tasks

in the literature.

In 2021, Mwata-Velu et al. (2021) performed a feature

extraction process based on Empirical. Mode Decomposition

(EMD) using four effective EEG channels which were selected from

19 EEG channels. They performed deep learning (BiLSTM) based

subject-dependent classifications for the prediction of FM. Using

EMD-based feature extraction and deep learning structure, training

accuracy values in eight subjects were calculated in the range of

73.47- -98.69%, and test performances were calculated in the range

of 66.00–76.13%.

In another study conducted in 2022, Mwata-Velu et al. (2022)

worked on the classification of EEG time series with deep learning

(EEGNet) structure. EEG signals of four subjects were used from

a dataset that included EEG data of eight subjects, and at the

same time, four out of 19 EEG channels were selected for their

suggested study. In the subject-dependent analyses performed with

four subjects, training successes were reported in the range of

80.10–91.70%.

In Anam et al. (2020), an FM classification study, a

model that uses CSP algorithm-based feature extraction and

Autonomous Deep Learning (ADL) based classification was

proposed. They used 19-channel EEG signals from four subjects

for their experimental process. With respect to the subject-

dependent classifications, training performances ranged from

74.73 to 77.61%, and test performances ranged from 74.61

to 77.75%.

In another related paper Zahra et al. (2022), which was

published recently in 2022, the performance of a Convolutional

Neural Networks (CNN) was evaluated based on an original study

design. In their model, EEG time series were combined with

sliding window (Dietterich, 2002) and noise enhancement (Mitaim

and Kosko, 1998) methods to extract the features. They obtained

the features from 19-channel EEG signals of eight subjects. They

conducted a subject-independent FM classification and achieved a

training accuracy of 57.50%.

In their study conducted in 2022, Limbaga et al. (2022) carried

out a CNN (EEGNet) based study for feature extraction and

signal classification of five motor imagery classes of a hand. They

reinforced their suggestedmodel using a transfer learning approach

through an EEG data set that includes 19-channel EEG signals

of eight subjects. They reduced the EEG channel number to 14

and utilized the EEG signals of only four subjects. In addition

to this data set, they recorded EEG signals from a subject while

the subject imagined five different hand positions. According to

their subject-independent evaluations, they achieved an accuracy

of 51.74% success with the transfer learning model which is a

reinforced model.

When the studies mentioned above that aimed to classify the

motor imagery tasks of FM of a hand are examined, it was observed

that the performances remained at relatively low rates in studies

using all EEG channels and in subject-independent classification

studies. The studies showed that the performances got higher with

channel selection-based and subject-dependent classifications. The

cause for the low level of performance in the classification of

FM may be that the movements of the fingers on a hand are

actually controlled from the same region of the motor cortex

(Kaya et al., 2018). Kaya et al. (2018) investigated the event-related

potential (ERP) curves of motor imagery tasks of other body

limb movements together with motor imagery tasks of FM. They

reported that the curves could not be clearly differentiated in the

motor imagery tasks of FM. Therefore, there is a need to increase

the classification performance by using effective feature extraction

methods, feature selection methods, and classification algorithms

for the classification of FM tasks.

1.3 The aim of the study

In 2007, an iterative signal decomposition technique, which

is known as intrinsic time-scale decomposition, (ITD) was

introduced to analyze nonlinear or non-stationary signals

(Frei and Osorio, 2007). Recent studies have performed

ITD-based approaches for the analysis of biomedical signals.

ITD-based feature extraction processes were conducted in

various EEG-based studies for different objectives such as

epilepsy detection (Martis et al., 2013; Degirmenci and Akan,

2020), and attention deficit hyperactivity disorder (ADHD)

recognition (Karabiber Cura et al., 2023). Considering its

ability to discriminate different classes, we studied to explore

whether ITD promises superior use, or not, in classifying other

biomedical signals.

In this study, therefore, we suggest new praxis for the

classification of FM tasks using ITD of EEG signals. The different
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modes that are defined as Proper Rotation Components (PRCs) and

their combinations are acquired through ITD. Various features are

evaluated using only modes and their combinations. In addition

to the ITD-based feature extraction process, the effectiveness

of statistically significance-based feature selection (ANOVA) is

also investigated. The extracted ITD-based features are classified

by eight different machine learning algorithms (Decision Tree,

Discriminant Analysis, Naive Bayes,K-Nearest Neighbors, Support

Vector Machine, Ensemble Learning, Neural Networks, and Kernel

Approximation). Different performance evaluation metrics are

employed for the accurate evaluation of the outputs of the

suggested study.

1.4 Contributions

The novel contributions of this research study are summarized

as follows:

• The classification of EEG signals of FM tasks is presented,

using the ITD signal decomposition, and various feature

extraction methods.

• Modes extracted by the ITD are utilized to evaluate several

features, including Power, Mean, Sample Entropy, High-

Frequency Moments (First Moment, Second Moment,

Third Moment, Fourth Moment), and Hjorth Parameters

(Activity, Mobility, Complexity).

• The first 3 modes ({PRC1},{PRC2}, and

{PRC3}), and different combinations of them

({PRC1,PRC2},{PRC1,PRC3},{PRC2,PRC3}, and

{PRC1,PRC2,PRC3}) are used for feature extraction

and the effectiveness of only modes and their combinations

are investigated with different machine learning algorithms,

separately.

• The investigation of an appropriate and sustainable

machine learning model for the proposed features to

differentiate the FM tasks, and improve classification

performance (success rate) as compared with the

existing methods.

Finally, it must also be noted that this is the first study with a

model that brings different combinations of PRCs extracted by ITD

and various other features to classify FM tasks, to the best of our

knowledge.

1.5 Paper organization

The rest of the paper is organized as follows: The EEG

dataset used in this study, and EEG signal analysis methods are

performed by the proposed ITD method which are ITD-based

feature acquisition, statistical significance-based feature selection,

classifier algorithms, and performance evaluation metrics are

presented in Section 2. Experimental results are given in Section

3 and the results of the proposed approaches are discussed

in Section 4. The outcomes of the study are summarized in

Section 5.

2 Materials and methods

This study design mainly consists of five stages that are

described in Isler (2009). These are EEG Data Acquisition, ITD-

based Feature Extraction, Feature Reduction, Classification, and

Performance Evaluation. The processes performed in each stage

were delineated with details in the sub-headings. Out of these

five stages/steps, the first four stages constitute the proposed

classification model. Figure 1 shows the block diagram for the

proposed model with its stages/steps.

2.1 EEG dataset description

In this study, the EEG dataset, which is a large

electroencephalographic motor imagery dataset for EEG-based

BCIs, presented by Kaya et al. (2018) is benefited. The dataset

consists of motor imagery EEG signals that were recorded from 13

healthy subjects through 19 channels. 19 EEG electrodes together

with two reference electrodes and the ground electrode were placed

according to the international 10/20 EEG electrode placement

system. The researchers reported that they recorded the EEG

signals using an EEG-1200 JE-912A system. They performed an

individual motor imagery experiment based on the movements

of 10 different body limbs for four different BCI interaction

paradigms. Among these planned paradigms, Paradigm #1-(CLA),

which means classical left/right-hand motor imagery includes

three imageries, and these are left and right-hand movements,

and one passive mental imagery in which subjects remained

neutral in no motor imagery. Paradigm #2-(HaLT), which means

hand/leg/tongue motor imagery contains six tasks, and it is an

extended version of the 3-state CLA paradigm with motor imagery

tasks of right and left foot movement and tongue movement.

Paradigm #3 (5F), which means 5-finger motor imagery includes

FM imageries of the five-finger movement of a hand. During

the tasks given for different fingers, subjects implemented the

corresponding imageries invoking as flexion of the relevant finger

up or down. Finger movement imageries were coded as follows:

Thumb (Class 1), Index finger (Class 2), Middle finger (Class 3),

Ring finger (Class 4), and Pinkie finger (Class 5). Paradigm #4

(NoMT), which means no imagery, visual stimuli only is the case

in which no visual stimulus is presented to the subjects and they

passively watch the computer screen. In this study, we aimed to

carry out a 6-class classification using the 5F and NoMT paradigms.

Whilst recording of EEG signals, the action signal remained on the

screen for 1 s to implement the corresponding motor imageries. At

the end of the given time, the task was not shown on the screen.

Instead, the relevant task was interrupted for 1.5–2.5 s until the

next task. In this dataset, two different sampling frequencies, 200

and 1,000 Hz, were set for experiments. EEG signals recorded

with a 1000 Hz sampling frequency were extracted to be used in

this study. In recording of EEG signals acquired at 1,000 Hz, a

0.53–100 Hz band-pass filter was applied to signals using hardware

filters. In addition, a 50 Hz notch filter was applied to reduce the

electrical grid interface. Before performing the feature extraction

and the following steps, to have a balanced distribution among the

classes and provide adjusted chance level (Galiotta et al., 2022),
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FIGURE 1

The block diagram of the study.

100 samples of 1,000 Hz EEG signals for the 5F (five classes) and

NoMT (one class) paradigms were studied for each class as the

preprocessing stage. Hence, a total of 600 trials were performed

for one subject. After obtaining the 5F and NoMT EEG signals

for each subject, each EEG segment is decomposed to the finite

number of PRCs by applying ITD.
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2.2 Intrinsic time-scale decomposition
(ITD)

ITD is introduced by Frei and Osorio for time-frequency-

energy (TFE) analysis of signals with precision (Frei and Osorio,

2007). The ITD decomposes a signal into (i) a sum of PRCs,

and (ii) a monotonic trend without the need for laborious and

ineffective sifting or splines. It is an iterative decomposition

algorithm for the analysis of nonlinear and non-stationary signals,

decomposing the original signal into low-frequency, which is

known as baseline signal (Lt), and high-frequency, which are

known as proper rotation (Ht) components. ITD preserves precise

temporal information (Frei and Osorio, 2007; Voznesensky and

Kaplun, 2019; Degirmenci and Akan, 2020).

For the application of ITD, suppose there is an EEG signal Xt to

be processed. To extract the low-frequency component (“baseline

signal”) from the EEG signal, an operator L is introduced and the

remainder is the high-frequency component (“proper rotation”).

Hence, the EEG signal Xt is defined as in Equation 1.

Xt = LXt + (1− L)Xt = Lt +Ht (1)

where the baseline signal is indicated as Lt = LXt , and the proper

rotation component is indicated asHt = (1−L)Xt . The extraction

of baseline and proper rotation components are explained in detail

with the following three steps (Frei and Osorio, 2007; Martis et al.,

2013; Voznesensky and Kaplun, 2019):

• A real-valued signal is assumed as Xt , t ≥ 0 and τk, k =

1, 2, · · · denotes the its local extremes. Let the value of the

signal at τk is denoted as X(τk) and the value of its baseline

at τk is denoted as L(τk).

• We assume that Lt , andHt have been defined over the interval

[0, τk], andXt is available for [0, τk+2]. The baseline extraction

operator, L is provided as a piece-wise linear function on the

interval (τk, τk + 1] between the two extrema as defined in

Equations 2, 3.

Lt = Lk + (
Lk+1 − Lk

Lk+2 − Lk
)(Xt − Xk), tǫ(τk, τk + 1] (2)

where

Lk+1 = α[Xk+ (
τk+1 − τk

τk+2 − τk
)(Xk+2−Xk)]+ (1−α)Xk+1, (3)

and 0 < α < 1, is typically set with α = 1
2 . The baseline signal,

Lt is constructed in this way to obtain the monotonicity of Xt

between extrema. Hence, the baseline signal is reconstructed

as a linearly transformed contraction of the original signal in

conformity with Equations 2, 3.

• Once the baseline signal is defined, the residual or high-

frequency component, PRC is computed as defined in

Equation 4.

HXt = (1− L)Xt = Ht = Xt − Lt (4)

Using the baseline Lt , and the high frequency Ht modes, the

original signal Xt can be reconstructed using Equation 5.

Xt = LDt +

D
∑

j=0

H
j
t , j = 0, · · · ,D (5)

whereD denotes the number of PRCs that are provided during ITD

processing.

An exemplary motor imagery EEG signal decomposition

process conducted through the ITD algorithm is given in

Figure 2A. To decide which of the separate PRCs to work with,

the PRCs were examined in the frequency domain and their energy

spectrums were computed. In Figure 2B, a case of energy spectrums

of PRCs, decomposed into an EEG signal is provided. Figure 2B

shows that the first PRC (i.e., PRC1) has the highest frequency

content, while the fifth PRC (i.e., PRC5) exhibits the lowest

frequency content. Hence, we selected the first three PRCs and their

different combinations for our suggested feature extraction process

due to the fact that they include high-frequency contents that best

represent the signal characteristic of the original EEG. Various

feature extraction methods are implemented to the determined

high-frequency PRCs (Ht), which are decomposed through ITD. In

our study design, seven different sets of high-frequency PRCs which

are only PRC1, PRC2, and PRC3, and their different combinations

[PRC1–PRC2, PRC1–PRC3, PRC2–PRC3, and PRC1–PRC2–PRC3

(denoted as PRC1-to-3)] are acquired and utilized to evaluate 10

features.

2.3 ITD features

Following the extraction of low-frequency baseline signal and

high-frequency PRCs by running the ITD algorithm, EEG signal

properties including the power, mean value, sample entropy, high-

frequencymoments (first moment, secondmoment, thirdmoment,

and fourth moment), and Hjorth parameters (activity, mobility,

and complexity) were computed from various combinations of

PRCs. Their details are described below:

• The mean value was calculated based on time-domain

information for 3 PRCs. It is defined as in Equation 6.

µ =
1

N

N−1
∑

n=0

X[n] (6)

where PRCs are denoted as X[k], the mean value is denoted as

µ and the size of PRCs is described as N.

• The total power of PRCs was obtained using the spectrum of

signals. The spectrum of PRCs was evaluated by implementing

the periodogram method, which allows for analysis of the

frequency content of a signal (Iscan et al., 2011; Karabiber

Cura et al., 2023). From definitions of k-th frequency

(Equation 7) and power power spectral desity estimation of

the k-th frequency component (Equation 8), the total power

is defined as in Equation 9 (Iscan et al., 2011):

wk =
2π

N
k, k = 0, 1, · · · ,N − 1 (7)

S(wk) =
1

N
|X(wk)|

2 (8)
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FIGURE 2

(A) PRCs extracted by the intrinsic time-scale decomposition (ITD) from a 1-s segment of EEG signals, (B) Energies of each PRCs (the first five modes

are given as examples).

ST =

N−1
∑

k=0

S(wk) (9)

where S(wk) indicates the power spectral density of the signal

provided by the periodogram method, X(wk) indicates the

discrete Fourier transform of the PRC x[n], and ST is the total

power of PRCs.N shown in Equations 8, 9, refers to the size of

the corresponding signal.

• The higher order spectral moments (1st, 2nd, 3rd, and

4th) were computed using the spectrum of signals like total

power. These moments are defined as in Equations 10–13,

respectively (Degirmenci et al., 2018):

M1 =

N−1
∑

k=0

(wk)
1S(wk) (10)

M2 =

N−1
∑

k=0

(wk)
2S(wk) (11)

M3 =

N−1
∑

k=0

(wk)
3S(wk) (12)

M4 =

N−1
∑

k=0

(wk)
4S(wk) (13)

Here, M1, M2, M3, and M4 represent the 1st, 2nd, 3rd,

and 4th higher order spectral moments of the corresponding

PRCs, respectively.

• Hjorth parameters were introduced by Hjorth (1970) in

1970, and these are time-domain statistical features used

in signal processing. These parameters include the Activity

parameter (Ax), Mobility parameter (Mx), and Complexity

parameter (Cx) of the signal. In the following mathematical

equations for Activity, Mobility, and Complexity parameters,

y(n) indicates the auto-correlation function of one PRC after

the ITD application. y[n] = [y1, y2, · · · , yN], and N indicates

the length of the signal.

Activity parameter, defines the power of vibration signal

and can be evaluated using the variance of signal amplitude.

It is formulated in Equation 14 (Hjorth, 1970; Yu and Fang,

2022):

Ax = (y(n)) = σ
2
y (14)

where σy denotes the standard deviation of y(n) and it can be

described with the Equation 15.

σy =

√

√

√

√

1

N − 1

N
∑

n=1

[y(n)− µ]2 (15)

Here, the mean value of the signal is represented with µ.

Mobility parameter describes the ratio of standard

deviations of first-order derivatives, and it can be evaluated

using the slope of the signal. It is defined as in Equation 16.

Mx =

√

√

√

√

σ
2
y′

σ 2
y

=
σy′

σy
(16)

where σy′ indicates the first-order standard deviation of

signals.

Complexity parameter denotes the similarity of signal

to sinusoidal signal and it is expressed as the ratio between

the mobility of the first derivative of the EEG signal and the

mobility of the EEG signal itself (Hjorth, 1970; Yu and Fang,

2022). The mathematical expression of complexity parameters

is given in Equation 17.

Cx =
Mx(y

′(t))

Mx(y(t))
=

Mx(
dy(t)
dt

)

Mx(y(t))
=

√

√

√

√

√

√

√

σ
2
y′′

σ
2
y′

σ
2
y′

σ 2
y

(17)

Here, the second-order standard deviation of signal y(t) is

expressed as σy′′ .

• The sample entropy indicates a time series complexity

measure that represents the probability of a system generating
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new patterns. It can be defined as the embedding theory that

utilizes the time series directly instead of probability values.

The original time series is defined as Lt(i), i = 1, 2, · · · ,N.

The new vector sequences which each of size m, u(1) by

u(N−m+1) are created, and expressed as u(i) = {Lt(i), Lt(i+

1), · · · , Lt(i + m − 1)} (Higuchi, 1988; Martis et al., 2013).

The defined lengthm indicates the embedding dimension. The

distance d[u(i), u(j)] between vectors u(i), and u(j) is described

in Equation 18 (Higuchi, 1988):

d(u(i), u(j)) = max{|u(i+k)−u(j+k)|}, 0 ≤ k ≤ m−1 (18)

Here, k is an index. The probability of providing another

vector within a distance r from vector u(i) is defined as in

Equation 19 (Higuchi, 1988):

C
′m
i (r) =

1

N −m+ 1
(19)

The number of j, j 6= i, j ≤ N − m + 1 such that d(u(i),

u(j)) ≤ r

The entropy can be defined in Equation 20.

∅
m(r) = (N −m+ 1)−1

N−m+1
∑

i=1

C
′m
i (r) (20)

Then, the sample entropy is described in Equation 21 (Martis

et al., 2013):

SampEn(m, r,N) = −ln[
∅

′m(r)

∅
′m+1(r)

] (21)

2.4 Feature reduction using statistical
significance (ANOVA)

Applying too many features to classifiers could unnecessarily

complicate the implementation of classifiers. The application of

redundant information in EEG signals can cause confusion, which

is defined as the curse of dimensionality (Hart et al., 2000).

Trying different combinations one by one and finding the most

suitable classification causes computational load (Narin et al.,

2014). Feature reduction algorithms can be used instead of feature

selection based on trying different combinations. The purpose of

feature reduction is to investigate small-size subsets of features that

can provide the same or better optimal classification performances

(Yesilkaya et al., 2023). Using fewer data presenting some relevant

features of motor imagery EEG signals is important to obtain

optimal classifier performance without computational load.

In this study, a feature reduction method based on statistical

significance was applied to determine relevant ITD features that

provide the best discrimination of the FM imageries for each

sample. The statistical significance-based feature selection method

used in this study was also performed in other BCI studies (Bulut et

al., 2022; Degirmenci et al., 2022c, 2023). One-way variance analysis

(ANOVA test), which is mainly used to indicate whether there is a

difference between the means in conditions where there are two or

more groups was used in this study. We preferred the ANOVA test

from statistical significance-based feature selection methods since

TABLE 1 List of adopted classifiers with their implemented algorithms.

Classifier Algorithms

Decision Tree Fine, medium, and coarse

Discriminant Analysis Linear, and quadratic

Naive Bayes Gaussian, kernel

Support Vector Machine (SVM) Linear, quadratic, cubic, fine Gaussian,

medium Gaussian, coarse Gaussian

k-Nearest Neighbor (kNN) Cubic, cosine

Ensemble Learning Boosted, Bagged, Subspace

Discriminant, Subspace k-NN,

RUSBoosted Trees

Neural Networks Narrow, medium, wide, bi-layered,

tri-layered

Kernel Approximation Support vector machine, logistic

regression

a total of six motor imagery tasks including five FM imageries and

NoMT cases tried to be classified. Thus, the effect of the ANOVA

test-based feature selection method was investigated with ITD

features. The statistical significance of all extracted EEG features

was determined by calculating p-values. The statistical significance

level (α) is defined as 0.05 and the features that ensure the

statistical evidence range were indicated and selected as statistically

significant features. In addition to the classifications performed

without the feature selection process in our study, the feature

vector including selected statistically significant ITD features

were also given to the classification algorithms as input data

to differentiate FM imageries. The effectiveness of the ANOVA-

based feature selection process is investigated by comparing the

results of classifications with all features and selecting statistically

significant features.

2.5 Classification

In this study for differentiation of FM imageries, the provided

ITD-based EEG features have been evaluated using eight well-

knownmachine learning algorithms, such as Decision Tree (Tzallas

et al., 2009; Sharma et al., 2022), Discriminant Analysis (Hart et al.,

2000; Chakrabarti et al., 2003; Lotte et al., 2018), Naive Bayes (Hart

et al., 2000; Miao et al., 2017), Support Vector Machine (Vapnik,

1999; Hart et al., 2000; Bascil et al., 2016), k-Nearest Neighbor

(Hart et al., 2000; Isler, 2009; Tzallas et al., 2009), Ensemble

Learning (Sayilgan et al., 2019, 2020, 2021a,b, 2022; Degirmenci

et al., 2022b,c; Karabiber Cura et al., 2023), Neural Networks

(Richard and Lippmann, 1991; Pan et al., 2012; Narin and Isler,

2021; Ozdemir et al., 2021; Degirmenci et al., 2022a), and Kernel

Approximation (Maji et al., 2008; Lei et al., 2019). The classifiers

and corresponding algorithms that were adopted in this study are

listed below in Table 1. Each of these algorithms was implemented

via utilizing the Classification Learner Toolbox, which is part of the

Statistics and Machine Learning Toolbox available in the Matlab

software package (Matlab, 2023). Since the technical details of these

classifiers have become so trivial that inherited details are not

explained. For further details regarding the classifiers, studies that

are cited in the table can be accessed.
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2.6 Performance evaluation

Training is defined as updating the classifier-specific

parameters according to the available data. Testing is determining

the performance of classifiers by the correct decisions made on the

unseen data before. For this reason, the feature set was divided

into two groups as train data (80%) and test data (20%) using the

random splitting method (Hart et al., 2000).

In addition, during training, classifiers are expected to

generalize rather than over-fit (or memorize) the available data.

However, it may be difficult to make generalizations, especially

when the size of the data is not large enough. Cross-validation (CV)

is a method employed to evaluate the predictive performance of a

model on data it has not processed (classified) before. Several cross-

validation methods, including hold-out, leave-one-out, k-fold, and

Monte-Carlo (MC) exist. All in all, hold-out (k equals 2) and leave-

one-out (k equals the number of samples) methods are special cases

of the k-foldmethod (Hart et al., 2000; Isler et al., 2015; Patro, 2021).

Differences between k-fold andMCmethods are emphasized in

the recent literature: (a) the k-fold uses each data in the validation

although MC uses samples arbitrary times (0 or more), (b) the

k-fold divides the data into k parts, although MC separates large

number data parts, (c) the k-fold results in unbiased accuracy with

a high variance where the MC results in highly biased accuracy

with low variance. These differences cause a trade-off among

CV methods (Patro, 2021). A recent study emphasizes that a

large number of simulated data may cause over-fitting and using

independent data for extra validation is necessary (Labriffe et al.,

2022).

Therefore, we preferred the k-fold CV method as in our similar

studies (Isler, 2009; Isler and Kuntalp, 2009; Degirmenci et al.,

2022a,b) and the recent literature (Anam et al., 2019, 2020; Kato et

al., 2020; Mwata-Velu et al., 2021, 2022; Azizah et al., 2022; Zahra et

al., 2022). Using k-fold cross-validation (CV), the training data set

was divided into k equal-sized subsets. One subset was used as test

data, other subsets (k − 1) were determined as training data, and

this classification process was repeated k times (Hart et al., 2000).

Regarding Brownlee’s article on the Machine Learning Mastery

website (Brownlee, 2023), there is no general rule for choosing the

k value, but as the k value decreases, the bias value also decreases

(Kuhn and Johnson, 2013). Additionally, it is stated that empirically

selected values of 5 or 10 give a balanced bias-variance test error

(James et al., 2013). The average classification performance of these

iterations is defined as the training performance (Hart et al., 2000).

In conclusion, k was set as 5 for this study as in similar studies.

The accuracy (ACC) performance criterion is used in

this study to evaluate the performance of various machine

learning algorithms. The mathematical expression of the accuracy

performance criterion is given in Equation 22 (Hart et al., 2000).

ACC =
TP + TN

TP + FN + TN + FP
(22)

Here, TP and TN indicate the number of correctly assigned

samples into the true class. In addition, FP and FN indicate the

number of incorrectly assigned samples into positive class and

negative class, respectively.

3 Results

The suggested methods were applied to EEG segments of 19-

channel EEG signals collected from 8 subjects. Firstly, the ITD

approach was used to decompose EEG signals into PRCs. Then the

power, mean value, sample entropy, high-frequency moments (first

moment, second moment, third moment, and fourth moment),

and Hjorth parameters (activity, mobility, and complexity) were

evaluated as features utilizing distinct combinations of PRCs. In

the feature extraction process performed in this study, both the

first three components (PRC1, PRC2, and PRC3) and their different

combinations (PRCs1-2, PRCs1-3, PRCs2-3 and PRC1-to-3) were

used and their effectiveness was investigated, individually. The

same feature extraction process was also performed on EEG signals

without any ITD approach to show the effectiveness of the ITD

algorithm in FM classification. Additionally, the ANOVA-based

feature selection process was carried out on the PRC1-to-3 feature

set and its effectiveness was investigated. Finally, a variety of

classifiers including Decision Tree, Discriminant Analysis, Naive

Bayes, Support Vector Machine, k-Nearest Neighbor, Ensemble

Learning, Neural Networks, and Kernel Approximation were used

to classify FM imagery of EEG segments, and the experimental

results of each were analyzed.

The classification performances of the ITD-based features

computed using the different components and EEG-based features

were evaluated to compare and analyze the effectiveness of the

suggested ITD-based process. The classification performances of

features acquired through our suggested ITD-based approaches

with various classifiers are given in Tables 2–9. These classification

performances were evaluated using both feature sets provided

using single PRCs (PRC1, PRC2, and PRC3), their combinations

(PRCs1-2, PRCs1-3, and PRC1-to-3), and ANOVA-selected PRC1-

to-3 combination. In tables, EEG indicates that the feature set

utilized in the classification step is generated using the EEG signal

itself without applying ITD. Additionally, boldface characters show

which feature set obtained the highest accuracy performance in

subject-dependent and subject-independent analyses separately.

Decision Tree classification performances evaluated using ITD-

based features are presented in Table 2. With respect to these

results, the first three PRCs combined with an ANOVA-based

feature selection process obtain the highest accuracy value of

44.17% in S4 (Subject E). The performance comparison of the

ITD-based approach with the EEG-based case (without the ITD

process), shows that the highest performance values were obtained

with the use of ITD-based features in all subjects except S2 (Subject

B). The results for S2 (Subject B) were further investigated and it

was noticed that the highest accuracy value reported was 30.83%

in classifications performed using both PRCs1-3 combination and

EEG features with an ANOVA-based feature selection process.

Linear Discriminant Analysis classification performances were

evaluated using ITD-based features presented in Table 3. When

the results are compared, the first three PRCs combined with

the ANOVA-based feature selection process obtain the highest

accuracy value of 47.50% in S4 (Subject E). The comparison of

classifier performances with the features extracted through the

ITD-based approach and the performances of the same classifiers

with the features of the EEG-based case (without the ITD process)
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TABLE 2 All components’ performances were tested in this study using the Decision Tree classifier.

Components S1 S2 S3 S4 S5 S6 S7 S8 SI

PRC1 29.17 27.50 35.00 32.50 29.17 25.83 31.67 27.50 25.83

PRC2 26.67 28.33 26.67 30.00 26.67 30.83 30.00 32.50 20.63

PRC3 24.17 28.33 26.67 34.17 29.17 20.83 28.33 27.50 21.77

PRCs1-2 26.67 26.67 26.67 37.50 27.50 29.17 32.50 30.00 23.13

PRCs1-3 26.67 30.83 30.00 34.17 27.50 29.17 29.17 30.00 24.79

PRCs2-3 35.83 26.67 26.67 35.83 25.00 25.83 23.33 24.17 22.71

PRCs1-to-3 27.50 30.00 28.33 36.67 26.67 27.50 36.67 22.50 23.54

ANOVA+PRCs1-to-3 30.83 30.00 35.83 44.17 26.67 27.50 34.17 27.50 24.06

EEG 30.00 26.67 32.50 35.83 25.00 30.00 25.83 27.50 25.31

ANOVA+EEG 23.33 30.83 35.00 38.33 21.67 30.00 25.00 30.83 23.33

The maximum component accuracies are shown in boldface for each subject where SI means (subject-independent).

TABLE 3 All components’ performances were tested in this study using the Linear Discriminant Analysis classifier.

Components S1 S2 S3 S4 S5 S6 S7 S8 SI

PRC1 25.83 28.33 33.33 27.50 24.17 30.83 27.50 26.67 26.25

PRC2 24.17 28.33 30.00 40.00 24.17 30.83 27.50 27.50 24.79

PRC3 27.50 25.00 32.50 27.50 31.67 31.67 21.67 25.83 29.17

PRCs1-2 31.67 25.83 35.00 34.17 27.50 26.67 21.67 22.50 29.38

PRCs1-3 31.67 26.67 38.33 43.33 35.83 30.83 25.00 29.17 29.90

PRCs2-3 32.50 25.83 28.33 27.50 25.83 25.83 32.50 25.83 28.85

PRCs1-to-3 31.67 25.00 26.67 33.33 29.17 25.00 20.83 25.00 30.83

ANOVA+PRCs1-to-3 38.33 40.00 37.50 47.50 35.83 28.33 28.33 30.00 33.54

EEG N/A N/A N/A N/A N/A N/A N/A N/A N/A

ANOVA+EEG N/A N/A N/A N/A N/A N/A N/A N/A N/A

The maximum component accuracies are shown in boldface for each subject where SI means (subject-independent).

could not be conducted clearly since the results of the EEG-based

case could not be computed. The EEG-based feature set could

not be classified because they do not fit the Linear Discriminant

Analysis classifier’s parameters.

Naive Bayes classification performances evaluated using ITD-

based features are presented in Table 4. According to these results,

EEG features with an ANOVA-based feature selection process

obtain the highest accuracy value of 40.00% in S4 (Subject E). The

performances of the ITD-based approach were compared with the

performances of the EEG-based case (without the ITD process),

and the comparison reflects that the highest performance values

were obtained with the use of ITD-based features in all subjects

except three subjects. The analyses performed for S3 (Subject C)

were further investigated, it was found that the highest accuracy

value was 34.17% in classifications performed using both the first

three PRCs combination with ANOVA-based feature selection and

EEG features with ANOVA-based feature selection process.

Support Vector Machine classification performances evaluated

using ITD-based features are presented in Table 5. The results

expose that the first three PRCs combined with an ANOVA-based

feature selection process and without an ANOVA-based feature

selection process obtain the highest accuracy value of 49.17% in

S4 (Subject E). On the other hand, the same highest accuracy

value is also found for the first three PRCs in combination with

the ANOVA-based feature selection process in S3 (Subject C). The

performances of the ITD-based approach were compared with the

performances of the EEG-based case (without the ITD process) and

the comparison shows that the highest performance values were

obtained with the use of ITD-based features in all subjects.

k-Nearest Neighbors classification performances acquired

using ITD-based features are presented in Table 6. According

to these results, the PRCs1-3 combination obtains the highest

accuracy value of 46.67% in S3 (Subject C). The performances of

the ITD-based approach were compared with the performances

of the EEG-based case (without the ITD process) and the highest

performance values were obtained with the use of ITD-based

features in all subjects.

Ensemble Learning classification performances evaluated using

ITD-based features are presented in Table 7. With regard to these

results, the first three PRCs combined with an ANOVA-based

feature selection process obtained the highest accuracy value of

55.00% for S4 (Subject E). When the performances of the ITD-

based approach were compared with the performances of the EEG-

based case (without the ITD process), it was evident that the highest
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TABLE 4 All components’ performances were tested in this study using the Naive Bayes classifier.

Components S1 S2 S3 S4 S5 S6 S7 S8 SI

PRC1 22.50 30.83 32.50 35.00 25.00 27.50 30.00 31.67 20.94

PRC2 27.50 25.00 29.17 34.17 24.17 24.17 24.17 25.83 19.38

PRC3 26.67 22.50 25.00 32.50 30.83 25.00 23.33 32.50 20.31

PRCs1-2 24.17 26.67 29.17 30.83 27.50 22.50 30.83 25.00 22.19

PRCs1-3 26.67 26.67 33.33 37.50 38.33 30.00 29.17 23.33 20.94

PRCs2-3 29.17 25.00 30.83 30.00 31.67 25.00 21.67 27.50 21.15

PRCs1-to-3 23.33 30.00 30.83 35.83 23.33 27.50 23.33 27.50 23.96

ANOVA+PRCs1-to-3 30.83 35.00 34.17 39.17 31.67 35.83 30.83 30.83 22.81

EEG 31.67 30.83 28.33 40.83 26.67 22.50 20.83 21.67 25.42

ANOVA+EEG 32.50 25.83 34.17 40.00 27.50 29.17 19.17 21.67 23.23

The maximum component accuracies are shown in boldface for each subject where SI means (subject-independent).

TABLE 5 All components’ performances were tested in this study using the Support Vector Machine classifier.

Components S1 S2 S3 S4 S5 S6 S7 S8 SI

PRC1 29.17 35.83 40.83 40.00 30.00 38.33 40.00 32.50 30.00

PRC2 22.50 25.83 34.17 35.00 30.00 35.83 31.67 24.17 25.73

PRC3 31.67 29.17 30.00 40.00 33.33 29.17 28.33 26.67 27.08

PRCs1-2 31.67 31.67 44.17 40.00 24.17 33.33 39.17 27.50 30.52

PRCs1-3 35.83 38.33 41.67 47.50 38.33 35.00 31.67 29.17 32.19

PRCs2-3 29.17 32.50 39.17 37.50 38.33 30.83 35.00 32.50 28.13

PRCs1-to-3 27.50 37.50 45.00 49.17 33.33 38.33 35.00 35.83 30.63

ANOVA+PRCs1-to-3 40.00 45.00 49.17 49.17 35.83 36.67 39.17 36.67 34.48

EEG 30.00 41.67 38.33 45.00 32.50 33.33 29.17 29.17 31.46

ANOVA+EEG 27.50 41.67 43.33 47.50 34.17 33.33 30.00 29.17 33.65

The maximum component accuracies are shown in boldface for each subject where SI means (subject-independent).

performance values were obtained with the use of ITD-based

features in all subjects.

Neural Networks classification performances evaluated using

ITD-based features are presented in Table 8. The results indicate

that the first three PRCs combined with an ANOVA-based feature

selection process achieved the highest accuracy value of 53.00% for

S3 (Subject C). Comparison of the performances of the ITD-based

approach with the performances of the EEG-based case (without

the ITD process) shows that the highest performance values were

realized with the use of ITD-based features in all subjects except

S6 (Subject G) and S8 (Subject I). Further analyses performed for

S6 (Subject G) showed that the highest accuracy value attained

was 38.33% in classifications performed using both the first three

PRCs’ combination with ANOVA-based feature selection process

and EEG features with ANOVA-based feature selection process. On

the other hand, the analyses performed for S8 (Subject I) revealed

that the highest accuracy value reached was 35.00% using EEG

features with an ANOVA-based feature selection process.

Kernel Approximation classification performances evaluated

using ITD-based features are presented in Table 9. In reference to

the results, one can infer that the first three PRCs combination

without an ANOVA-based feature selection process obtained

the highest accuracy value of 40.83% in S4 (Subject E). The

performances of the ITD-based approach and the performances of

the EEG-based case (without the ITD process) were compared and

it was apparent that the highest performance values were obtained

with the use of ITD-based features in only S4 (Subject E) and S7

(Subject H). In S1 (Subject A), S3 (Subject C), S6 (Subject G), and

S8 (Subject I), the highest performance values were obtained with

the use of EEG-based features with or without an ANOVA-based

feature selection process. In other subjects, the highest performance

values were obtained with the use of both ITD-based features and

EEG-based features.

4 Discussion

The observed results reveal that the ITD algorithm mostly

yields a considerable improvement in classification performance

when the classification performance of ITD-based approaches

are compared with the classification performance of EEG-based

analysis conducted without utilizing the ITD algorithm. The

highest accuracy values are obtained using the ITD algorithm

for most of all classification algorithms except the Naive Bayes
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TABLE 6 All components’ performances were tested in this study using the k-Nearest Neighbors classifier.

Components S1 S2 S3 S4 S5 S6 S7 S8 SI

PRC1 24.17 38.33 35.00 35.83 29.17 34.17 32.50 37.50 29.90

PRC2 23.33 25.00 26.67 33.33 31.67 30.00 28.33 23.33 23.02

PRC3 33.33 25.00 34.17 38.33 28.33 30.00 25.83 30.00 26.88

PRCs1-2 32.50 30.83 34.17 36.67 26.67 32.50 30.83 30.83 28.54

PRCs1-3 31.67 29.17 39.17 46.67 32.50 34.17 29.17 30.83 29.48

PRCs2-3 32.50 26.67 32.50 35.83 32.50 35.00 28.33 26.67 26.25

PRCs1-to-3 28.33 30.83 35.00 44.17 25.83 31.67 30.83 32.50 26.88

ANOVA+PRCs1-to-3 35.83 39.17 43.33 45.83 35.00 34.17 36.67 35.83 30.00

EEG 30.00 33.33 33.33 43.33 26.67 29.17 31.67 30.00 27.81

ANOVA+EEG 30.00 33.33 40.83 40.00 31.67 31.67 29.17 32.50 28.64

The maximum component accuracies are shown in boldface for each subject where SI means (subject-independent).

TABLE 7 All components’ performances were tested in this study using the Ensemble Learning classifier.

Components S1 S2 S3 S4 S5 S6 S7 S8 SI

PRC1 29.17 32.50 41.67 35.83 29.17 35.00 37.50 34.17 29.69

PRC2 30.83 30.00 36.67 38.33 28.33 31.67 29.17 30.00 25.10

PRC3 29.17 32.50 34.17 41.67 27.50 32.50 27.50 29.17 26.46

PRCs1-2 32.50 34.17 40.00 41.67 33.33 29.17 33.33 32.50 28.85

PRCs1-3 35.83 36.67 40.00 43.33 34.17 34.17 38.33 35.83 31.56

PRCs2-3 36.67 29.17 37.50 45.00 31.67 30.00 28.33 30.83 29.06

PRCs1-to-3 34.17 35.00 40.83 47.50 32.50 30.83 36.67 31.67 32.08

ANOVA+PRCs1-to-3 35.83 40.83 50.83 55.00 37.50 36.70 41.67 39.17 32.60

EEG 30.83 40.00 43.33 39.17 35.83 36.67 26.67 31.67 29.06

ANOVA+EEG 29.17 38.33 45.83 39.17 35.00 35.00 27.50 35.00 27.60

The maximum component accuracies are shown in boldface for each subject where SI means (subject-independent).

algorithm. Among all ITD-based feature sets, all PRCs and

their combinations provide a higher classification performance

compared to the EEG case in most of the classifications except

the Naive Bayes and Kernel Approximation classifications. The

classification performance of a single PRC is lower compared

to their combinations. The most successful component is the

first three PRC combinations (PRC1-to-3). In addition to using

PRCs1-to-3, the classification performance is further improved

with the implementation of an ANOVA-based feature selection

process. The experimental results revealed that the evaluation of

different components together provides the highest performance

and improves the classification performance.

Next, the component-based and EEG-based classification

accuracies in the Ensemble Learning classifier for subject-

dependent and subject-independent cases have been investigated

to reveal the efficacy of the proposed ITD-based method more

accurately. The performances that are obtained using both feature

sets generated utilizing EEGs, single PRCs (PRC1, PRC2, and

PRC3), and their combinations (PRCs1-2, PRCs1-3, and PRC1-

to-3) by running Ensemble Learning are given in Figure 3. The

results reveal that the ITD algorithm provides a significant

improvement in terms of accuracy performance compared to the

classification performed without using the algorithm. Additionally,

the combinations of different components achieved the highest

classification performance for subject-dependent and subject-

independent cases. Moreover, ANOVA-selected the first three

PRC combinations (PRC1-to-3) realized the highest classification

performance in analyses for all subjects except S1 (Subject A).

The classification performance of ITD-based features from

different PRCs with ANOVA-based feature selection and without

feature selection process were compared on the basis of providing

more accurate information about the performance of the suggested

ANOVA-selected ITD features. The classification accuracies for

the PRC1-to-3 combination and ANOVA-selected PRC1-to-3

combination achieved by the Ensemble Learning classifier are

presented in Figure 4. It can be noticed that the ANOVA-

selected PRC1-to-3 combination succeeded in higher classification

accuracies than the PRC1-to-3 combination for both subject-

dependent and subject-independent cases. The observed results

reveal that the suggested statistical significance-based feature

reduction process obtains considerably noticeable differences and

improves the classifiers’ performance.

The results of our study are compared to the state-of-the-art

studies, which conducted FM classification based on EEG signals.
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TABLE 8 All components’ performances were tested in this study using the Neural Networks classifier.

Components S1 S2 S3 S4 S5 S6 S7 S8 SI

PRC1 33.33 29.17 30.83 39.17 23.33 33.33 31.67 29.17 26.25

PRC2 25.00 25.00 31.67 31.67 25.83 25.83 25.83 30.00 24.48

PRC3 32.50 20.83 35.83 35.00 30.00 25.83 32.50 28.33 25.94

PRCs1-2 27.50 30.00 43.33 42.50 33.33 30.83 27.50 26.67 28.75

PRCs1-3 34.17 32.50 40.83 42.50 35.00 30.00 31.67 31.67 30.94

PRCs2-3 29.17 29.17 37.50 35.00 34.17 35.83 31.67 30.83 28.96

PRCs1-to-3 30.00 33.33 45.83 48.33 37.50 32.50 30.00 34.17 29.27

ANOVA+PRCs1-to-3 34.17 42.50 53.33 45.83 37.50 38.33 35.00 31.67 31.88

EEG 28.33 35.83 42.50 39.17 35.00 29.17 26.67 32.50 28.96

ANOVA+EEG 25.83 35.00 41.67 42.50 36.67 38.33 23.33 35.00 30.42

The maximum component accuracies are shown in boldface for each subject where SI means (subject-independent).

TABLE 9 All components’ performances were tested in this study using the Kernel Approximation classifier.

Components S1 S2 S3 S4 S5 S6 S7 S8 SI

PRC1 20.00 25.00 25.83 24.17 26.67 25.83 30.83 20.83 23.23

PRC2 26.67 25.00 23.33 30.00 23.33 17.50 23.33 24.17 19.27

PRC3 27.50 20.00 27.50 35.83 21.67 22.50 21.67 22.50 21.88

PRCs1-2 22.50 21.67 20.83 22.50 19.17 19.17 26.67 25.00 19.58

PRCs1-3 25.83 24.17 27.50 39.17 27.50 22.50 29.17 20.00 24.48

PRCs2-3 25.00 20.83 27.50 33.33 20.00 23.33 21.67 19.17 24.27

PRCs1-to-3 24.17 24.17 27.50 40.83 15.00 25.83 25.00 25.83 23.23

ANOVA+PRCs1-to-3 21.67 18.33 26.67 31.67 19.17 22.50 22.50 25.83 21.88

EEG 25.83 25.00 38.33 32.50 25.00 30.00 27.50 29.17 24.17

ANOVA+EEG 29.17 22.50 34.17 36.67 27.50 26.67 20.00 26.67 25.31

The maximum component accuracies are shown in boldface for each subject where SI means (subject-independent).

FIGURE 3

The component-based classification accuracies in Ensemble Learning classifier for all subjects.
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FIGURE 4

Comparison of accuracy values evaluated using PRCs1-to-3 features and ANOVA-selected PRCs1-to-3 features as regards Ensemble Learning

classifier.

Table 10 presents a comparison of the suggested study to relevant

prior studies. Clearly, both subject-dependent (Kaya et al., 2018;

Anam et al., 2019, 2020; Kato et al., 2020; Mwata-Velu et al.,

2021, 2022; Azizah et al., 2022) and subject-independent (Kaya

et al., 2018; Zahra et al., 2022) studies were conducted for FM

classification in literature. In general, the highest performance

values were achieved in subject-dependent classification as in

our study. An important distinction between studies regarding

FM classification was the number of subjects. In some studies

(Anam et al., 2019, 2020; Mwata-Velu et al., 2022), classification

was computed over the EEG data of four subjects. In contrast,

some studies computed and reported using data from eight

subjects. As an example of four-subject studies, Anam et al. (2019)

reports on the analysis of the data of only four subjects and the

classification performance varied between 51.00 and 56.00%. To

make a meaningful comparison between the results of Anam et

al. (2019) and our study, the sample sizes must be equal. Hence,

we think that the two results are incomparable. In Anam et al.

(2020), in addition to working with only four subjects, classification

was carried out with deep learning structures. Despite the fact that

the hidden layers in deep learning structures create a significant

amount of workload and necessitate a significant amount of time

for training, the reported classification performance in all subjects

was not as high as expected (over 90.00%). In another study

(Zahra et al., 2022), another deep learning-based classification with

very high training time was adopted and considering the same

drawbacks of the previous study (Anam et al., 2020), although a

significant improvement in performance was achieved since the

sample size of this study (i.e., only four subjects) and number

of EEG channels (i.e., only four channels) were limited when

compared with the sample size and number of EEG channels in our

study. Thus, a comparison between the results of this study (Anam

et al., 2020) and ours would not be meaningful. On the other hand,

some of these prior studies (Mwata-Velu et al., 2021, 2022; Azizah

et al., 2022) performed channel reduction. In these studies, four out

of all 19 channels were defined as effective channels and used for

the feature extraction stage. Among these studies, although deep

learning-based classification was performed in addition to channel

reduction in the Mwata-Velu et al. (2021), the performance values

were only as high as 76%. In one of the studies of the same set

(Mwata-Velu et al., 2022), EEG signals of 4 subjects were included,

and deep learning-based classification was performed together with

the channel reduction process. When their classification results are

examined and compared, it is clear that high performances were

obtained with regard to already noted certain limitations in the

study design. However, our study uses passive condition (NoMT

case) EEG signals in addition to EEG signals of FM. Prior studies

had focused only on FM and classified them without considering

the passive state of the subjects. The 6-class FM classification study

we propose appears to be more suitable for the real BCI design

and applications. In this study, we used ITD-based features for FM

classification. According to our experimental results, 55.00% is the

highest accuracy achieved using the pair of the ANOVA-selected

first three PRC combinations and the Ensemble Learning classifier.

There are a few aspects that distinguish this study from previous

studies in this field. These distinctional aspects to it, together with

the contributions of this study to the literature can be explained as

follows:

• ITD-based feature extraction study is conducted for FM

classification. The first three higher frequency components

and their different combinations were evaluated and their

success rates were investigated with respect to different

classifiers separately. In addition to the ITD-based features,

EEG-based features have been evaluated without ITD

decomposition to analyze the impact of the suggested

ITD-based process. The observed results reveal that the

highest performance values are mostly achieved in ITD-based

approaches. Among ITD approaches, the most successful

feature set is the first three PRC combinations (PRCs1-to-3).
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TABLE 10 Comparison of classifier performances with the state-of-the-art studies for both subject-independent and subject-dependent cases from the

literature.

Study N n Classifier c CV Accuracy (%)

Subject-independent task

Kaya et al. (2018) 8 19 SVM 5 Random split

(63-27-10%)

43.00

Zahra et al. (2022) 8 19 CNN 5 10-fold 57.50

This study 8 19 SVM 6 5-fold 34.48

Subject-dependent task

Kaya et al. (2018) 8 19 SVM 5 Random split

(63-27-10%)

20.00–60.00

Anam et al. (2019) 4 19 RF 5 5-fold 51.00–56.00

Anam et al. (2020) 4 19 ADL 5 5-fold 74.61–77.75

Kato et al. (2020) 8 19 SVM 5 10-fold 23.90–58.30

Mwata-Velu et al. (2021) 8 4 BLS 5 200-fold 66.00–76.13

Azizah et al. (2022) 8 4 SVM 5 10-fold 21.20–66.60

Mwata-Velu et al. (2022) 4 4 EEGNet 5 200-fold 80.10–91.70

This study 8 19 EL 6 5-fold 35.83–55.00

N stands for the “number of subjects,” n stands for the “number of EEG channels,” c stands for the “number of classes,” and CV stands for the “Cross-Validation Method.” Classifiers are CNN,

convolutional neural network; RF, random forest; ADL, autonomous deep learning; SVM, support vector machine; EEGNet, EEGNet deep learning model; BLS, bi-layered long-short classifier;

EL, ensemble learning.

• Additionally, the statistical significance-based feature

selection process was applied to the first three PRC

combinations. It has been observed that the performance of

the classifier increases further in classifications performed

using the first three PRC combinations. Thereby, in

this study, the highest accuracy value was obtained by

applying the combination of the first three modes to

the Ensemble Learning classifier with ANOVA-based

feature selection.

• To the best of our knowledge, our study presents the

first approach where different combinations of PRCs were

decomposed through ITD, and various features are utilized

together to classify FM of EEG signals,

• We used both EEG signals of all subjects (eight subjects) and

all channels (19 channels) of their EEG data in analyses, hence,

excluding study design limitations (e.g., number of channels)

to perform effective comparisons,

• Furthermore, this study is advantageous in all its stages

(ITD-based feature extraction, and classification) in terms

of workload and does not contain any complexity in the

classification stage as in deep learning structures.

• Finally, we carried out a 6-class classification of FM

by including the NoMT condition in FM in order to

realize a more realistic BCI design and application for

paralyzed patients. Such a design choice is crucial since

it does not exclude occurrences of the Midas Touch

Problem (Velichkovsky et al., 1997), which is actually the

misinterpreted intention of interactive action fired by the

interface. In the case of BCI development, when NoMT is

discarded, it might easily cause Midas Touch occurrences to

become the source of false positives and cause classification

performance to degrade dramatically.

5 Conclusion

The accurate decoding of FM is accepted as a challenging task

because the fingers are smaller than other limbs such as arms and

hands and have a noisy signal nature. As a result, it is a more

complicated task to discriminate among FM. In this study, an

ITD-based machine learning approach is proposed for rapid and

accurate classification of FM by using multi-channel EEG signals.

Nineteen channel EEG data collected from eight subjects are used

in our analysis. Firstly, the different modes are extracted from EEG

signals using the ITD. The different features such as power, mean,

sample entropy, high-frequency moments (first moment, second

moment, third moment, fourth moment), and Hjorth parameters

(activity, mobility, complexity) are evaluated using the first three

modes of EEG signals. The single version of these modes and

their different combinations are investigated in our suggested

study, separately. Finally, FM classification through these extracted

feature sets is performed using eight different machine-learning

algorithms. Basically, we compared the performances of EEG-based

features and the features extracted using the ITD algorithm. The

experimental results reveal that the highest performance values

are mostly (six out of eight classifier algorithms) acquired in

ITD-based approaches. Additionally, the combinations of different

modes mostly obtain the highest performance. Among all the
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different combinations, the first three combinations form the most

successful feature set, and the highest accuracy values are achieved

using this combination. On the other hand, the effectiveness of

the ANOVA-based feature selection method is also investigated

in this study. The results demonstrate that ANOVA-based feature

selection improves the classifier performance by making it possible

to find out the more discriminatory and relevant features. Among

the classifier algorithms, the Ensemble Learning classifier appears

to be the most successful classifier algorithm tested in this study.

Therefore, in this study, the highest accuracy value of 55.00%

is obtained in S4 (Subject E) by applying the combination of

the first three modes to the Ensemble Learning classifier with

ANOVA-based feature selection. The accuracy rates of subject-

dependent analyses performed according to the Ensemble Learning

classifier are found between 35.83 and 55.00% using the first

three modes’ combination (PRCs1-to-3) with ANOVA-based

feature selection.
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