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A coordinated functioning of beta cells within pancreatic islets is mediated by

oscillatory membrane depolarization and subsequent changes in cytoplasmic calcium

concentration. While gap junctions allow for intraislet information exchange, beta

cells within islets form complex syncytia that are intrinsically nonlinear and highly

heterogeneous. To study spatiotemporal calcium dynamics within these syncytia, we

make use of computational modeling and confocal high-speed functional multicellular

imaging. We show that model predictions are in good agreement with experimental data,

especially if a high degree of heterogeneity in the intercellular coupling term is assumed.

In particular, during the first few minutes after stimulation, the probability distribution of

calcium wave sizes is characterized by a power law, thus indicating critical behavior. After

this period, the dynamics changes qualitatively such that the number of global intercellular

calcium events increases to the point where the behavior becomes supercritical. To

better mimic normal in vivo conditions, we compare the described behavior during

supraphysiological non-oscillatory stimulation with the behavior during exposure to a

slightly lower and oscillatory glucose challenge. In the case of this protocol, we observe

only critical behavior in both experiment and model. Our results indicate that the loss of

oscillatory changes, along with the rise in plasma glucose observed in diabetes, could

be associated with a switch to supercritical calcium dynamics and loss of beta cell

functionality.

Keywords: beta cells, islets of Langerhans, self-organized criticality, intercellular dynamics, calcium waves,

glucose oscillations, computational model, confocal calcium imaging

INTRODUCTION

Homeostasis of energy-rich nutrients in blood has to cope with behavioral and environmental
extremes, such as ingestion of a large meal or prolonged fasting (Schmitz et al., 2008). The
anabolic hormone insulin promotes postprandial storage of nutrients and tightly controls their
consumption interprandially, thus playing a crucial homeostatic role, which becomes disrupted in
obesity and diabetes (Kahn et al., 2014). Similarly to many other hormones, insulin concentration
in blood oscillates, with a diurnal (meal-related) component, an ultradian component (period

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2017.01106
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.01106&domain=pdf&date_stamp=2017-12-22
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marjan.slakrupnik@muv.ac.at
mailto:marko.marhl@um.si
https://doi.org/10.3389/fphys.2017.01106
https://www.frontiersin.org/articles/10.3389/fphys.2017.01106/full
http://loop.frontiersin.org/people/423568/overview
http://loop.frontiersin.org/people/489256/overview
http://loop.frontiersin.org/people/499496/overview
http://loop.frontiersin.org/people/73038/overview
http://loop.frontiersin.org/people/104176/overview
http://loop.frontiersin.org/people/499494/overview


Gosak et al. Criticality in Pancreatic Beta Cells

of 80–180min), and a so called high-frequency component
(period of 5–15min), the last being evolutionary conserved in
differentmammals, such as humans andmice (Nunemaker, 2005;
Satin et al., 2015). It has been established beyond doubt that the
oscillations in blood are due to pulsatile release of insulin from
the pancreas. In contrast, many questions remain to be answered
with regard to how exactly this pulsatile release is brought about
and regulated, since the beta cells which sense glucose (and
other nutrients) and secrete insulin are scattered throughout the
exocrine part of the gland in the form of small organs called islets
of Langerhans, of which there are about a thousand in the mouse
and about a million in the human pancreas, and each of which
contains from a few to a couple of thousand beta cells, together
with other endocrine and mesenchymal cells (Dolenšek et al.,
2015).

The stimulus-secretion coupling process in beta cells involves
entry of glucose (and other nutrients) into the cell and its
metabolism to ATP, which in turn decreases the open probability
of ATP-sensitive potassium channels, leading to depolarization
of plasma membrane, opening of voltage-sensitive calcium
channels, a rise in the cytosolic calcium concentration ([Ca2+]c),
and triggering exocytosis (Ashcroft and Rorsman, 2013). In
addition to this canonical triggering pathway, there are probably
an additional amplifying calcium-dependent (Henquin, 2011)
and even a calcium-independent signaling pathway (Aizawa
et al., 1998).

Individual, uncoupled beta cells display oscillations of
membrane potential and [Ca2+]c with a frequency close to
the fastest of the abovementioned, but with a large degree of
heterogeneity (Tengholm and Gylfe, 2009; Satin et al., 2015).
Within islets of Langerhans, a strong intercellular coupling
force in the form of intercellular gap junctions consisting of
the connexin 36 protein and possibly other modes of cell-cell
communication overcome the heterogeneity of individual beta
cell oscillators (Bavamian et al., 2007; Konstantinova et al.,
2007; Tengholm and Gylfe, 2009; Benninger et al., 2011; Rutter
et al., 2017; Skelin Klemen et al., 2017). In whole islets,
metabolism, membrane potential, [Ca2+]c, and secretion of
insulin oscillate at a frequency close to the abovementioned 5–
15min due to coupling, however islets also display so called fast
oscillations (period of 1–15 s) in the form of bursts of membrane
depolarizations (Dean and Matthews, 1970), with accompanying
oscillations in [Ca2+]c (Gilon et al., 1992; Dolenšek et al.,
2013) and insulin secretion (Bergsten, 1995). This fast oscillatory
component is responsive to changes in glucose concentration
(see below), synchronized in different cells of an individual islet
by means of membrane potential and [Ca2+] waves (Dolenšek
et al., 2013), but does not seem to be entrained into a common
rhythm among different islets in vivo (Valdeolmillos et al., 1996).
In contrast, the slow oscillations of individual islets are not
responsive to changes in glucose concentration, but probably
are entrained into a common rhythm in vivo, yielding the 5–
15min oscillations observed in blood. It is believed that the
5–15min oscillations are due to oscillations in metabolism
and the 1–15 s oscillations are due to a feedback between
calcium and potassium channels (Satin et al., 2015). This view is
incorporated into amathematicalmodel called the dual-oscillator

model, which in addition to the mixed pattern of carrying slow
metabolic and superimposed fast electrical oscillations is also
able to account for in vitro observations of only the fast or
the slow component in absence of the other (Bertram et al.,
2007).

Metabolic differences between individual islets (Nunemaker
et al., 2005, 2009) can be overcome by weak coupling via
an intrapancreatic neural network (Fendler et al., 2009), by
negative feedback from the liver (Pedersen et al., 2005; Dhumpa
et al., 2014), or both (Satin et al., 2015). According to the
recent metronome model, glucose-responsive fast oscillations of
individual islets determine the amplitude or pulse mass of the
largely stable 5–15min insulin oscillations (Satin et al., 2015).

Theoretically, an individual islet can respond to an increase in
glucose concentration by recruiting more cells into a functional
state, by enhancing the response of active cells, or both.
Previous experiments have suggested that within a narrow range
of glucose concentrations above the threshold concentration,
recruitment rapidly saturates and that beyond that, all beta
cells within an islet are active all the time, with synchronous
membrane potential and [Ca2+]c oscillations that increase
in plateau fraction with increasing glucose concentrations
(Henquin et al., 1982; Henquin, 1987; Valdeolmillos et al.,
1989; Santos et al., 1991; Gilon and Henquin, 1995; Jonkers
et al., 1999; Jonkers and Henquin, 2001). In sum, according
to this view the pulse mass is more importantly determined
by enhancing the responses of individual cells than by
recruiting new cells (Jonkers et al., 1999; Jonkers and Henquin,
2001). The main shortcoming of previous studies aimed at
quantitating the role of recruitment and enhancement is the
fact that clusters of beta cells were used instead of islets
to ensure spatial resolution at the level of individual cells,
and that when whole islets were used, resolution at the level
of individual cells was not achieved. Additionally, beta cells
have traditionally been stimulated by elevating glucose to
supraphysiological concentrations and in a constant, i.e., non-
oscillatory manner, not to concentrations slightly above the
threshold and in an oscillatory manner, as is probably the case
in vivo.

Finally, considering the formidable complexity of the
mechanism supporting pulsatile insulin release, the teleological
question seems appropriate, as to what evolutionary advantage is
conferred by pulsatile insulin release. It has been suggested by
modeling that pulsatile insulin secretion may be beneficial for
the secretory capacity of beta cells in the sense that it allows the
readily releasable pool of insulin granules enough time to refill
during the resting periods between periods of activity (Pedersen
and Sherman, 2009). Additionally, it has been proposed that
pulsatile insulin may be important for physiological autocrine
effects in islets and expansion of beta cell mass (Tengholm and
Gylfe, 2009). On the other hand, experimental evidence points
to a greater efficiency of pulsatile insulin on target tissues and
continuous insulin leads to internalization, down-regulation of
insulin receptors, and post-receptor signaling defects (Pørksen,
2002; Pørksen et al., 2002; Satin et al., 2015). Importantly,
disrupted insulin pulsatility has been observed in prediabetes,
type 2 diabetes mellitus (T2DM), and even in normoglycaemic
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relatives of patients with T2DM (Lang et al., 1981; O’Rahilly
et al., 1988; Bingley et al., 1992). In T2DM beta cells are
also unable to respond to entrainment by imposed oscillations
in glucose, indicating a fundamental loss of entrainability
(Hollingdal et al., 2000). Furthermore, it has been demonstrated
that beta cell coupling is a target of diabetogenic insults, such
as lipotoxicity (Hodson et al., 2013), glucotoxicity (Haefliger
et al., 2013), and cytokines (Farnsworth et al., 2016; Johnston
et al., 2016). Likewise, islets exposed to such insults and islets
of Cx36 knockout mice display disrupted calcium waves and
synchronization of oscillations (Benninger et al., 2008, 2014).
Finally, in Cx36 knockout mice the in vivo observed insulin
response and pattern of insulin oscillations are disrupted in
a manner resembling typical changes in T2DM (Head et al.,
2012).

Even though some mathematical models have addressed the
collective behavior of coupled beta cells (Smolen et al., 1993;
Zimliki et al., 2004) and the propagation of [Ca2+] waves
(Nittala et al., 2007; Benninger et al., 2008), the development of
multicellular computational models is just recently increasingly
gaining attention. For the most part, this has been initiated
by the growing evidence showing that cell–cell interactions
via gap junctions are a prerequisite for proper hormone
secretion (Charollais et al., 2000) and that impaired intercellular
interactions disrupt normal oscillatory patterns of insulin
secretion in a way similar to what occurs in diabetes (Head
et al., 2012). Moreover, recent advances in imaging techniques
along with the integration of complex system approaches in islet
research revealed a complex functional organization of beta cells
(Hodson et al., 2013; Stožer et al., 2013b; Cherubini et al., 2015;
Gosak et al., 2015, in press; Markovič et al., 2015) that might
be predominantly a consequence of cell-to-cell variability and
a heterogeneous nature of intercellular interactions (Goel and
Mehta, 2013; Barua and Goel, 2016; Cappon and Pedersen, 2016).
Detailed analyses of pancreatic [Ca2+] waves have shown that
the waves originate from specific yet rather randomly distributed
sub-regions with elevated excitability (Benninger et al., 2014)
or lower metabolic rates (Westacott et al., 2017), thereby giving
emphasis also to the spatial aspect of beta cell heterogeneity
and the sub-compartmental organization of islets (Markovič
et al., 2015). Furthermore, percolating network models have been
utilized with the aim to provide a phenomenological insight into
the interplay between the coupling architecture and the beta cell
activity in health and disease (Benninger et al., 2008; Hraha et al.,
2014a,b; Stamper et al., 2014). Most importantly, by these means
the existence of a critical behavior that reflects a phase transition
between globally active and inactive states was predicted and
confirmed both computationally and experimentally (Hraha
et al., 2014b). Such a critical transition was suggested to be
a general regulatory mechanism that islets utilize in order to
leverage cellular heterogeneity, and is characteristic also for
a variety of other complex real-life systems (Trefois et al.,
2015).

In this vein, many natural systems were found to operate
naturally near a critical point (Bak, 1996; Marković and Gros,
2014). The emergent dynamics in such systems is usually
associated with the concept of self-organized criticality (SOC),

which embraces a power-law distribution of systems’ observables.
SOC arises in complex systems that are far from equilibrium
as a result of interactions of components and is increasingly
gaining attention in the context of organizing principles of
biological systems. For example, durations of brief awakenings
during sleep exhibit a power-law distribution, indicating a scale-
invariant dynamic that is typical for systems undergoing SOC
(Lo et al., 2004, 2013; Allegrini et al., 2015). The power-
law distribution is also characteristic for other human body
dynamics, e.g., human gait and human heartbeat; however, the
scale invariant feature characterized by 1/f scaling is only a
hallmark of SOC. Ivanov et al. (Ivanov et al., 2009) showed
that while both gait interstride interval and cardiac interbeat
interval time series have comparable 1/f scaling, they are
governed by different mechanisms and lead to different levels
of complexity, characterized by monofractal and multifractal
properties, respectively. Very recently, as a further example
of SOC in human body, clinical evidence has been provided
for self-organization of blood pressure regulation (Fortrat and
Gharib, 2016). At the single cell level, hallmarks of SOC
have been observed in the spatiotemporal organization of
[Ca2+] waves in individual cardiac myocytes (Nivala et al.,
2012) and oocytes (Lopez et al., 2012). However, the greatest
progress in this framework has been done in the field of
neuroscience where fingerprints of SOC have been identified
at different levels of organization, ranging from interacting
arrays of neurons or astrocytes to the entire brain (Jung et al.,
1998; Beggs and Plenz, 2003; Plenz and Thiagarajan, 2007;
Hesse and Gross, 2014). On different scales of observation,
patterns of neuronal electrical activity show a high degree of
diversity, characterized by a scale free distribution of event
(i.e., neuronal avalanches) sizes. Theoretical and experimental
work indicates that this form of activity reflects a critical state
between a random and an ordered dynamical regime, which
is believed to lead to optimal operational abilities (Beggs and
Plenz, 2003; Kinouchi and Copelli, 2006). A balanced interplay
between network dynamics and topology as well as an activity-
dependent adaptability of neuronal networks were identified
as leading neurobiological determinants that ensure a robust
critical behavior (Levina et al., 2007; Rubinov et al., 2011; Hutt
et al., 2014). However, in vitro experiments on cortical assemblies
have shown that the neuronal activity does not necessarily
fall into a critical regime, but can also show subcritical or
supercritical states, e.g., during development (Tetzlaff et al.,
2010), which has latter been associated with changes in the
neuronal network connectivity patterns (Tetzlaff et al., 2010;
Massobrio et al., 2015b). Moreover, an excess of large neuronal
avalanches, as is characteristic for supercritical dynamical states,
has been associated with pathological activity (Meisel et al., 2012;
Massobrio et al., 2015a). It has been speculated that deviations
from critical behavior reflect the abnormal synchronized firing
of neurons involved in the epileptic process (Lehnertz et al.,
2009), thereby substantiating the hypothesis that the normal,
healthy brain resides in a critical or even slightly subcritical state
(Priesemann et al., 2014; Massobrio et al., 2015a). However, in
contrast to inanimate matter, for which the SOC principles are
well understood, in living systems these mechanisms are still
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under debate and are conjectured to be a result of different
evolutionary or adaptive processes, with structural disorder,
order-parameter feedback, and extended criticality as possible
explanations (Lovecchio et al., 2012; Moretti and Muñoz,
2013).

Despite growing evidence that critical-like dynamics and
power-law scaling imply an efficient design of biological
systems, only a few studies have investigated the presence
of these features in other multicellular physiological systems.
At least in part this lack can be explained by demanding
experimental techniques that are required to precisely and
noninvasively assess the function of a large number of cells
simultaneously and over long periods of time. Previously,
it has been demonstrated that the behavior of islets of
Langerhans is not as deterministic as once thought (Dolenšek
et al., 2013; Hodson et al., 2013; Stožer et al., 2013a,b;
Benninger et al., 2014; Hraha et al., 2014a,b; Markovič et al.,
2015; Rutter and Hodson, 2015). Thus, in the present study
we examined whether fingerprints of SOC can be found
in the spatiotemporal pattern of fast [Ca2+]c dynamics in
interconnected beta cells from islets of Langerhans. We
first constructed a computational model of a network of
heterogeneous and heterogeneously coupled beta cells and
analyzed the statistical organization of intercellular [Ca2+]c
wave sizes. We simulated beta cell behavior after applying a
constant stimulatory concentration of glucose, as well as under
an oscillatory stimulation with a slightly lower average glucose
concentration, in order to more closely mimic the physiological
conditions with oscillating blood glucose and insulin levels.
Finally, we compared the model predictions with experimental
data obtained by means of confocal functional multicellular
calcium imaging of [Ca2+]c changes evoked in beta cells in acute
tissue slices subjected to the same stimulation protocols as in
simulations.

MATERIALS AND METHODS

Single Cell Model
The dynamics of each beta cell is governed by the mathematical
model proposed by Bertram et al. (2007). The model combines
mitochondrial metabolism, glycolysis and plasma membrane
electrical activity and Ca2+ activity in the cytosol and in
the endoplasmic reticulum (Pedersen and Sherman, 2009).
Interconnecting these three compartments represents a general
and widely used theoretical framework that provides a firm
description of the complex oscillatory patterns, such as
compound bursting patterns, observed in experiments. A
detailed description of the model equations along with parameter
values is given in the Text S1.

Simulation of Glucose Stimulation
To simulate the stimulation with glucose, we increased the
glucokinase reaction rate parameter JGK (Bertram et al., 2007). In
case of constant stimulation, i.e., switch from 6 to 8mM glucose,
the parameter was increased from JGK,L = 0.04µMms−1 to JGK,H
= 0.38 µMms−1. When we simulated an oscillatory stimulation
protocol with glucose, glucokinase reaction rate was smoothly

varied between these two values as follows:

JGK(t) = JGK,L +
1

π
(JGK,H − JGK,L)

(

π

2
−

Tan−1
(

kw
(((

t + Tlag
)

− TP1
)

mod TL − TP2
))

2

+
Tan−1

(

kw
(((

t + Tlag
))

mod TL − TP1
))

2

)

(1)

where kw is a pulse-smoothing parameter set to 0.0005. The
period of the wave is given by TL = 600, 000 ms. Durations of
the low and high glucose concentration phases are given with the
parameters TP1 and TP2. Both parameters were set to 300, 000ms.
Lastly, Tlag is used to adjust the onset of the first stimulation. In
this manner an oscillatory stimulation protocol was stimulated
with a period of 10min with 5min intervals of elevated glucose
conditions. The course of the periodic variations in glucokinase
reaction rate is shown in Figure S1.

Heterogeneity of Beta Cells
The pancreatic beta cells exhibit a high degree of heterogeneity,
which manifests itself in cell-to-cell variability in their sizes,
membrane capacitance, channel densities and conductances,
in the rates in glucose-induced insulin synthesis and release,
cellular thresholds for glucose utilization and oxidation, etc.
(Pipeleers et al., 1994; Benninger and Piston, 2014). In our
model we introduce heterogeneity of beta cells by means
of a random distribution of some model parameters. Albeit
cell-to-cell variability would result in diversity of various
model parameters, in the present study we consider only
heterogeneity of some crucial parameters in different parts
of the machinery that governs the beta cells behavior. In
particular, heterogeneity is introduced in the glyceraldehyde
3-P dehydrogenase (GPDH) reaction rate parameter kGPDH,i,
glycolytic flux affecting PDH activity JGPDHbas,i, maximal PFK
reaction rateVmax,i, themembrane capacitanceCi, and in gk(ATP),i
denoting the conductance of ATP-sensitive K+ channels. All
these parameters were assumed to follow a normal distribution
with a relative standard deviation of 30 % with a cut-off of 60 %.

Network of Beta Cells
Wemodel the intercellular coupling between beta cells as random
geometric graph. Initially N=150 cells are arranged randomly in
a unit square with a prescribed minimal possible distance (0.04)
to ensure a more homogeneous spatial distribution. Connections
among the cells represent intercellular communication by means
of electrical coupllig, defined as:

Icpl,i = gi

N
∑

j 6=i

dij(Vj − Vi). (2)

This coupling term Icpl,i is added to the equation describing
the dynamics of the membrane potential of the i-th cell (see
Equation s21) in Text S1). The network structure is stored in
the coupling matrix d. Its ij-th element dij is set to 1 if the i-th
cells is connected with the j-th cell, whilst otherwise dij = 0. In
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particular, an identical radius range for all cells was chosen as
rn =

√

〈k〉/ (Nπ), where 〈k〉 = 6 signifies the average number
of connections per cell. Two cells are then connected if they fall
within each other’s range.

In Equation (M2) gi stands for the electrical coupling
coefficient. Previous studies have indicated a high degree of
heterogeneity in the gap junctional conductances between beta
cells that exceeds a normal distribution. To implement this
feature into our simulations the values of gi were distributed in
accordance to an exponential distribution as:

gi = − ln
(

rand (0, 1)
)

〈gi〉, (3)

where 〈gi〉 symbolizes the mean value of the distribution
(〈gi〉 =200 pS) and rand (0, 1) is a uniformly distributed random
number in the interval (0,1). The resulting network models are
quite homogeneous and without unconnected components. The
intercellular coupling, on the other hand, is rather heterogeneous
(see Figure S2).

Confocal Calcium Imaging in Pancreatic
Tissue
The preparation of the pancreatic tissue slices and the
experimental protocols to monitor changes in intracellular
calcium concentration were described in detail before (Speier
and Rupnik, 2003; Dolenšek et al., 2013; Stožer et al., 2013b).
Briefly, NMRI mice (age 10–20 weeks, both males and females)
were sacrificed in order to have their abdomens exposed. 1.9 %
low-melting point agarose was injected through the proximal bile
duct into the ductal system of pancreas. After transferring the
agarose blocks containing isolated pancreas tissue onto the wet
ice, the hardened agarose allowed for cutting the soft pancreas
tissue into 140µm thick slices. Slices were incubated in the dye-
loading solution containing 6µM Oregon Green 488 BAPTA-1
AM (OGB-1, Invitrogen, Eugene, Oregon, USA), 0.03% Pluronic
F-127 (w/v), and 0.12% dimethylsulphoxide (DMSO, v/v) at
room temperature. Recordings of the calcium concentration
changes were performed on a Leica TCS SP5 AOBS Tandem II
upright confocal system using a 20x Leica HCX APO L water
immersion objective (NA 1.0). The excitation wavelength was
set to 488 nm and the emission collected in the range 500–
650 nm. The sampling rate was 10Hz. Regions of interest were
selected based on cell morphology and exported as time series
for off-line analysis. This study was carried out in accordance
with the national recommendations. The protocol was approved
by the Slovenian Ministry of Agriculture, Forestry and Food
U34401-30/2016/U94-01.

Processing of the Recorded Time Series
Experimentally and numerically obtained [Ca2+] traces were
initially leveled and smoothed to ensure a consistent and accurate
binarization procedure in a two-step signal processing protocol.
To extract the fast component of [Ca2+] oscillations and to
exclude artifacts (i.e., photobleaching) a Butterworth band pass
filter (Yao et al., 2012) has been applied to the data sets. The
order of the filter has been set to 2 to achieve a steeper frequency
cut-off and not to destabilize the filter (resonance disaster). The

upper FHIGH and lower FLOW cut-off frequencies have been
determined by visually inspecting all the filtered time traces of
a given sample. What followed was the smoothing of the time
traces, by means of a sliding window algorithm (Yaroslavsky
et al., 2001). The temporal width of the sliding window 1tSW
has been adjusted to the sampling rate in order to avoid over
smoothing of the data (1tSW = ±2 frames). The solely prepared
data has then been used for the binarization of individual beta
cell Ca2+ activity. The onset and ending of an activation pulse
have been determined by computing the first time derivate of

individual time traces ( ˙Ca2+i ) and the corresponding standard
deviations of the time traces std (Ca2+i ) as well as time derivates

std ( ˙Ca2+i ). The combined three information’s were then used

for the binarization. Whenever a local maxima in ( ˙Ca2+i )(t) is
>1.5∗std (Ca2+i ) and the corresponding local maxima in Ca2+i (t)
is >1.5∗std (Ca2+i ), we treat the time t as the onset of the n-
th activation time tSTART,i(n). Between the n-th local maxima
tSTART,i(n) and its first successor tSTART,i(n + 1), we search for

local minima in ( ˙Ca2+i ). The discrete time, corresponding to the
minima is then set as the end time of the n-th activation pulse
tEND,i(n). Values of the binary time trace matrix Ca2+BIN,i which
lie within the interval tSTART,i(n) and tEND,i(n) are set to 1 and
other values are set to 0. The process is schematically shown in
Figures 1C,D.

Space-Time Cluster Analysis
In order to identify clusters of active cells we implemented the
space-time cluster (STC) analysis, similar to the one proposed
by Jung (Jung, 1997; Jung et al., 1998). Individual time frames
were stacked together to obtain a large space-time cube. Each
frame embeds the systems spatial organization, i.e., positions of
cells, and the corresponding binary states of the included cells
(active or inactive). The time interval between two frames is
given by 1tF. We start the algorithm by creating a cube around
every active cell with a spatial side length and a temporal side
length 1tTSL. The spatial side length 1s for a given dataset was
computed as the average distance between the 6 nearest cells.
Typical values of 1s for experimental data were between 20 µm
and 25 µm and for the computational model around 0.11. The
temporal side length 1tTSL was set to 0.5 s. A STC was then
defined as a group of cells, for which the created cubes overlap
in a time forward direction. In other words, a cluster results for
an isolated intercellular [Ca2+] wave that propagates between
nearby cells, and its size p reflects the number of involved cells
and the durations of their [Ca2+] pulses in this given event. If
two such clusters, i.e., [Ca2+] waves, collide, the incoming cluster
is joined to the cluster it collides with. The whole procedure
from time series preparation to space-time cluster analysis is
schematically presented in Figure 1. It should be noted that the
size p of an individual wave (indicated by the color) actually
reflects the volume of a given space-time cluster.

To characterize the spatiotemporal characteristics of
intercellular [Ca2+] waves, we measured the distribution of
cluster sizes. More specifically, we divided the range of sizes’
values in a series of non-overlapping intervals with size p and
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FIGURE 1 | The procedure for assessing spatiotemporal [Ca2+]c dynamics in beta cells. (A,B): We used computational simulation (A, red) and functional multicellular

calcium imaging (B, green) to determine beta cell spatial coordinates within networks of beta cells and the individual [Ca2+]c activity either in experiments or in

simulations (C,D). Oscillations were binarized (D) and further processed to extract individual spatio-temporal clusters of [Ca2+]c activity (E,F).

counted how many values N(p) fell into each interval. For
both simulated and measured dynamics, we calculated the
distribution separately for the activation and for the plateau
phase in case of constant stimulation, and over the whole interval
(simulated or measured) in case of periodic stimulation. For the
representation of the computational results we pooled the data
from three (constant stimulation) and four (periodic stimulation)
independent simulations runs and for the experimental results
we merged the data from three (constant stimulation) and four
(periodic stimulation) different tissue slices originating from
three different mice. In this manner, the numberN(p) reflects the
average number of detected waves with size p out of three/four
settings. Since the number of cells in the pancreatic slices in
different experimental recordings was different, we normalized
all slices with respect to the largest detected cluster, i.e., the
largest cluster has a size p = 1. Finally, the data (experimental
and computational) were fitted with a power-law function to
qualitatively evaluate if the activity patterns can be treated as
critical or supercritical.

RESULTS

Previous experimental investigations and modeling endeavors
have shown both non-trivial temporal activity patterns of beta
cell populations and a very complex spatiotemporal organization
at the multicellular level (Benninger and Piston, 2014). More
specifically, despite gap junctional coupling that fosters the
intrinsically heterogenoeus cells to operate in synchrony, a very
heterogeneous activity was observed especially in the activation
phase when the cells respond to stimulation (Stožer et al.,
2013a). Moreover, recent studies also indicate that the beta
cell syncytium is functionally organized in a quite complex

manner (Stožer et al., 2013b; Markovič et al., 2015; Rutter and
Hodson, 2015; Cappon and Pedersen, 2016; Johnston et al.,
2016), which provides a basis for non-trivial activity patterns
that are less synchronized than once thought. With the aim
to explore the spatiotemporal behavior of beta cells, we first
built a computational model of interconnected beta cells. The
dynamics of individual beta cells is driven by the comprehensive
mathematical model proposed by Bertram et al. (2007) that
combines glycolysis, and mitochondrial metabolism with plasma
membrane electrical activity and [Ca2+]i activity. In accordance
with previous findings that suggested an extensive heterogeneity
among beta cells (Pérez-Armendariz et al., 1991), we introduced
variability of some model parameters that govern the beta cell
behavior. The cell-to-cell electrical coupling between beta cells
was modeleld by means of interactions formed by the random
geometric network model, whereby the electrical coupling was
assumed to be highly heterogeneous (see Materials and Methods
for details). Namely, previous reports and our own observations
have shown a high degree of heterogeneity in the gap junctional
conductances between beta cells, which do not follow a normal
distribution and the values span over a broad interval with a
mean value around 200 nS (Pérez-Armendariz et al., 1991). In the
continuation, we compare the simulated behavior of a network of
interconnected beta cells with experimentally monitored beta cell
activity assessed by means of confocal functional multicellular
calcium imaging (fMCI).

As already mentioned above, in both simulations and
experiments we used two different stimulation protocols: a
constant and an oscillatory stimulation. In both cases a typical
response to stimulation consisted of a delayed elevation of
[Ca2+]i with superimposed oscillatory changes of [Ca2+]i.
These oscillations were detected in the form of coordinated
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[Ca2+]i waves spreading across cells. [Ca2+]i traces either
simulations or experiments were then processed and binarized
in order to provide ground for characterization of [Ca2+]i
signal propagation. To this purpose, we detected and labeled
individual intercellular [Ca2+]i waves by means of space-time
cluster analysis. The whole procedure is schematically presented
in Figure 1. Finally, we quantified the intercellular [Ca2+]i
activity bymeasuring the spatiotemporal size of waves and looked
for the distribution of the number of [Ca2+]i waves of a given size
[N(p)] as a function of size (p).

Constant Stimulation: Computational
Results
Stimulation with glucose was modeled by simultaneously
increasing the glucokinase rate parameter JGK from 0.04 to 0.38 at
100 s after the beginning of simulation in all cells in the network.
Stimulation initiated an activation phase with a characteristic
progressive recruitment of active beta cells with delays spanning
2–10min, which is in accordance with previous experimental
findings (Stožer et al., 2013a). In this stage, the spatiotemporal
[Ca2+]i activity encompassed smaller clusters of active cells.
The activation phase was followed by a plateau phase with
characteristic [Ca2+]i waves that often encompassed the majority
of cells, and, in contrast to the activation phase, displayed
a temporally quite ordered and deterministic-like sequence.
These observations are illustrated in Figure 2A, whereas a more
precise insight into the temporal evolution of the spatiotemporal
behavior of the model after stimulation can be observed in
Video S1. Next, we quantitatively characterized the [Ca2+]i
waves, separately for the activation and the plateau phase. To
this purpose we first extracted and labeled individual waves,
as presented in Figures 2B,C. We then calculated relative wave
sizes p during the activation (Figure 2D) and the plateau phase
(Figure 2E). To ensure a better statistical accuracy, we calculated
the distributions as the average of three independent simulation
runs. The distribution N(p) was found to obey a power law in the
activation phase, whereas an excess of larger waves was detected
in the plateau phase. In sum, this indicates that the persistent
stimulation initiates a critical state during the activation phase,
which then switches to a supercritical state during the plateau
phase.

Oscillatory Stimulation: Computational
Results
Using the same computational model, we simulated the beta cell
activity during an oscillatory stimulation regime by smoothly
changing the glucokinase reaction rate with a period of 10min,
as described in Materials and Methods section. By this means
we mimicked oscillations of glucose concentration observed in
humans and mice in vivo (Head et al., 2012; Satin et al., 2015)
in a manner that is compatible with physical limitations of
our experimental perifusion setup and is also comparable with
other recent reports employing more specialized microperifusion
chambers (Pedersen et al., 2013; Dhumpa et al., 2015; Sun
et al., 2015). The results are shown in Figure 3. The activity of
cells displayed a phase shift of a few minutes with regard to

stimulation. Except for the first stimulation pulse, the majority
of cells were active at least once in each pulse. Notably, even
in the low-stimulatory phases between the pulses (white areas
in Figure 3A), cellular activity was observed, but was typically
limited to [Ca2+]c increases in smaller subgroups of cells. A
more detailed insight into the spatiotemporal beta cell dynamics
can be seen in Video S2. To evaluate the observed behavior that
appeared to be qualitatively different from the one observed in
the plateau phase during a constant stimulation, we quantified
the intercellular [Ca2+]i activity. Figure 3B depicts [Ca2+]i waves
during the 4th stimulation pulse and the colors denote individual
clusters. The average distribution N(p) of the wave sizes p was
calculated on the basis of four independent simulation runs and
was found to obey a power law, indicating critical behavior of the
system during oscillatory stimulation.

Constant Stimulation: Experimental
Results
We stimulated the beta cells within an islet of Langerhans
with 8mM glucose. As in simulations, the cells responded to
stimulation with an initial activation phase that was followed
by a plateau phase. Characteristic for the activation phase was a
transient increase in [Ca2+]c and occurrence of fast oscillations,
but beta cells were being recruited only gradually during this
phase (Figure 4A, 300 s < t < 800 s). During the plateau phase
that followed the activation phase, all cells were active and
displayed repeated and more regular oscillations (Figure 4A,
t > 800 s). Video S3 shows the temporal evolution of the
measured and binarized [Ca2+]c activity from the onset of
stimulation.

Next, we separately determined [Ca2+]c waves during the
activation and the plateau phase. Figures 4B,C show such waves
during a part of the activation and the plateau phase, respectively,
individual waves and their respective sizes are denoted with
different colors. Distribution N(p) of relative wave sizes p was
determined and plotted on a log-log scale for both the activation
(Figure 4D) and the plateau phase (Figure 4E). For the former,
N(p) follows a linear relationship on the log-log scale, whereas
for the latter a larger proportion of larger and more global waves
could be detected. The distribution signifies the average of three
different slices subjected to the same protocol. It should be noted
that all of them showed a conceptually very similar behavior,
i.e., an activation phase that was followed by a plateau phase
with dominating global events, even though the average firing
rate and durations of oscillations might be different in different
islets. Since the number of cells in each slice was different
(111, 125, and 98), we normalized the [Ca2+]c wave sizes with
respect to the largest one detected in a given slice. Apparently,
under constant stimulation, the nature of the spatiotemporal
organization changed from a critical regime in the activation
phase to a supercritical regime in the plateau phase. These results
overlap well with model predictions and, most importantly,
substantiate our choice of the model particularities, i.e., a high
degree of heterogeneity in properties of individual cells as well as
in intercellular coupling.
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FIGURE 2 | Simulation of constant stimulation: spatiotemporal organization of intercellular [Ca2+]i waves in islets. (A) Typical computed [Ca2+]c responses of four

different beta cells after switching to stimulatory conditions (upper panel, gray area indicates stimulatory conditions) and binarization of the computed oscillations of all

cells (lower panel). Extracted individual waves as denoted by different colors in space-time graphs during the activation phase (B) and in the plateau phase (C). The

purple dots in the x-y plane denote the coordinates of individual cells. [Ca2+]i wave size distribution of the computed data during the activation (D) and plateau phase

(E). The gray line indicates a power-law fit with slopes −1.41 and −1.58 for the activation and plateau phase, respectively.
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FIGURE 3 | Simulation of oscillatory stimulation: spatiotemporal organization of intercellular [Ca2+]c waves in islets. (A) Computed [Ca2+]c responses of four typical

cells during oscillatory glucose stimulation (upper panel) and binarized dynamics of all cells in the network (lower panel). The gray areas denote the stimulatory pulses

realized by periodic increases of glucokinase reaction rates. (B) Space-time clusters of [Ca2+]i activity during the four 5-min glucose stimulations, the colors denote

different [Ca2+]i waves. (C) The distributions N(p) of spatiotemporal [Ca2+]i wave sizes p. The gray line indicates a power-law fit with a slope of −1.48.

Oscillatory Stimulation: Experimental
Results
Finally, we checked if the model correctly predicted the
critical spatiotemporal organization of [Ca2+]i waves under the
oscillatory stimulation protocol. To this purpose, we varied the
glucose concentration periodically from 6 to 8mM with a period
of 10min, whereby each concentration was applied for 5min.
The period of the resulting oscillations lies at the upper end
and the amplitude is roughly an order of magnitude larger
than what has been described in vivo. However, shorter-period
and smaller-amplitude oscillatory stimulations are practically
impossible to achieve with our perifusion system and this seems
to be a challenge also for dedicated microperifusion systems

(Roper Industries, US). Results are presented in Figure 5 and
Video S4. As in the simulation, a smaller proportion of cells
were active already during the first stimulation pulse, however
most cells were active during subsequent stimulations. Moreover,
different sizes of [Ca2+]i waves can be observed and again,
a phase shift between glucose stimulation and maximal beta
cell activity was observed. We used the same methodological
paradigm as with the persistent stimulation to determine [Ca2+]i
waves. Figure 5B shows spreading of the [Ca2+]i waves during
the second stimulus, each wave being denoted with a different
color. For this stimulatory regime, the distribution N(p) of
the relative sizes p of the [Ca2+]i waves follows a power law
(Figure 5C), as it was predicted by the model. The distribution
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FIGURE 4 | Experimental constant stimulation: spatiotemporal organization of intercellular [Ca2+]c waves in islets. (A) [Ca2+]i responses of four typical cells within an

islet to stimulation with 8mM glucose (upper panel). Binarized oscillations for all cells within the same islet (lower panel). The gray shaded area indicates the switch

from 6 to 8mM glucose. Space-time clusters of [Ca2+]i activity in the activation phase (B; 300 s < t < 800 s) and in the plateau phase (C; t > 800), the colors denote

different [Ca2+]i waves. The distributions N(p) of relative spatiotemporal [Ca2+]i wave sizes p for the activation phase (D) and in the plateau regime (E). The gray line

indicates a power-law fit with slopes −1.82 and −1.92 for the activation and plateau phase, respectively.

was calculated on the basis of four different slices subjected to the
same protocol and qualitatively identical behavior was observed
in all recordings. Since the number of cells in each slice was

different (33, 68, 76, and 35), we normalized the [Ca2+]i wave
sizes with respect to the largest one detected in a given slice.
Apparently, oscillations in glucose concentration that mimicked
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FIGURE 5 | Experimental oscillatory stimulation: spatiotemporal organization of intercellular [Ca2+]i waves in islets. (A) Typical [Ca2+]i responses in four typical cells

to an oscillatory stimulation with 8mM glucose (upper panel). Oscillations are binarized and depicted for all cells within the same islet (lower panel). The gray and white

areas denote glucose concentrations of 6 and 8mM, respectively. (B) Space-time clusters of [Ca2+]i activity during the second 5min glucose stimulations, the colors

denote different [Ca2+]i waves. (C) The distributions N(p) of relative spatiotemporal [Ca2+]i wave sizes p. The gray line indicates the power-law fit with a slope of

−1.78. Note that during glucose nadirs, beta cells remain active.

in vivo conditions, trapped the beta cell population in a critical
regime.

DISCUSSION

Beta cells respond to stimulation by glucose with an oscillatory
activity pattern (Farnsworth and Benninger, 2014). Electrical
coupling between beta cells provides the necessary but probably
not the only substrate for their coordinated activity and regulated
hormone release (Rutter and Hodson, 2013; Benninger and

Piston, 2014; Skelin Klemen et al., 2017). However, beta cells
within an islet are not completely synchronized. First, measuring
a number of different parameters of beta cell function, it has
been shown that not all beta cells within an islet respond to
stimulation simultaneously, but are progressively recruited into
an active state (Schuit et al., 1988; Hiriart and Ramirez-Medeles,
1991; Kiekens et al., 1992; Jonkers and Henquin, 2001; Zarkovic,
2004; Stožer et al., 2013a). Second, the membrane potential and
[Ca2+] changes spread over the islet in a wave-like manner with
a finite speed and do not necessarily always encompass all beta
cells in a given islet (Benninger et al., 2008; Dolenšek et al.,
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2013; Stožer et al., 2013a; Cappon and Pedersen, 2016). These
two features reflect the intrinsically heterogeneous nature of beta
cells (Benninger et al., 2014; Cappon and Pedersen, 2016), which
is retained despite intercellular coupling, most probably for the
sake of an at least partly selective and gradual regulation of their
function.

To get a more detailed insight into the spatiotemporal
organization and the subsequent physiological function of this
complex multicellular system, we made use of computational
modeling approaches in combination with advanced high spatial
and temporal resolution confocal imaging. We developed a
multicellular computational model of interconnected beta cells
that was based on the theoretical framework of Bertram et al.
(2007). By incorporating known particularities, such as cell-
to-cell variability in glucose metabolism and conductance of
ATP-sensitive K+ channels, and a high degree of heterogeneity
in the intercellular coupling, we obtained a nice agreement
of theoretical results with experimental measurements. A high
degree of heterogeneity in coupling was necessary to omit
a nearly complete synchronization of cells (see Figure S3).
Most importantly, our results showed that [Ca2+]c responses
and spreading of [Ca2+]c events between beta cells after
stimulation with non-oscillatory glucose are characterized by a
two-phased dynamics: the activation phase and the plateau phase.
During the activation phase that lasts around 5min in case of
stimulation with 8mM glucose, beta cells are recruited and the
distribution of [Ca2+]c event sizes is characterized by a power-
law distribution, suggesting critical behavior. After this initial
period, the dynamical nature changes qualitatively and becomes
more stable and organized. In the plateau regime that follows, a
high number of bigger, more global [Ca2+]c events are observed,
indicating supercritical behavior of [Ca2+]c dynamics.

A constant, i.e., a non-oscillatory elevation in plasma glucose,
may not reflect physiological stimulation of beta cells, since
blood glucose levels in fasting man and other mammals are
oscillating with periods of around 5–15min (Goodner et al.,
1977; Lang et al., 1979). Additionally, the average glucose
concentration measured in vivo in mice (Kjems et al., 2002;
Matyšková et al., 2008) lies just slightly above the in vitro
determined threshold for glucose-induced metabolic, membrane
potential, and [Ca2+]c changes (Jonkers and Henquin, 2001;
Zarkovic, 2004; Stožer et al., 2013a; Skelin Klemen et al.,
2017), and stimulation with 8mM glucose, albeit being low
compared with concentrations that are usually used (e.g.,
11.1 or 16.7mM), is probably still supraphysiologically high.
Thus, we attempted to more closely mimic physiological
conditions and applied in our simulations and experiments
a pulsatile stimulation with 5min glucose pulses, with an
average concentration of 7mM glucose. This way, the total
glucose load that the beta cells received and the maximum
concentration reached in the perifusion chamber was the
same in the two stimulation protocols (i.e., 20min × 8mM
vs. 4 × 5min × 8mM, maximum = 8mM). Moreover,
during constant stimulation, the glucose concentration was just
slightly above the average during oscillatory stimulation and we
deliberately chose this value to mimic the continuous rise to
hyperglycemia.

Noteworthy, although this was by no means the main aim of
our study, our oscillatory protocol also addressed entrainability
of islets. We wish to point out that switching from a non-
stimulatory to a stimulatory concentration differs significantly
from switching between two stimulatory concentrations when
it comes to studying entrainability of nonlinear oscillators
entrainment (Pedersen et al., 2013). In particular, the former
scenario switches the system on and off and always results in
entrainment, whereas the latter enables real islet entrainment
(Pedersen et al., 2013). Since 6mM glucose is usually regarded
as non-stimulatory, at first our oscillatory protocol seems
to correspond to the case of switching the system on and
off. However, in our case, even during nadirs of glucose
concentration, beta cell activity did not cease and it seems that
our protocol therefore enables a true assessment of entrainability
and our findings further substantiate recent reports that islets
are in fact entrainable by stimuli of periods and amplitudes
comparable to ours (Pedersen et al., 2013; Dhumpa et al., 2015;
Sun et al., 2015).

During oscillatory stimulation, spatiotemporal organization
of [Ca2+] waves remained in the critical regime without an
excess of global [Ca2+] events. Noteworthy, the computational
approach is, in contrast to experimental measurements, not
restricted by technical limitations and can therefore account for
very long observation times. The theoretical results have shown
that the periodic stimulation does not lengthen the activation
phase and delays the onset of supercritical behavior, but keeps
the system essentially trapped in the critical regime. In general,
the computational and experimental results are in very good
agreement for both constant and periodic stimulation protocols.
The only discrepancy occurs in the power-law exponents
reflecting critical behavior, whose values are in simulations
ranging between −1.41 and −1.58, whereas in experiments
the values are a bit more negative and span between −1.78
and −1.94. This difference indicates that despite high levels of
physiological complexity, the theoretical model probably still
does not cover all the details about the intra- and inter-cellular
aspects of beta cell signaling. We believe that especially a more
detailed description of beta cell heterogeneity, both metabolic
and electrophysiological, could provide a further step toward
reality, but future experimental and theoretical work will be
needed to address this issue. Moreover, in both computational
and experimental results the exponents are found to be a bit more
negative in the plateau phase than in the activation phase, which
most probably reflects a sharper decay of smaller to intermediate
events on account of global calcium waves.

Apparently, periodic entraining of the glucokinase reaction
rates confines the supply of energy in the form of ATP, which
in turn adjusts the rhythmic activity of ATP-dependent ion
channels. This provides in combination with the intercellular
coupling, which has either a suppressive effect that prevents
uncoordinated and spontaneous activations, or a regulatory
role in terms of mediating the synchronizing signal across
the islet, the necessary substrate for self-organized activity. To
be more precise, as a result of heterogeneities, dynamic and
confined regions with elevated excitability emerge, from which
[Ca2+]c waves are triggered, which also goes in hand with
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previous findings, where the initiation of waves was associated
with regions with a higher glucose metabolism (Benninger and
Piston, 2014). The outreach of these waves was found to depend
on the metabolic state of surrounding cells and on the local
intercellular connectivity. On the other hand, if the glucokinase
activity and the subsequent supply of metabolic energy is high,
as in prolonged stimulatory conditions, all cells become on
average more excitable and the level of their cell-to-cell variability
decreases. Consequently, the regulatory role of gap junctional
coupling fades and hence an activation of a few cells frequently
leads to [Ca2+] waves that propagate throughout the whole islet,
as is characteristic for supercritical behavior. However, due to the
interplay between heterogeneities in cell metabolism, in the level
of excitability, and in the intercellular coupling, the transition
between the inactive and active beta cell network after switching
to stimulatory conditions is not abrupt. Instead, the beta cell
recruitment is a time dependent process that evokes an emergent
spatiotemporal dynamics characterized by power-law scaling. In
this vein, the concept of a functionally heterogeneous beta cell
population can be regarded as a key determinant of critical
behavior in islets.

Trapping beta cells in a self-organized critical state might
be of crucial physiological importance. Namely, criticality
seems to be crucial for enabling living tissues reasonable
handling of energy and providing efficient functioning and
optimized responses to external stimuli. For example, in the
field of neuroscience it has been hypothesized that a normal,
healthy brain resides in a critical state, which provides the
fastest and most flexible adaptation to different challenges
from the environment (Chialvo, 2010; Hesse and Gross, 2014;
Massobrio et al., 2015a). Tomen et al. (2014) have also shown
that cortical networks exhibit optimal neuronal information
processing at a near-critical state, i.e., in a narrow region
in the phase space at the transition from subcritical to
supercritical dynamics. Some studies have even put forward
the idea that an optimal physiological neural activity does
not perfectly reflect the SOC state but can be characterized
as a subcritical regime slightly below the SOC without a
separation of time scales, exhibiting the so-called≫mélange≪ of
avalanches (Priesemann et al., 2013, 2014). Potential advantages
of this marginally subcritical regime slightly below the SOC
may be a more efficient information processing, and a safety
margin from supercriticality, which has been linked to some
pathophysiological disorders. Interestingly, very recently it has
been shown that also social systems are poised in the proximity of
critical points and by tuning the distance to this point facilitates
the system to favor either stability or flexibility (Daniels et al.,
2017).

Even within nadirs of our oscillatory stimulation protocol, we
were unable to detect any convincing evidence of subcriticality.
However, this does not exclude the possibility that in vivo,
subcriticality in the form of localized individual [Ca2+]c might
be present. Glucose is a signal that rapidly reaches all beta
cells also in vivo and it is hard to believe that differences in
supply of glucose to different parts of islets or differences in
sensitivity of beta cells to glucose could be much higher in vivo
than in our in situ preparation and bring about subcritical

behavior (Michau et al., 2016). However, in case of incretins
which are also able to evoke [Ca2+]c changes in beta cells,
evidence exists that especially in human islets, not all beta cells
respond to GLP-1 equally well (Hodson et al., 2013, 2014). If
differences in sensitivity are great enough, one can imagine that
a local [Ca2+]c response of a highly sensitive cell might remain
localized, especially if the momentary glucose concentration is
not great enough to support propagation to neighboring cells
(Eddlestone et al., 1984). Likewise, in vivo, subcritical behavior
of spatiotemporal [Ca2+]c dynamics could be brought about by
signals able to evoke beta cell [Ca2+]c responses that stem from
local sources and conceivably stimulate some beta cells more than
others, for instance ATP, acetylcholine, or glucagon released from
parasympathetic nerve endings or alpha cells (Rodriguez-Diaz
et al., 2011a,b; Gylfe et al., 2012). These possibilities remain to
be investigated experimentally.

We might further hypothesize that islet tissue operates as a
so-called driven subcritical system that is switched to SOC by
an entrainment with glucose dynamics. It is well established
that glucose oscillations are a hallmark of normal glucose
tolerance and islet function (Lang et al., 1979, 1981; Mao
et al., 1999; Ritzel et al., 2005). Blood glucose concentration
oscillates in both monkeys and humans with a period in the
range of the slow insulin oscillations and an amplitude of
approximately 1-10 % with respect to the average concentration
(Goodner et al., 1977; Lang et al., 1979; Mao et al., 1999).
These glucose oscillations seem to be strongly correlated with
pulsatile secretion of insulin (O’Meara et al., 1993; Mao et al.,
1999; Ritzel et al., 2005; Pedersen et al., 2013; Nunemaker
and Satin, 2014; Satin et al., 2015). In fact, it was shown
that oscillations of insulin secretion can be entrained by
imposed small changes in glucose concentration in vivo in
normal subjects and that this ability is lost in T2DM (Mao
et al., 1999; Hollingdal et al., 2000). It was further suggested
that oscillatory glucose actually amplifies the mass of insulin
secretory pulses that coincide with imposed glucose stimuli
and that the intrinsic frequency of insulin oscillations does not
change (Ritzel et al., 2005). This seems in contrast with recent
findings that slow oscillations in metabolism and [Ca2+]c that
are believed to underlie insulin pulses (Pedersen et al., 2013;
Sun et al., 2015), as well as insulin secretion can indeed be
entrained to glucose (Dhumpa et al., 2015). However, all these
contradictions might only be a consequence of still unknown
underlying mechanisms for self-organization in human body
and the relation of these micro-mechanisms with the emergent
macro-phenomena. Recently, Lo et al. (2013) have demonstrated
that in contrast to the macroscopic homeostatic equilibrium
that describes sleep at the circadian time scale of several hours,
the sleep micro-architecture at scales from seconds to minutes
exhibits a non-equilibrium behavior of SOC type. They argue
that the asymmetry in the transitions between quiet states and
avalanches is important as the energy can slowly build up
during quiet states, i.e., slowly approaching the critical point,
and dissipates rapidly when avalanches occur. Nevertheless,
methodologies and novel, more holistic approaches to studying
such interconnected physiological processes, occurring in a
broad range of space and time scales, are only beginning to
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emerge. The recently emerging fields of network physiology and
network medicine show great potential to provide new insights
into how global behavior at the organism level can arise out
of micro-mechanisms on the cellular and tissue level, along
with networked interactions among different organ systems, to
generate health or disease (Bashan et al., 2012; Ivanov et al.,
2016).

Our results show that a change in glucose stimulus similar
to the one during development of T2DM, i.e., exposure of islets
to non-oscillatory and slightly elevated glucose concentration,
leads to an excess of large events in the spatiotemporal pattern
of fast [Ca2+]c oscillations that are believed to determine the
pulse mass of insulin oscillations, suggesting that a switch
to supercriticality might be an important pathophysiological
mechanism in T2DM. This finding corresponds with recent
investigations in the brain, showing that epilepsy, for example, is
characterized by a supercritical behavior of neurons (Meisel et al.,
2012; Priesemann et al., 2014), as well as in a number of other
tissues and disease states, such as in obesity and irritable bowel
syndrome (caused by a transition in microbial composition),
asthma and other pulmonary diseases, depression, inflammation,
cancer, and cardiovascular events (for review see Trefois et al.,
2015).

In general, an improved understanding of such transitions
to supercriticality from normal healthy states during onset and
progression of diseases could have important applications
in health care. From the viewpoint of preventive, the
identification and characterization of early warning signals
could predict upcoming critical transitions; and from
the view point of curative, the understanding of critical
transitions might help us develop more effective therapeutic
applications.

AUTHOR CONTRIBUTIONS

MG, AS, RM, JD, MP, MR, and MM designed and performed the
research as well as wrote the paper.

FUNDING

The authors acknowledge the financial support from the
Slovenian Research Agency (research core funding, Nos. P3-0396
and I0-0029-0552, as well as research projects, Nos. N3-0048,
J3-7177, J1-7009, and J7-7226). The funders had no role in
study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2017.01106/full#supplementary-material

Text S1 | Mathematical model and parameter values for beta cells.

Figure S1 | The course of the simulated oscillatory stimulation protocol. Variations

in the glucokinase reaction rate reflect the oscillatory changes in glucose.

Figure S2 | Coupling in the multicellular beta cell model. (A) A typical structure of

the intercellular network of beta cells. (B) The corresponding degree distribution.

The beta cell network is quite homogeneous with a mean degree around 6. (C)

The distribution of the electrical coupling coefficient. The coupling strength is rather

heterogeneous and follows an exponential distribution with a mean of 200 pS.

Figure S3 | Simulated spatio-temporal activity under constant stimulation with

homogeneous coupling. Typical computed [Ca2+]c responses of four different

beta cells after switching to stimulatory conditions (upper panel, gray area

indicates stimulatory conditions) and binarization of the computed oscillations of

all cells (lower panel). The electrical coupling coefficient was distributed normally

with mean 200 pS and relative SD of 30%. In this case very synchronized behavior

is obtained without progressive and heterogeneous activations of cells, as

observed in experiments.

Video S1 | Representative animation of computed and binarized spatiotemporal

[Ca2+]i activity under constant stimulation with glucose.

Video S2 | Representative animation of computed and binarized spatiotemporal

[Ca2+]i activity under periodic stimulation with glucose.

Video S3 | Movie of experimentally measured and binarized [Ca2+]i activity under

constant stimulation with 8 mM glucose from the onset of glucose increase.

Video S4 | Movie of experimentally measured and binarized [Ca2+]i activity under

periodic stimulation with 6-8-6-8-6-8-6 mM glucose.
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