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Self-organized critical dynamics is assumed to be an attractive mode of functioning
for several real-life systems and entails an emergent activity in which the extent of
observables follows a power-law distribution. The hallmarks of criticality have recently
been observed in a plethora of biological systems, including beta cell populations within
pancreatic islets of Langerhans. In the present study, we systematically explored the
mechanisms that drive the critical and supercritical behavior in networks of coupled
beta cells under different circumstances by means of experimental and computational
approaches. Experimentally, we employed high-speed functional multicellular calcium
imaging of fluorescently labeled acute mouse pancreas tissue slices to record calcium
signals in a large number of beta cells simultaneously, and with a high spatiotemporal
resolution. Our experimental results revealed that the cellular responses to stimulation
with glucose are biphasic and glucose-dependent. Under physiological as well as
under supraphysiological levels of stimulation, an initial activation phase was followed
by a supercritical plateau phase with a high number of global intercellular calcium
waves. However, the activation phase displayed fingerprints of critical behavior under
lower stimulation levels, with a progressive recruitment of cells and a power-law
distribution of calcium wave sizes. On the other hand, the activation phase provoked by
pathophysiologically high glucose concentrations, differed considerably and was more
rapid, less continuous, and supercritical. To gain a deeper insight into the experimentally
observed complex dynamical patterns, we built up a phenomenological model of
coupled excitable cells and explored empirically the model’s necessities that ensured
a good overlap between computational and experimental results. It turned out that
such a good agreement between experimental and computational findings was attained
when both heterogeneous and stimulus-dependent time lags, variability in excitability
levels, as well as a heterogeneous cell-cell coupling were included into the model. Most

Frontiers in Physiology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 869

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2019.00869
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2019.00869
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2019.00869&domain=pdf&date_stamp=2019-07-05
https://www.frontiersin.org/articles/10.3389/fphys.2019.00869/full
http://loop.frontiersin.org/people/741436/overview
http://loop.frontiersin.org/people/499496/overview
http://loop.frontiersin.org/people/509516/overview
http://loop.frontiersin.org/people/73038/overview
http://loop.frontiersin.org/people/499494/overview
http://loop.frontiersin.org/people/441340/overview
http://loop.frontiersin.org/people/423568/overview
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00869 July 4, 2019 Time: 16:12 # 2

Stožer et al. Self-Organized Criticality in Excitable Tissue

importantly, since our phenomenological approach involved only a few parameters, it
naturally lends itself not only for determining key mechanisms of self-organized criticality
at the tissue level, but also points out various features for comprehensive and realistic
modeling of different excitable systems in nature.

Keywords: excitable cells, self-organized criticality, beta cells, calcium imaging, computational model, cellular
heterogeneity, activation delay

INTRODUCTION

Self-organized collective dynamics is a remarkable phenomenon
observed in various natural and man-made systems, in which
collective behavior emerges from local interactions between
individual elements (Bak, 1996; Marković and Gros, 2014;
Ellis and Kopel, 2019). Regardless of the specific mechanisms
responsible for self-organization, the resulting coherent global
structures or dynamics are characterized by scale-invariant
properties and a power-law distribution of systems’ observables
(Khaluf et al., 2017; Muñoz, 2018). Such emergent behavior
is often associated with critical dynamics and is assumed to
be particularly beneficial for the functioning of several living
systems, from the microscopic to the macroscopic (Tamayo
et al., 1999; Nykter et al., 2008; Chialvo, 2010; Bialek et al.,
2012; Furusawa and Kaneko, 2012; Sasai, 2013; Allegrini et al.,
2015; Muñoz, 2018). Criticality has been argued to originate
from the fact that many biological systems operate in the
vicinity of a critical point of a phase transition between an
ordered and disordered phase, which ensures a balance between
robustness against perturbations and flexibility to adapt to
a changing environment. However, the exact reasons why
signatures of criticality can be conjectured to emerge in living
systems are still under debate and the underlying principles are
incompletely understood (Lovecchio et al., 2012; Moretti and
Muñoz, 2013; Nonnenmacher et al., 2017). Most importantly,
despite some skepticism and limitations, the evidently increasing
amount of empirical evidence, fostered also by technological and
computational advances, is nowadays inspiring more and more
researchers to investigate the complexity of biological systems
through the lens of phase transition behavior and criticality.

In the domain of biological networks, the concepts of self-
organization and criticality have received the most attention
in the field of neuroscience. On the smallest scales, patterns
of activity in neuronal populations have been found to be
very heterogeneous, with sizes of so-called neuronal avalanches
following a power law distribution (Beggs and Plenz, 2003;
Pasquale et al., 2008; Timme et al., 2016). Empirical evidence for
criticality has been reported in both different in vivo preparations
and on larges scales of whole-brain imaging (Plenz and
Thiagarajan, 2007; Haimovici et al., 2013; Hesse and Gross, 2014).
The presence of emergent critical dynamics in the nervous system
is theoretically appealing and consequently computational
models and tools from the realms of statistical physics have
been utilized to unveil the mechanisms and correlations between
phase transition behavior and the occurrence of scale-invariant
neuronal avalanches (Plenz and Thiagarajan, 2007; Rubinov
et al., 2011; Friedman et al., 2012; Zare and Grigolini, 2013;

Tkačik et al., 2015; Brochini et al., 2016; di Santo et al., 2018).
Importantly, several studies have underscored the emergence of
critical dynamics in neuronal networks as one of the key pillars
for their optimal operational abilities (Kinouchi and Copelli,
2006; Shew and Plenz, 2013; Shew et al., 2015; Stoop and Gomez,
2016). Moreover, complex and hierarchically organized network
structures along with neuronal plasticity were identified as the
main neurophysiological determinants that ensure robust critical
behavior (Levina et al., 2007; Rubinov et al., 2011; Moretti and
Muñoz, 2013; Hutt et al., 2014; Massobrio et al., 2015b). It
should be noted that deviations from critical behavior occur in
neuronal networks during development (Tetzlaff et al., 2010;
Massobrio et al., 2015b) and under pathological conditions
(Massobrio et al., 2015a; Tagliazucchi et al., 2016; Hahn et al.,
2017). Especially during epileptic seizures (Hobbs et al., 2010;
Meisel et al., 2012) or by pharmacological disruptions of
the excitation-inhibition balance (Barral and D Reyes, 2016),
an excess of large system-spanning avalanches occur, as is
characteristic for supercritical dynamical states. Consequently,
it has been hypothesized that the healthy brain resides near a
critical or even slightly subcritical state, thereby ensuring a safety
margin from supercriticality, which has been linked to some
pathophysiological disorders (Priesemann et al., 2014; Tomen
et al., 2014; Massobrio et al., 2015a).

Notably, recent research indicates that the concept of critical
dynamics and power-law scaling in living beings applies well
beyond the spatiotemporal activity patterns of neurons. At the
(sub)cellular level, mitochondrial network of heart myocytes
was reported to operate at the edge of dynamic instability
characterized by a fractal scaling of depolarized mitochondrial
clusters (Aon et al., 2004). In this regime, constancy in terms
of a steady supply of ATP is provided in combination with
flexibility, which ensures the adaptation of energy production in
accordance with metabolic demands (Aon et al., 2006). Moreover,
hallmarks of self-organized criticality have also been observed
in the spatiotemporal organization of Ca2+ waves. Jung et al.
(1998) reported a power law distribution of noise-induced spiral
Ca2+ wave sizes in cultured networks of astrocytes. Heavy-
tailed distributions and an avalanche-like behavior have also been
observed in intracellular Ca2+ signalization in cardiac myocytes
(Nivala et al., 2012) and in immature oocytes (Lopez et al.,
2012). In both studies Ca2+ waves in individual cells resulted
from random local Ca2+ events, reflecting small Ca2+ release
events from individual channels or a cluster of channels, which
can occasionally integrate to global events reflecting a whole-cell
Ca2+ signal (Berridge et al., 2000). As the localized subcellular
Ca2+ events interact, e.g., via diffusion, they can self-organize
and lead to avalanches of activity that propagate through the cell.
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The concept does not only assert that the extent of such events is
characterized by scale invariance, but also makes the global Ca2+

signals appear rather deterministic in spite of their stochastic
origin (Skupin et al., 2008).

Even though information processing in living organisms is
often performed by large networks of interacting cells, little
attention has been devoted to the principles underlying critical
dynamics on multicellular and tissue levels of organization.
Recently, we have empirically shown that fingerprints of
criticality are also found in the spatiotemporal dynamics of
interconnected beta cells from islets of Langerhans (Gosak et al.,
2017). These endocrine cells synthesize and release insulin,
the anabolic hormone which promotes postprandial storage
of nutrients, and thus serves a crucial role in homeostasis of
energy that becomes disrupted in diabesity (Kahn et al., 2014).
Insulin concentration in the blood displays inherent multimodal
oscillations (Satin et al., 2015), and several studies have attempted
to reveal the underlying mechanism by providing links to
oscillations in beta cells metabolism and to a feedback between
ion channels and electrical activity. This was further corroborated
by modeling the interplay of the two signaling aspects (Bertram
et al., 2007). Moreover, recent theoretical studies emphasized
the role of biphasic feedback circuits in controlling functional
beta cell mass (Karin et al., 2016) and progression of diabetes
mellitus (Karin and Alon, 2017). On the organizational level of
a single islet, beta cells respond to nutrient stimulation with an
initial transient depolarization, followed by fast oscillations in
membrane potential that are superimposed on a plateau phase
(Gilon and Henquin, 1992; Rorsman and Braun, 2013; Skelin
Klemen et al., 2017). Intracellular Ca2+ concentration ([Ca2+]IC)
closely follows changes in membrane potential due to tight
coupling between electrical and calcium dynamics in beta cells
(Gilon and Henquin, 1992; Dolenšek et al., 2013). However,
all beta cells within an islet do not show identical electrical or
[Ca2+]IC activity and can therefore not be regarded as uniformly
and strongly coupled identical units or even as a single supercell.
Rather, the collective activity of beta cells is characterized by
a phase shift between individual cellular oscillations, ultimately
resulting in heterogeneous waves of membrane potential and
[Ca2+]IC changes. These waves spread repetitively over an islet,
but not always from the same source and not always throughout
the whole syncytium (Benninger et al., 2008; Dolenšek et al.,
2013; Stožer et al., 2013a). They are thought to originate in
specific sub-regions with elevated excitability (Benninger et al.,
2014) or higher intrinsic oscillation frequency (Westacott et al.,
2017). A plethora of evidence demonstrates that an essential
prerequisite for the coordinated beta cell activity and formation
of waves is intact intercellular connectivity mediated via gap
junctions (Calabrese et al., 2003; Ravier et al., 2005; Bavamian
et al., 2007; Bosco et al., 2011; Benninger et al., 2014) and
probably other modes of communication, such as paracrine,
contact-dependent, and ciliary signaling (Squires et al., 2002;
Konstantinova et al., 2007; Yang et al., 2011; Gerdes et al.,
2014). Most importantly, intercellular connectivity is not only
necessary for normal islet function, its perturbations were also
linked to metabolic diseases and impaired insulin secretion
(Hamelin et al., 2009; Carvalho et al., 2012; Head et al., 2012;

Hodson et al., 2013; Benninger and Piston, 2014; Benninger et al.,
2018; Nasteska and Hodson, 2018).

Moreover, individual beta cells are intrinsically highly
heterogeneous (Gutierrez et al., 2017). Several different
approaches have demonstrated relatively large differences in
the extent of coupling between beta cells (Pérez-Armendariz
et al., 1991; Farnsworth et al., 2014), as well as different levels
of excitability (Jonkers and Henquin, 2001; Benninger et al.,
2011) and rates of glucose metabolism (Benninger et al., 2014;
Benninger and Hodson, 2018; Nasteska and Hodson, 2018).
Because of these features, the spatiotemporal responses of beta
cells are very complex and to understand how a population of
these heterogeneous and heterogeneously coupled cells activate
to work in synchrony is a hot topic in islet physiology research
(Pedersen et al., 2013; Benninger and Piston, 2014; Benninger
et al., 2014; Markovič et al., 2015; Cappon and Pedersen, 2016).
Motivated by complexity science approaches, several studies
have investigated beta cell responses in terms of phase transition
behavior (Hraha et al., 2014; Loppini et al., 2014; Stamper et al.,
2014). In this vein, in our recent study we demonstrated that
under physiological circumstances, the initial response to glucose
is characterized by a power-law probability distribution of Ca2+

wave sizes, which can be maintained in the long run by periodic
stimulation, but changes to supercriticality upon constant
stimulation, thereby demonstrating empirically the fingerprints
and basic preconditions of critical behavior (Gosak et al., 2017).

In the present work, we extend our preceding research
to supraphysiological glucose concentrations that are usually
used in experiments, but accompany pathophysiological states
in vivo. It turns out that higher glucose levels evoke more
rapid and qualitatively different beta cell responses when
compared to physiological levels of stimulation. To assess
the measured non-trivial and rich dynamical patterns, we
propose a phenomenological model of coupled excitable cells
that accounts for the observed physiological as well as
pathophysiological behavior and encompasses both beta cell
signaling specifics and heterogeneity. Moreover, in contrast to
the exhaustive computational models with many parameters,
our phenomenological modeling approach made it easier to
empirically explore the necessary ingredients and physiological
determinants that ensure a good overlap between experimental
and computational results.

MATERIALS AND METHODS

Multicellular Calcium Imaging in
Pancreatic Tissue Slices
Acute pancreatic tissue slices were prepared as described
previously (Speier and Rupnik, 2003; Stožer et al., 2013a). Briefly,
low-melting point agarose (1.9% V/V) was injected into the
proximal common bile duct that was clamped distally at the
major duodenal papilla. Retrograde inflow of the agarose served,
once cooled, as a scaffold for subsequent tissue cutting into
140 µm thick slices on a vibratome (VT 1000 S, Leica). Staining
with the calcium sensitive dye Oregon Green 488 BAPTA-1 AM
[6 µM final concentration, 0.03% Pluronic F-127 (w/v), and
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0.12% dimethylsulphoxide (v/v) dissolved in HEPES-buffered
saline at RT, consisting of (in mM) 150 NaCl, 10 HEPES, 6
glucose, 5 KCl, 2 CaCl2, 1 MgCl2; titrated to pH = 7.4 using 1
M NaOH], was performed for 50 min at RT. Confocal imaging of
calcium dynamics was performed on the Leica TCS SP5 AOBS
Tandem II upright confocal system (20x HCX APO L water
immersion objective, NA 1.0) and Leica TCS SP5 DMI6000 CS
inverted confocal system (20X HC PL APO water/oil immersion
objective, NA 0.7), utilizing a perifusion system filled with
extracellular solution, consisting of (in mM) 125 NaCl, 26
NaHCO3, 6 lactic acid, 3 myo-inositol, 2.5 KCl, 2 Na-pyruvate,
2 CaCl2, 1.25 NaH2PO4, 1 MgCl2, 0.5 ascorbic acid and added
either substimulatory 6 mM or stimulatory 8 or 12 mM glucose.
The calcium dye was excited at 488 nm via an argon laser line and
the emitted fluoresces was detected in the range of 500–700 nm
by a Leica HyD detector. Time series were acquired at 10 Hz
(512× 512 pixels). Further analysis was done off-line by manually
selecting ROIs corresponding to beta cells. The exported time
series of the F/F0 ratio were then further processed as explained
in the continuation.

Computational Model
Phenomenological Single Cell Model
We utilized a phenomenological model to describe the dynamics
of the electrically excitable beta cells. In particular, we made use
of a two-dimensional iterated map proposed by Rulkov (2002):

ui(t + 1) = αi(t)
/
(1+ ui(t)2)+ vi(t)+

gi
∑

j

εij(uj − ui)+ βξi(t), (1)

vi(t + 1) = vi(t)− σui(t)− χ, (2)

where ui(t) and vi(t) are the slow and the fast dynamical
variables for the i-th cell, respectively, and are considered as
dimensionless variables, t is the discrete time index, αi, χ,
and σ are systems parameters, and β = 0.0045 defines the
strength of Gaussian noise with zero mean and unit variance
that accounts for stochasticity in beta cell dynamics. The fast
variable ui(t) describes the dynamics of the membrane potential
of the cell, whereas the slow variable vi(t) reflects the gating
variable. Although this is an abstract and simple mathematical
model, it mimics well the basic principles of more complex
cellular behaviors that are observed in different cell types,
including beta cells.

More specifically, in terms of metabolic changes, electrical
activity, [Ca2+]IC dynamics, and insulin secretion, beta cells
within islets respond to stimulation by glucose in two phases.
During the first phase which is transient, they show elevated
levels of intracellular ATP and NAD(P)H, followed electrically by
very fast bursting or continuous bursting. Bursts are periods of
very fast depolarizations called spikes that last a few seconds and
continuous bursting consists of an uninterrupted set of spikes at
a frequency around 10 Hz. At the level of [Ca2+]IC dynamics, this
first phase consists of a transient increase in [Ca2+]IC, during the
ascending part of which a few fast [Ca2+]IC oscillations may be
present, reflecting fast burst before continuous bursting. It should

be pointed out that at present the very fast spikes cannot be
resolved in [Ca2+]IC imaging. This first phase lasts a few minutes
and at the level of hormone output overlaps with the first phase of
insulin secretion. During the second phase, continuous bursting
and the accompanying transient increase in [Ca2+]IC change to
regular bursting and corresponding fast [Ca2+]IC oscillations. At
the level of metabolism and hormone secretion, NADPH and
ATP are elevated during this period and insulin secretion shows
a stable second phase (Henquin and Meissner, 1984; Gilon and
Henquin, 1992; Li et al., 2013, 2014; Gilon et al., 2014; Skelin
Klemen et al., 2017; Rorsman and Ashcroft, 2018). It should
be noted that during this second phase, insulin is also secreted
in bursts synchronized with electrical bursts and fast [Ca2+]IC
oscillations (Gilon et al., 1993; Bergsten et al., 1994). This fast
electrical, [Ca2+]IC, and secretory pattern is superimposed on a
slower set of oscillations in ATP, membrane potential, [Ca2+]IC,
insulin secretion, and some other parameters, which has been
reviewed in detailed elsewhere (Satin et al., 2015). A further layer
of complexity to this behavior comes from the fact that it is
glucose-dependent. In higher glucose, the frequency or duration
of bursts and correspondingly the fast [Ca2+]IC oscillations
increase, such that the active time and insulin secretion increase.
Noteworthy, it seems that the underlying slow pattern is not
glucose-dependent (Satin et al., 2015; Gosak et al., 2017; Skelin
Klemen et al., 2017).

Most importantly, modeling all of the above aspects of
beta cell responses to glucose requires the use of realistic
biophysical models. However, in this study we focused
only on fast [Ca2+]IC dynamics which can be satisfactorily
captured by the phenomenological model employed here.
Most importantly, since we wanted to study the effects of
various types of heterogeneities in a network of coupled beta
cells, in comparison with a genuine biophysical model, a
phenomenological description of the complex cellular dynamics
is not only beneficial in terms of numerical efficiency, but also
enables exploration of the system with very few free parameters.

The Rulkov map displays a variety of dynamics depending
on the parameter choice, as extensively investigated in the past
(Rulkov, 2002; Ibarz et al., 2011; Markovič et al., 2012). To better
understand the dynamical phases that occur in our study, we
performed a stability analysis. For χ = σ the fixed point equals
u∗ = −1 and v∗ = −1− α/2. If α < 2 the steady state is stable
and for α < 1.86 the fixed point is asymptotically stable, since
the both eigenvalues, λ1 and λ2 have only real parts and their
absolute value is less than 1 (see Figure 1A). For the values
1.86 < α < 2, the fixed point is still stable (|Re(λ1)| < 1 and
|Re(λ2)| < 1), but the eigenvalues are complex making the fixed
point a spiral sink. For the values of bifurcation parameter 2 <
α ≤ 4, the solution (u∗, v∗) becomes unstable and the system
exhibits sustained periodic pulses, chaotic bursts of pulses and
sustained chaotic pulsing. In our study we focused on the region
1.86 < α < 2, where the steady state is excitable and oscillations
can be induced by noise and/or heterogeneity. This is shown
in the bifurcation diagram in Figure 1B. For the chosen noise
level, oscillations occur at α > 1.93. Noteworthy, with increasing
α the excitability level and the cellular activity increase as well.
Therefore, increasing α in our model emulates the decrease in
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glucose-induced KATP-channel conductance, the main trigger of
beta cells in realistic models (Stamper and Wang, 2019). The
temporal behavior of our single-cell phenomenological model
is visualized in Figure 1C, for different values the bifurcation
parameter α.

Intercellular Coupling Model
The sum in Eq. (1) signifies the electrical coupling and it runs
over all cells, whereby εij = 1 if the unit i is coupled to unit j,
whilst otherwise εij = 0. gi is the coupling constant. The structure
of the intercellular coupling between beta cells was modeled by
the random geometric graph model (Penrose, 2007). First, all
N = 200 cells were arranged randomly in a unit square with a
prescribed minimal possible distance (0.04) to ensure a more
homogeneous and realistic spatial distribution of cells. Then, the
i-th and the j-th cell were considered to be connected, i.e., εij = 1,

if their physical distance was less than rij =
√〈

k
〉
/ (Nπ), where〈

k
〉
= 6 signifies the average number of connections per cell.

A typical intercellular network structure is shown in Figure 2A.

Modeling the Temporal Responses to Stimulation
To simulate the progressive recruitment of beta cells
after switching from substimulatory to stimulatory or
suprastimulatory glucose concentrations, we introduced a
time-dependent function for the parameter αi that reflects the
cellular excitability level:

αi(t) = α0 +1αi[
A (t − ts)Be−B(t−ts)+1

+
(t − ts)

2

(t − ts)
2
+
(
Tm,i − ts

)2

]
, (3)

In this manner, we took into account the delay due to glucose
metabolism. In Eq. (3) α0 = 1.90 is the basal substimulatory
level of excitability with no activity, 1α is the amplitude of
the increased excitability for the i-th cell provoked by increased
glucose concentration, and ts is the initial time before the cells
respond to stimulation. The first term within the brackets on the
right side of Eq. (3) stands for the initial and the second term
for the successive beta cell activations. We implemented such
a biphasic and glucose-dependent response to account for the
previously observed biphasic and glucose-dependent behavior
of beta cells in terms of their metabolic, electrical, [Ca2+]IC,
and secretory response described above. The parameters A ∈
[0, 1] and B signify the glucose-dependent amplitude and decay
rate of the first activation. The parameter Tm,i specifies the
temporal scale of the final activation, i.e., elevation in the level of
excitability. On the basis of experimental results we hypothesized
that under lower and physiological stimulatory conditions the
amplitude of the first response and the decay rate are lower (A =
0.45 and B = 0.0004) than under high and supraphysiological
stimulatory levels (A = 0.7 and B = 0.0008). Moreover, to
account for the longer activation phase observed under 8 mM
glucose in comparison to 12 mM stimulation, we set the half-
activation times to T(8)m,i = 35000 and T(12)

m,i = 20000. Finally,
to resemble a higher intrinsic beta cell activity under higher

stimulation, we set the parameters when emulating the behavior
under 8 mM glucose to 1α = 0.08 and σ = χ = 0.001 and to
1α = 0.09 and σ = χ = 0.0012 when emulating the behavior
under 12 mM glucose. It should be noted that these small
changes in the parameters σand χ have an insignificant effect
on bifurcation behavior reported in Figure 1. Temporal traces
of simulated excitability rates when switching to stimulatory and
suprastimulatory conditions are shown in Figure 2B. Since the
parameter α regulates the cellular activity (see Figure 1), by
this means a stimulation-specific temporal recruitment of beta
cells is modeled.

Heterogeneity of Beta Cells
Previous studies have suggested an extensive heterogeneity
among β cells due to differences in topography, cell sizes,
functional maturity, channel densities, intercellular coupling,
rates of glucose metabolism, membrane potential changes,
[Ca2+]IC oscillations, granule content, and secretory capacity,
to name only a few examples (MacDonald and Rorsman,
2006; Benninger and Piston, 2014; Bader et al., 2016; Roscioni
et al., 2016; Pipeleers et al., 2017; Skelin Klemen et al., 2017;
Benninger and Hodson, 2018; Nasteska and Hodson, 2018).
To robustly account for the abovementioned differences in
glucose sensitivity and metabolism, electrical excitability and
[Ca2+]IC signals, as well as intercellular coupling strength,
we introduced in our phenomenological model heterogeneity
three crucial aspects of cellular signaling: (i) stimulation-
induced temporal change in excitability (parameter Tm,i),
(ii)stimulation-dependent increase in excitability (parameter
1αi), and (iii) intercellular coupling strength (parameter gi). All
three parameters were assumed to follow a truncated normal
distribution with a relative standard deviation of 30% and a
cut-off of 90%. The three types of cellular heterogeneity are
schematically visualized in Figure 3.

Processing of Time Series and Activity
Pattern Classification
Time series of individual cells obtained from experimental
recordings were first accordingly processed to achieve a coherent
and accurate binarization. The main task of this pre-processing
step is to level and smooth the individual time series, remove
noise, and firmly extract the fast component of Ca2+ oscillations.
To this purpose, we utilized a band pass filter, whereby the
frequency band of interest was determined by visual assessment.
The filtered signal was then additionally smoothed with standard
sliding window algorithm, with a window size of four frames
(Yaroslavsky et al., 2001). Preprocessing of computationally
obtained traces was not required. In continuation the time series
from experiments and simulations will be referred to as x and
the corresponding value at (discrete) time t as x(t). The following
binarization procedure was based on the: (i) standard deviation
std [x], (ii) first derivative of time series x

′

(t), and (iii) standard
deviations of its the first derivative std

[
x
′
]

. First, we have defined

the potential onset and ending times of individual Ca2+ spikes
by searching for local extremes in the first derivative. More
precisely, our algorithm searches for local maxima’s, which satisfy
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FIGURE 1 | Dynamical features of the Rulkov map. (A) Real and imaginary eigenvalues λ1 and λ2 for different values of the control parameter α. (B) Bifurcation
diagram of the fast variable with (blue) and without (green) added noise. (C) Traces of the fast variable with (blue) and without (green) noise for different values of
excitability levels α.

FIGURE 2 | Features of the phenomenological model of beta cell population. (A) A typical simulated beta cell network architecture. Red dots denote individual cells
and the arrows depict intercellular electrical coupling. (B) Simulated time course of beta cell excitability rate after switching from substimulatory to stimulatory
(1α = 0.08, A = 0.45, B = 0.0004, T(8)m,i = 35000, ts = 10000) and suprastimulatory (1α = 0.09, A = 0.70, B = 0.0008, T(12)

m,i = 20000, ts = 10000) conditions.
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FIGURE 3 | A schematic representation of all three types of heterogeneities in
the model. (A) electrical excitability 1αi , (B) beta cell metabolism Tm,i , (C)
electrical coupling gi . Widths of connections reflect the coupling strength.

the condition x
′

(t) > 1.5std
[

x
′
]

. The time, at which the local

maxima is found is then the potential onset of Ca2+ spikes,
tSTART. In a time forward direction, we than seek the first
local minima that satisfies the condition x

′

(t) < −1.5std
[

x
′
]

and store its time of occurrence, tEND. Lastly we test, if the
local maximum of the Ca2+ signal within the time interval
t ∈ [tSTART, tEND] satisfies the condition x(t) > 1.5std [x]. The
corresponding binary time series takes on a value of 1 in all
time intervals t ∈ [tSTART, tEND], where the three conditions are
satisfied, whilst otherwise the value is 0.

Afterward, we used binarized time series and the physical
positions of individual cells to merge spatially and temporally
synchronized events into clusters by performing the space-
time cluster analysis, as proposed by Jung (1997) and Jung
et al. (1998). In brief, we combined the information about
the positions of cells and their binary traces into a space-
time cube (STC). In this STC we defined a cubic region of
interest (STC-ROI) in which we search for active cells. If two
cells in neighboring STC were simultaneously active, they were
considered to belong to the same cluster. In other words, we
traced the course of the wave from cell-to-cell and if the nearby
cells became activated within a short time period and if they
were close enough, the given activation was considered as one
individual cluster with size p. By this means, an individual STC
contains the information about the number of cells that were
activated in a given excitation wave, as well as about the temporal
extent of the given event, as described previously (Gosak et al.,
2017). The spatial side-length of the STC was determined
as the average distance to 6 closest neighbors (∼25 µm in
experiments and∼0.12 in simulations). The temporal side-length
was determined empirically, so that a firm of discrimination of
individual waves was attained. To quantify the spatiotemporal
activity patterns in experiments and simulations, we calculated
the distribution of cluster sizes N(p) for different stimulation
protocols and activity phases. Finally, the results were fitted
with a power-law function to qualitatively evaluate the nature
of the distribution, i.e., critical vs. supercritical behavior. In
particular, by visually assessing deviations from the power-
law distribution in the form of an excess of global events
we determine the supercritical nature of the spatio-temporal
activity, whereas a close-to-power-law behavior implies critical-
like behavior, as suggested previously (Levina et al., 2007;
Friedman et al., 2012).

RESULTS

First, we present experimentally measured beta cells activity
after switching from substimulatory to stimulatory and
suprastimulatory levels of glucose. Then, we show the results
of our computational model of interconnected excitable
cells, which was designed to mimic the activity patterns
observed in experiments under physiological as well as
under supraphysiological levels of stimulation. Data either
from experiments or from simulations were handled in the
same manner, in order to provide foundation for further
characterization of the spatiotemporal activity.

Experimental Results
To record beta cell responses to glucose stimulation, we used
multicellular confocal imaging on acute tissue slices as described
in Materials and methods. We stimulated islets with two
glucose concentrations: one commonly observed in vivo, i.e.,
8 mmol/l, and one measured in conditions of stress or glucose
intolerance, i.e., 12 mmol/l. We termed the former physiological
and the later supraphysiological concentration. Following either
stimulus, beta cells exhibited a two-phase response: (i) an
activation phase, characterized by a transient increase in [Ca2+]IC
and presence of fast oscillations, during which beta cells
were gradually recruited, and (ii) a subsequent plateau phase,
characterized by repeated and more regular oscillations of
now fully recruited beta cells (Figures 4A, 5A). Heterogeneity
of beta cells responses was reflected in the time window
during which cells activate within an islet. These intervals
differ for the two stimulatory concentrations: about 600 s
(100 s < t < 700 s, Figure 4A) for the physiological and about
300 s (150 s < t < 450 s, Figure 5A) for the supraphysiological
concentration. To surpass the qualitative description of the
two phases, we looked for collective spatiotemporal behavior of
beta cells. To this aim, we meticulously detected Ca2+ waves
during both phases, and plotted them as individual events in
space-time for better visualization. While being stimulated with
the physiological concentration, the activation phase exhibited
very heterogeneous spatiotemporal behavior, one that resulted
in calcium waves of very different sizes (Figure 4B). The
following plateau phase evoked a more regular pattern of
[Ca2+]IC oscillations, with prevailing global intercellular calcium
waves that encompassed often the majority of the cells within
an islet (Figure 4D). However, the activation/plateau pattern
changed during supraphysiological stimulation. Majority of
the cells responded with a rapid burst of oscillatory activity
followed by brief refractory period during the activation phase
(Figure 5B). The subsequent plateau phase was dominated
by global intercellular calcium waves (Figure 5D). To be
able to quantify the former description, we determined the
distribution P(s) of relative wave sizes s and plotted it on log-
log scale (Figures 4C,E, 5C,E). While comparing P(s) for the
two concentrations in question, we observed that in the lower
concentration the P(s) in the activation phase followed the
power law, whereas the plateau phase was again dominated by
global waves. Such switching in behavior from the critical to
the supercritical was not observed in the higher stimulatory
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FIGURE 4 | Experimentally measured beta cell responses after stimulation with 8 mM glucose. (A) Three characteristic Ca2+ traces and the raster plot of binarized
Ca2+ activity of all cells in the islet. The orange dotted line indicates the fraction of active cells within the given time-window that was slid throughout the recording.
(B,D) 3D raster plots showing the Ca2+ activity waveforms for selected intervals for the activation (B) and plateau (D) phase. Colors denote specific Ca2+ events.
Gray dots on the y, z plane stand for coordinates of cells. (C,E) The distributions of Ca2+ wave sizes for the activation (C) and plateau (E) phase. The gray dashed
line indicates the power-law fit. The slope in the critical-like activation phase is –1.69.

concentration, during which the behavior was locked to the
supercritical during both phases. Namely, the activation phase
under supraphysiological concentrations was too rapid, exhibited

a huge activation burst, and lacked the progressive recruitment of
cells that featured an emergent behavior with very heterogeneous
Ca2+ waves.
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FIGURE 5 | Experimentally measured beta cell responses after stimulation with 12 mM glucose. (A) Three characteristic Ca2+ traces and the raster plot of binarized
signals of Ca2+ oscillations in all cells in the islet. The orange dotted line indicates the fraction of active cells within the given time-window that was slid throughout
the recording. (B,D) 3D raster plots showing the Ca2+ waves for selected intervals for the activation (B) and plateau (D) phase. Colors denote specific Ca2+ events.
Gray dots on the y, z plane stand for coordinates of cells. (C,E) The distributions of Ca2+ wave sizes for the activation (C) and plateau (E) phase. The gray dashed
line indicates the power-law fit.
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Computational Results
We developed a phenomenological model of coupled
excitable cells with the aim to explore the prerequisites and
mechanisms that lead to complex dynamical behavior observed
in experiments. The minimalistic map-based description of
excitable dynamics mimics the activity of beta cells. The
stimulation was modeled as a heterogeneous and delayed
increase in the excitability level, whereby a higher increase
was used when supraphysiological stimulation was simulated
(see section “Materials and Methods”). To further account for
beta cell heterogeneity, we additionally included cell-to-cell
variability in the absolute levels of excitability and in the
intercellular coupling strength. In this case, we obtained a good
qualitative agreement with experimental findings. The results are
presented in Figures 6, 7 for the simulation of physiological and
supraphysiological stimulations, respectively.

Regardless of the stimulation level, we observed a biphasic
response. Most importantly, the activation phase under lower
stimulation levels was rather long and exhibited waves of various
sizes and many of them were confined to small sub-regions
of the islet. This is a result of very heterogeneous responses
to stimulation, which in turn led to non-trivial and self-
organized dynamical patterns. As in experimental measurement,
the distribution of spatiotemporal cluster sizes was found to
roughly follow a power-law (Figure 6C), which pinpoints toward
a transient phase of critical dynamics. In contrast, the activation
phase under supraphysiological conditions was shorter and the
wave sizes were larger and more homogeneous, similarly as in
the experiment. Consequently, the distribution deviates from the
pure power-law behavior, mostly on account of an excess of larger
excitation events (Figure 7C). The second plateau phase was
qualitatively very similar in both scenarios. In both cases the
spatiotemporal activity was dominated by global waves, thereby
indicating supercritical behavior (Figures 6E, 7E). However, the
waves were found to be more frequent and coherent under higher
stimulation levels. This resulted to a large extent due to higher
excitability levels, which made the cells operate in an even more
ordered regime in which stochasticity is less pronounced.

A good agreement between experimental and computational
results was obtained only if all three types of heterogeneities,
i.e., in excitability level, in the delayed responses to stimulation,
and in intercellular coupling strengths were implemented
simultaneously. To test the necessity of such a multilayered
heterogeneity, we systematically performed simulations with
physiological and supraphysiological stimulations without
considering one of the particular heterogeneities. Results are
presented in Figure 8. It can be seen qualitatively that without
any of the heterogeneities the simulations do not match well
with experimental results. The most obvious difference occurs in
the activation phase after the initial activation, where especially
in the case of physiological stimulation diverse wave sizes were
observed if all three types of heterogeneities were considered.
Here, on the other hand, the dynamics after the initial activation
and before the system shifts to the plateau phase, is very inactive
and lacks on an emergent transitory phase with progressive
recruitment of cells. On the contrary, the plateau phase seems

to be weakly affected by the lack of any type of variability
and even if one of the heterogeneities is missing, the system
behavior very similar as in control simulations. This behavior
is somehow expected, since after (probably unphysiological)
prolonged stimulation all cells get very excitable and placed in
the supercritical regime. Also, the heterogeneity imposed by
variability in metabolism diminishes. For a more quantitative
evaluation we present in Table 1 the relative activity time in both
phases for the experimental data, for the control simulations
with 30% variability in all three types cellular heterogeneity, and
for simulations without one particular aspect of heterogeneity.
The results indicate that indeed the interplay between all
three types of heterogeneities is necessary to firmly reproduce
the experimentally observed behavior, although it seems that
variability in metabolism is the most important determinant,
whereas the heterogeneity in the coupling appears to be the
least important.

Finally, after determining that all three types of heterogeneities
are required, we explored the impact of their level on the
spatio-temporal activity. Figure 9 features the results. It can
be observed that no or low degrees of heterogeneities fail to
firmly reproduce experimental findings. In case of physiological
stimulation, the initial activation of cells is missing and the
cells respond much later without a progressive recruitment
characterized by excitation waves of different sizes. Moreover,
also the emulated supraphysiological stimulation differs if the
level of heterogeneity is too low. Especially the dynamical phase
after the initial activation is in this case very quiet, in contrast
to the experiment and simulations with a higher degree of
cellular variability, where a certain fraction of cells oscillates in
this intermediate regime before the switch to the plateau phase.
A quantitative assessment of this observation is presented in
Table 1. It can be seen that with increasing levels of cell-to-
cell variability the behavior in simulations becomes more similar
to experimental results, although especially in the case with
physiological stimulation 20% heterogeneity is not sufficient to
achieve good consistency.

DISCUSSION

Information processing in living organisms is orchestrated by
large networks of interacting cells. In many cases, the dynamics
of these networks is guided by the activation of one or a
few elements, which in turn provokes the triggering of other
elements, thereby leading to avalanches of activity that propagate
through the system. Such emergent behavior is associated with
self-organization and very often with critical dynamics resulting
in a power-law distribution of the spatial and/or temporal
extent of activity profiles. This scenario is particularly appealing
for excitable systems, such as neuronal networks (Plenz and
Thiagarajan, 2007; Hesse and Gross, 2014; Muñoz, 2018) or
excitable cells and tissues (Lopez et al., 2012; Nivala et al.,
2012; Gosak et al., 2017). Typically, critical dynamics emerges
at the transition between randomness (subcritical dynamics) and
order (supercritical dynamics). Variations of dynamical regimes
can be induced by changes of global parameters, such as the
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FIGURE 6 | Simulated beta cell responses after switching from a substimulatory to stimulatory levels of stimulation, i.e., from 6 to 8 mM glucose. (A) Three
characteristic traces of simulated cellular dynamics and the raster plot of binarized cellular activity. The orange dotted line indicates the fraction of active cells within
the given time-window that was slid throughout the simulation. (B,D) 3D raster plots showing the excitation waves for selected intervals for the activation (B) and
plateau (D) phase. Colors denote individual waves. (C,E) The distributions of excitation wave sizes for the activation (C) and plateau (E) phase. The gray dashed line
indicates the power-law fit. The slope in the critical-like activation phase is –1.64.

excitability level, which reflects stimulus intensity. However,
in this case a power-law behavior would only be expected
in a narrow parameter space in the proximity of a phase
transition point. Previous research has underlined the activity-
dependent synaptic plasticity, heterogeneity, and hierarchical
network organization as plausible mechanisms to overwhelm

this drawback. Namely, these biological determinants were found
to facilitate scale-free behavior and drive neuronal networks
toward the critical state (Levina et al., 2007; Rubinov et al., 2011;
Moretti and Muñoz, 2013). These self-organization mechanisms
make the oscillators hover around the critical point, which are
therefore able to generate effective scale invariance across quite
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FIGURE 7 | Simulated beta cell responses after switching from a substimulatory to a suprastimulatory level of stimulation, i.e., from 6 to 12 mM glucose. (A) Three
characteristic traces of simulated cellular dynamics and the raster plot of binarized cellular activity. The orange dotted line indicates the fraction of active cells within
the given time-window that was slid throughout the simulation. (B,D) 3D raster plots showing the excitation waves for selected intervals for the activation (B) and
plateau (D) phase. Colors denote individual waves. (C,E) The distributions of excitation wave sizes for the activation (C) and plateau (E) phase. The gray dashed line
indicates the power-law fit.

a few scales. The phenomenon is often termed as self-organized
quasi-criticality (Muñoz, 2018).

In the present study, we suggest a new mechanism that realistic
excitable systems might exploit for expanding the operation in a
critical-like regime. As the level of cellular excitability (parameter

α) increases with time, the spatio-temporal activity switches from
an inactive to an active phase (Osipov et al., 2007). If excitable
oscillators are homogeneous, critical behavior is expected only
at the phase transition point. In our setting, where the control
parameter increases with time, criticality would therefore be
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FIGURE 8 | Simulated beta cell responses without particular types of cellular heterogeneities. Behavior without heterogeneity in the intrinsic excitability level (A,B),
without heterogeneity in the delayed responses to stimulation (C,D), and without heterogeneity in intercellular coupling (E,F), for both physiological (A,C,E) and
supraphysiological (B,D,F) stimulation levels.

observed for a very short transient period of time. However,
the combination of cell-to-cell variability and heterogeneously
delayed increases in excitability levels substantially broaden
this regime of critical-like behavior. As a result, a rather long
transient dynamical phase emerges with heterogeneous wave
sizes, the distribution of which closely follows a power law. Even
though this critical phase is only temporary and later followed
by a supercritical phase dominated by global excitatory events,
critical-like behavior persists for substantial periods of time.

It should be emphasized that due to the transient nature of
the scale-invariant activation phase, the observed power law is
only an estimation, since much higher number of events would
be required to confirm a pure power-law behavior. Moreover,
the present study only provides an empirical observation of
transient critical-like dynamical state, and further theoretical
efforts are needed to uncover the exact mechanisms for the
emergence of critical dynamics in such heterogeneous systems
with delayed feedbacks.

TABLE 1 | Activity time during physiological and supraphysiological stimulations.

Physiological stimulation (8 mM glc) Supraphysiological stimulation (12 mM glc)

Act. ph. Plat. ph. Plat./Act. Act. ph. Plat. ph. Act./Plat.

Exp 3.0 12.0 4.0 3.9 16.7 4.3

Sim (30% het) 3.2 13.4 4.2 3.3 14.4 4.4

No het cpl 2.0 12.6 6.3 2.1 15.3 7.3

No het exc 1.1 13.2 12.0 2.5 14.6 5.8

No het met 0.7 13.4 19.1 1.0 15.5 15.5

Het 0% 0.0 3.1 / 0.5 13.9 27.8

Het 10% 0.0 6.2 / 1.0 14.5 14.5

Het 20% 1.1 12.1 11 2.2 15.0 6.8

Shown are percent of active time during activation phase of the response (Act. ph.), plateau phase of the response (Plat. ph.), and the relative ratio of the two (Plat./Act.),
calculated for experimental data (Exp), and for the model with 30% heterogeneity in all three aspects [Sim (30% het)]. Additionally, values are depicted for the model with
no heterogeneity in the coupling parameter (No het cpl), in the excitation parameter (No het exc), and in the metabolism parameter (No het met), as well as the values for
no heterogeneity (Het 0%), for 10% (Het 10%), and for 20% (Het 20%) variability in all three aspects of heterogeneity. Bold values refer to original main results.
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FIGURE 9 | Simulated beta cell responses for different degrees of heterogeneities. Simulating the behavior without (A,B), with 10% (C,D), and 20% (E,F) of the
used degree of heterogeneities for physiological (A,C,E) and supraphysiological (B,D,F) stimulation levels.

In real-life settings, it is quite common to have transient
or oscillatory stimulation patterns instead of a long-lasting
permanent stimulation. In neurons (Buzsaki, 2004; Schroeder
and Lakatos, 2009), in pancreatic islets (Pedersen et al., 2013;
Satin et al., 2015), and in cardiac myocytes (O’Rourke et al.,
1994), the excitation dynamics is governed by basal variations in
intrinsic excitability, for instance due to oscillations in hormone
or nutrient concentrations. Notably, in our previous study we
have shown that such an oscillatory entraining might be a
key toward persisting criticality in pancreatic beta cells (Gosak
et al., 2017). Apparently, providing proper transitory conditions
for heterogeneous excitable elements that exhibit delayed and
variable responses to stimulation is a viable route to scale-
free behavior. Because of these heterogeneities, changeable and
confined regions with elevated excitability emerge from which
the excitation waves are triggered. In the activation phase, the
waves are typically triggered from cells whose excitability level
increased faster, whereas in the plateau phase no specific patterns
can be inferred. Moreover, the range of waves in the activation
phase depends on the coupling and on the variable excitable
state of surrounding elements. This in turn leads to emergent
behavior with very heterogeneous spatiotemporal patterns. Most
importantly, the critical-like activation phase is only possible
to achieve if the stimulation level is not too high. Namely, in
case of supraphysiological stimulation levels, the transition to
the supercritical state is too abrupt and possibly accompanied
by processes that do not occur under physiological conditions,

at least not to a notable extent. Consequently, excitable cells
are not able to self-organize into a scale-invariant dynamical
state, as is the case in physiological stimulation conditions. Cell-
to-cell differences are always present to some degree in any
cell population, impacting the signaling processes in various
tissues and settings (Muotri and Gage, 2006; Marhl et al., 2010;
Paszek et al., 2010). Notably, cellular heterogeneity is more than
a nuisance and often serves a biological function or contains
meaningful information (Altschuler and Wu, 2010). In islet
research, beta cell heterogeneity has been one of the key issues
for decades and is becoming increasingly popular, particularly
in the context of subpopulations (Bader et al., 2016; Avrahami
et al., 2017). Thus, the central concept of our model, i.e.,
multiform beta cell heterogeneity, has a long tradition. In 1987,
Pipeleers defined it on grounds of structural, functional, and
replicative differences between beta cells. More specifically, he
pointed out differences between beta cells in terms of contact
with other types of endocrine cells, in gap junctional coupling,
and cellular hormone content, in their ability and sensitivity to
mount a response to glucose, and in their replicative potential.
Ahead of time, he argued that altered beta cell heterogeneity
may turn out to be important in development of diabetes
and in islet transplantation (Pipeleers, 1987). In two updates
shortly thereafter, he provided evidence for functional differences
between beta cells in their rates of glucose-induced insulin
synthesis and secretion that were attributed to differences in
thresholds for glucose utilization and oxidation. Notably, already
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at that time the idea was put forward that cellular heterogeneity
crucially determines dose-dependence of the beta cell response
to glucose due to recruitment of beta cells into an active state
by increasing glucose concentrations and that elevated levels of
glucose can decrease the extent of heterogeneity. Additionally, he
proposed that heterogeneity is not just an experimental artifact
observed in dispersed beta cells, but at work also in intact tissue
(Pipeleers, 1992; Pipeleers et al., 1994). Following the advent
of new molecular markers and the omics approaches, in the
last decades the concept of beta cell heterogeneity has been
further supported at the transcriptomic and proteomic level,
together with novel findings that heterogeneity affects beta cell
proliferation and survival, as well as their stimulus-secretion
coupling, from glucose metabolism and Ca2+ signaling to insulin
secretion (Benninger and Piston, 2014; Roscioni et al., 2016;
Avrahami et al., 2017; Gutierrez et al., 2017; Pipeleers et al., 2017;
Benninger and Hodson, 2018). Finally, it has been proposed that
the lack of beta cell heterogeneity may importantly contribute
to islet failure in diabetes (Johnston et al., 2016; Pipeleers et al.,
2017; Skelin Klemen et al., 2017; Benninger and Hodson, 2018;
Nasteska and Hodson, 2018). One major drawback, common to
most recent work, is the use of dispersed beta cells. It therefore
remains to be investigated to what extent the heterogeneity
described thus far is translationally relevant in the tissue context
or even in vivo (Carrano et al., 2017; Benninger and Hodson,
2018; Gosak et al., 2018; Nasteska and Hodson, 2018).

By employing the tissue slice approach, we studied a large
number of coupled beta cells in their normal tissue environment.
Our experimental and modeling results intersect with both the
original and more recent findings on beta cell heterogeneity at
several points and provide some new ideas. First, during the
activation phase, differences in glucose sensitivity were observed
between different cells within the same islet and these differences
were larger in lower glucose (8 mM). In other words, in
lower glucose, gradual recruitment of beta cells into an active
state, brought about by local [Ca2+]IC waves displaying critical
behavior seems to be a major feature of the islet response to
constant stimulation. In contrast, in high glucose (12 mM),
recruitment is less well pronounced due to early global [Ca2+]IC
waves showing supercritical behavior. We wish to speculate
that recruitment (Stožer et al., 2013a; Gosak et al., 2017) and
local [Ca2+]IC waves (Benninger et al., 2014; Westacott et al.,
2017) in islets, as opposed to dispersed cells or clusters of cells
(Jonkers and Henquin, 2001), have received less attention in
the scientific community due to use of high stimulatory glucose
concentrations. Second, further aspects of adaptation in the
response to higher glucose are the shorter average delay to
activation, shorter activation phase, and higher activity during the
plateau phase. Since it has been shown recently that in addition to
different pools of granules, the triggering Ca2+ signal importantly
shapes the biphasic insulin secretion in response to constant
stimulation by glucose (Pedersen et al., 2019), our findings shall
importantly inform future models of beta cell insulin secretion.
Additionally, the behavior of beta cells during the activation
phase, when they are not functioning in synchrony with other
cells, could be compared with their properties during the plateau
phase to more precisely establish the relationships between their

different roles. More specifically, such comparison could help
answer the question whether the cells that activate first are also
the ones that initiate global [Ca2+]IC waves and possess the most
functional connections, i.e., function as hubs, during the plateau
phase (Stožer et al., 2013b; Johnston et al., 2016; Westacott
et al., 2017). Third, using our phenomenological model, we found
that all three types of heterogeneities, the choice of which is
further substantiated in the following section, are necessary and
sufficient to reproduce the experimentally observed behavior.
This of course does not exclude the possibility that additional
aspects of heterogeneity exist in reality and further modulate
beta cell responses.

In comparison with our previous study, we used here a very
simple phenomenological model to reproduce the experimentally
observed non-trivial activity patterns in islets (Gosak et al.,
2017). Such minimalistic modeling approaches have of course
limitations, since they do not allow for any mechanistic
insights into physiological processes and signaling pathways.
At the same time, they offer several advantages. They are
numerically very efficient, and most importantly, they contain
a small number of parameters whose roles are rather clear,
which makes it easier to explicitly study particular aspects of
cellular heterogeneity. In contrast, realistic and multi-component
cellular models exhibit many parameters that in general affect
several aspects of signalization, which hinders a systematic
and definitive examination of their particular influences on
cellular behavior. Finally, it should be noted that the majority
of existing comprehensive beta cell models were mainly focused
on the activity on the plateau phase, whereas modeling of
collective cellular activations after switching from substimulatory
to (supra)stimulatory glucose received very little attention. The
mechanisms that govern such stimulus-dependent activation are
also understood incompletely. Phenomenological modeling is
therefore beneficial in this respect, as long as the empirical
description of the processes ensures good agreement between
modeling and experimental results. In particular, the time
lags and temporal evolution of the excitability level [see eq.
(3)] are plausible processes that can be qualitatively linked
with previous experimental observations, such as differences
in metabolic sensitivity to glucose and the following electrical
and [Ca2+]IC responses (Stožer et al., 2013a,b; Benninger
et al., 2014; Farnsworth and Benninger, 2014; Johnston et al.,
2016). Moreover, we decided to include heterogeneity in
intercellular coupling due to the extensive experimental support
demonstrating its importance in both normal and pathological
islet functioning (Hodson et al., 2013; Farnsworth et al., 2014,
2016; Johnston et al., 2016; Skelin Klemen et al., 2017). However,
here we focused only on the fast [Ca2+]IC oscillations and
future studies will conceivably need to include additional aspects
of heterogeneity to provide a comprehensive and realistic beta
cell model capable of describing other components of the
[Ca2+]IC pattern, other parameters in the stimulus-secretion
cascade, as well as responses to different levels of stimulation and
different secretagogues.

Multiscale and multidimensional heterogeneity represent a
viable route to critical-like behavior for a substantial period of
time. Specifically, the dynamical transition between the inactive
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and active state occurs in a rather broad temporal interval,
especially in the case of physiological levels of stimulation. In
other words, as the glucose level increases the activation of
cells is not abrupt. Before switching to the dynamical state with
global Ca2+ events, a transient period of very heterogeneous
wave sizes is observed, which implies a critical-like behavior,
since the system as a whole bypasses the critical point rather
slowly. On the other hand, supraphysiological high stimulation
levels lack on such progressive recruitment of cells and lead
to a rapid transition to a fully active state. This might be
crucial for healthy physiological functioning of pancreatic islets
and potentially of other biological tissues as well. Namely,
for other biological tissues, there is a large body of evidence
indicating severe pathophysiological consequences of an abrupt
collective transitions to hyper-regulated synchronous tissue
responses. An overview was given by Trefois et al. (2015),
showing that critical transitions are identified as early warning
signals for the onset of different pathologies ranging from
microbiome dysregulations to irritable bowel syndrome, asthma,
pulmonary disease, depression, type 1 and type 2 diabetes,
inflammation, start and termination of epileptic seizures, cancer,
and cardiovascular events.

Further investigations are needed to understand the onset of
pathological supercritical behavior in more detail. The molecular
and cellular mechanisms are still obscure; however, the results
of our study, although only empirical, give at least a hint to an
improved methodology, opening a new dimension in studying
the (premature) onset of supercriticality by looking at the extent
of cell heterogeneity. Some preliminary studies in our lab show
that beta cell responses in terms of [Ca2+]IC signals shall also
be correlated with other aspects of heterogeneity to get a more
complete picture about the mechanisms that make some cells
more responsive to glucose and to find out whether this is
a stable property or something that changes with time and
on which temporal scale. In addition, different concentrations
of glucose and additional stimulation protocols, as well other
secretagogues shall be used in future studies. Moreover, the
general extent of heterogeneity in the islets, as well as the
properties of individual cells shall be investigated in mouse
models of diabetes and in human islets from normal and diabetic
donors to more clearly define the changes under pathological
conditions and suggest targets for treatment (Benninger and
Hodson, 2018; Stožer et al., 2019). In general, from the viewpoint
of clinical approaches, the understanding of critical transitions
might help us develop therapies that are more effective. From the

viewpoint of preventive health care, an improved understanding
of the pathological premature transitions to supercriticality
could help us identify and characterize some early warning
signals predicting the upcoming pathological transitions. Finally,
beyond the preventive and therapeutic role Bargaje et al. (2017)
showed that an increase in cell heterogeneity of stem cells
just before the critical transition correlates with a branching
point on the trajectory of cell fate. This represents a useful
tool for forecasting the cell fate outcomes and can be used for
optimizing the differentiation protocols in order to obtain desired
cell populations, which opens a completely new dimension of
bioengineering in the future.
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Gosak, M., Stožer, A., Markovič, R., Dolenšek, J., Perc, M., Rupnik, M. S., et al.
(2017). Critical and supercritical spatiotemporal calcium dynamics in beta cells.
Front. Physiol. 8:1106. doi: 10.3389/fphys.2017.01106

Gutierrez, G. D., Gromada, J., and Sussel, L. (2017). Heterogeneity of the pancreatic
beta cell. Front. Genet. 8:22. doi: 10.3389/fgene.2017.00022

Hahn, G., Ponce-Alvarez, A., Monier, C., Benvenuti, G., Kumar, A., Chavane,
F., et al. (2017). Spontaneous cortical activity is transiently poised close
to criticality. PLoS Comput. Biol. 13:e1005543. doi: 10.1371/journal.pcbi.
1005543

Haimovici, A., Tagliazucchi, E., Balenzuela, P., and Chialvo, D. R. (2013). Brain
organization into resting state networks emerges at criticality on a model of the
human connectome. Phys. Rev. Lett. 110:178101. doi: 10.1103/PhysRevLett.110.
178101

Hamelin, R., Allagnat, F., Haefliger, J.-A., and Meda, P. (2009). Connexins, diabetes
and the metabolic syndrome. Curr. Protein Pept. Sci. 10, 18–29. doi: 10.2174/
138920309787315167

Head, W. S., Orseth, M. L., Nunemaker, C. S., Satin, L. S., Piston, D. W., and
Benninger, R. K. P. (2012). Connexin-36 gap junctions regulate in vivo first- and
second-phase insulin secretion dynamics and glucose tolerance in the conscious
mouse. Diabetes 61, 1700–1707. doi: 10.2337/db11-1312

Henquin, J. C., and Meissner, H. P. (1984). Significance of ionic fluxes and changes
in membrane potential for stimulus-secretion coupling in pancreatic B-cells.
Experientia 40, 1043–1052. doi: 10.1007/BF01971450

Frontiers in Physiology | www.frontiersin.org 17 July 2019 | Volume 10 | Article 869

https://doi.org/10.1073/pnas.1621412114
https://doi.org/10.1038/nn.4415
https://doi.org/10.1111/j.1463-1326.2007.00780.x
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
https://doi.org/10.1007/s11892-018-1085-1082
https://doi.org/10.1113/jphysiol.2011.218909
https://doi.org/10.2337/DBI17-0040
https://doi.org/10.2337/DBI17-0040
https://doi.org/10.1016/j.tem.2014.02.005
https://doi.org/10.1529/biophysj.108.140863
https://doi.org/10.1016/j.bpj.2014.10.048
https://doi.org/10.1038/35036035
https://doi.org/10.1038/35036035
https://doi.org/10.1152/ajpendo.00359.2007
https://doi.org/10.1073/pnas.1118633109
https://doi.org/10.1152/physrev.00027.2010
https://doi.org/10.1152/physrev.00027.2010
https://doi.org/10.1038/srep35831
https://doi.org/10.1126/science.1099745
https://doi.org/10.2337/diabetes.52.2.417
https://doi.org/10.2337/diabetes.52.2.417
https://doi.org/10.1063/1.4949020
https://doi.org/10.1016/j.molmet.2017.04.012
https://doi.org/10.1152/ajpendo.00489.2011
https://doi.org/10.1038/nphys1803
https://doi.org/10.1073/pnas.1712989115
https://doi.org/10.1073/pnas.1712989115
https://doi.org/10.1371/journal.pone.0082374
https://doi.org/10.3389/fphys.2018.01966
https://doi.org/10.3389/fphys.2018.01966
https://doi.org/10.1016/j.febslet.2014.02.035
https://doi.org/10.1113/jphysiol.2014.276733
https://doi.org/10.1074/jbc.M115.679506
https://doi.org/10.1103/PhysRevLett.108.208102
https://doi.org/10.1103/PhysRevLett.108.208102
https://doi.org/10.1103/PhysRevLett.108.208103
https://doi.org/10.1103/PhysRevLett.108.208103
https://doi.org/10.1038/ncomms6308
https://doi.org/10.1016/j.ceca.2014.09.001
https://doi.org/10.1016/j.plrev.2017.11.003
https://doi.org/10.3389/fphys.2017.01106
https://doi.org/10.3389/fgene.2017.00022
https://doi.org/10.1371/journal.pcbi.1005543
https://doi.org/10.1371/journal.pcbi.1005543
https://doi.org/10.1103/PhysRevLett.110.178101
https://doi.org/10.1103/PhysRevLett.110.178101
https://doi.org/10.2174/138920309787315167
https://doi.org/10.2174/138920309787315167
https://doi.org/10.2337/db11-1312
https://doi.org/10.1007/BF01971450
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00869 July 4, 2019 Time: 16:12 # 18

Stožer et al. Self-Organized Criticality in Excitable Tissue

Hesse, J., and Gross, T. (2014). Self-organized criticality as a fundamental property
of neural systems. Front. Syst. Neurosci. 8:166. doi: 10.3389/fnsys.2014.00166

Hobbs, J. P., Smith, J. L., and Beggs, J. M. (2010). Aberrant neuronal avalanches
in cortical tissue removed from juvenile epilepsy patients. J. Clin. Neurophysiol.
27, 380–386. doi: 10.1097/WNP.0b013e3181fdf8d3

Hodson, D. J., Mitchell, R. K., Bellomo, E. A., Sun, G., Vinet, L., Meda, P.,
et al. (2013). Lipotoxicity disrupts incretin-regulated human β cell connectivity.
J. Clin. Invest. 123, 4182–4194. doi: 10.1172/JCI68459

Hraha, T. H., Westacott, M. J., Pozzoli, M., Notary, A. M., McClatchey, P. M., and
Benninger, R. K. P. (2014). Phase transitions in the multi-cellular regulatory
behavior of pancreatic islet excitability. PLoS Comput. Biol. 10:e1003819.
doi: 10.1371/journal.pcbi.1003819

Hutt, M.-T., Kaiser, M., and Hilgetag, C. C. (2014). Perspective: network-guided
pattern formation of neural dynamics. Philos. Trans. R. Soc. B Biol. Sci. 369,
20130522–20130522. doi: 10.1098/rstb.2013.0522

Ibarz, B., Casado, J. M., and Sanjuán, M. A. F. (2011). Map-based models in
neuronal dynamics. Phys. Rep. 501, 1–74. doi: 10.1016/j.physrep.2010.12.003

Johnston, N. R., Mitchell, R. K., Haythorne, E., Pessoa, M. P., Semplici, F., Ferrer,
J., et al. (2016). Beta cell hubs dictate pancreatic islet responses to glucose. Cell
Metab. 24, 389–401. doi: 10.1016/j.cmet.2016.06.020

Jonkers, F. C., and Henquin, J.-C. (2001). Measurements of Cytoplasmic Ca2+
in Islet cell clusters show that glucose rapidly recruits β-Cells and gradually
increases the individual cell response. Diabetes Metab. Res. Rev. 50, 540–550.
doi: 10.2337/diabetes.50.3.540

Jung, P. (1997). Thermal waves, criticality, and self-organization in excitable media.
Phys. Rev. Lett. 78, 1723–1726. doi: 10.1103/PhysRevLett.78.1723

Jung, P., Cornell-Bell, A., Madden, K. S., and Moss, F. (1998). Noise-induced
spiral waves in astrocyte syncytia show evidence of self-organized criticality.
J. Neurophysiol. 79, 1098–1101. doi: 10.1152/jn.1998.79.2.1098

Kahn, S. E., Cooper, M. E., and Del Prato, S. (2014). Pathophysiology and treatment
of type 2 diabetes: perspectives on the past, present, and future. Lancet 383,
1068–1083. doi: 10.1016/S0140-6736(13)62154-62156

Karin, O., and Alon, U. (2017). Biphasic response as a mechanism against mutant
takeover in tissue homeostasis circuits. Mol. Syst. Biol. 13:933. doi: 10.15252/
msb.20177599

Karin, O., Swisa, A., Glaser, B., Dor, Y., and Alon, U. (2016). Dynamical
compensation in physiological circuits. Mol. Syst. Biol. 12:886. doi: 10.15252/
msb.20167216

Khaluf, Y., Ferrante, E., Simoens, P., and Huepe, C. (2017). Scale invariance
in natural and artificial collective systems: a review. J. R. Soc. Interface
14:20170662. doi: 10.1098/rsif.2017.0662

Kinouchi, O., and Copelli, M. (2006). Optimal dynamical range of excitable
networks at criticality. Nat. Phys. 2, 348–351. doi: 10.1038/nphys289

Konstantinova, I., Nikolova, G., Ohara-Imaizumi, M., Meda, P., Kuc̆era, T.,
Zarbalis, K., et al. (2007). EphA-Ephrin-A-Mediated β cell communication
regulates insulin secretion from Pancreatic Islets. Cell 129, 359–370. doi: 10.
1016/j.cell.2007.02.044

Levina, A., Herrmann, J. M., and Geisel, T. (2007). Dynamical synapses causing
self-organized criticality in neural networks. Nat. Phys. 3, 857–860. doi: 10.1038/
nphys758

Li, J., Shuai, H. Y., Gylfe, E., and Tengholm, A. (2013). Oscillations of sub-
membrane ATP in glucose-stimulated beta cells depend on negative feedback
from Ca2+. Diabetologia 56, 1577–1586. doi: 10.1007/s00125-013-2894-2890

Li, L., Trifunovic, A., Kohler, M., Wang, Y., Petrovic Berglund, J., Illies, C., et al.
(2014). Defects in β-Cell Ca2+ dynamics in age-induced diabetes. Diabetes
Metab. Res. Rev 63, 4100–4114. doi: 10.2337/db13-1855

Lopez, L., Piegari, E., Sigaut, L., and Ponce Dawson, S. (2012). Intracellular calcium
signals display an avalanche-like behavior over multiple lengthscales. Front.
Physiol. 3:350. doi: 10.3389/fphys.2012.00350

Loppini, A., Capolupo, A., Cherubini, C., Gizzi, A., Bertolaso, M., Filippi, S., et al.
(2014). On the coherent behavior of pancreatic beta cell clusters. Phys. Lett. A
378, 3210–3217. doi: 10.1016/J.PHYSLETA.2014.09.041

Lovecchio, E., Allegrini, P., Geneston, E., West, B. J., and Grigolini, P. (2012). From
self-organized to extended criticality. Front. Physiol. 3:98. doi: 10.3389/fphys.
2012.00098

MacDonald, P. E., and Rorsman, P. (2006). Oscillations, intercellular coupling, and
insulin secretion in pancreatic β cells. PLoS Biol. 4:e49. doi: 10.1371/journal.
pbio.0040049

Marhl, M., Gosak, M., Perc, M., and Roux, E. (2010). Importance of cell variability
for calcium signaling in rat airway myocytes. Biophys. Chem. 148, 42–50.
doi: 10.1016/j.bpc.2010.02.006
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